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This Talk in a Nutshell

Overfitting: Too small training error
can yield a large test error.

e With deep learning, it is easy
to achieve zero training error.

e But the minimum achievable test error
IS not necessarily zero.
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This Talk in a Nutshell

Error

In this talk, we discuss: $
1. Can we mitigate overfitting et error

by avoiding too small training error?
2. Can we estimate the Bayes error /Tra.m
accurately? error
L @
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Formulation of Supervised Classification

We are given input-output training data:
{(xi» Yi)}?:l ii'd'p(x' y) X € ]Rdly € {1' ) C}

We want to obtain a classifier g(x)
that minimizes the test error: R(g) = Eop(xy) [f(y,g(x))]

£(y,¥): Pointwise loss (e.g., cross-entropy)

Since the true distribution is unknown,
we minimize the training error in practice:

R() =13 00 g(xi)



Coping with Overfitting

Regularization:

e Restrict the model complexity
to avoid too small training error.

R(g)+1-Q(g) 2120

Regularization

Training error Regularizer
parameter

Flooding: Ishida+ (ICML2020)

e Directly restrict the training error
to be not too small.

[R(g) —bl+b b=0

Flood level
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Behavior of Flooding !
R(g) = |R(g) —b|+b b=0

Training error Flood level

Error

When R(g) = b, R(g) = R(g) : A
e Perform gradient descent.

When R(g) < b, R(g) = —R(g) + 2b :
e Perform gradient ascent.

Training
error

~ b
Therefore, when R(g) =~ b, w |

. o) >
the solution does not stay, Epoch
but is fluctuated (to find a better solution):

e \We treat b as a hyper-parameter.




lllustrative Experiments
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CIFAR-10, ResNet44 Data augmentation & Learning rate decay

With flooding, the test error improves.
Flooding induces epoch-wise double descent for the test error.



Theoretical Justification
R(g) =IR(g)—bl+b b=0

Training loss Flood level
With proper choice of b, the mean squared error (MSE)
of the flooded estimator R is smaller than the original one R.

e In practice, smaller b is safer.

Theorem 1. Fix any measurable vector-valued function g. If the flooding level b satisfies ﬁ(g) <
b < R(g), we have

MSE(R(g)) > MSE(R(g)). (10)

Ifb < R(g), we have R N
MSE(R(g)) = MSE(R(g)). (11)

P

R(9) = E,uplf(y,g(®)] R(g) = %gl £y, 9(x;))



Experiments
w/o early stopping w/ early stopping

Dataset Model & Setup w/o flood w/flood | w/o flood w/flood
MLP 98.45%  98.76% | 98.48%  98.66%
MNIST MLP w/ weight decay 98.53%  98.58% | 98.51%  98.64%
MLP w/ batch normalization 98.60%  98.72% | 98.66%  98.65%
MLP 9227% 9315% | 92.24%  92.90%
Kuzushiji MLP w/ weight decay 92.21%  92.53% | 9224%  93.15%
MLP w/ batch normalization 9298%  93.80% | 92.81%  93.74%
SVHN ResNet18 92.38%  92.78% | 92.41%  92.79%
ResNet18 w/ weight decay 93.20% - 92.99%  93.42%
CIFAR-10 ResNet44 75.38%  75.31% | 74.98%  75.52%
- ResNet44 w/ data aug. & LR decay | 88.05% 89.61% | 88.06%  89.48%
CIFAR-100 ResNet44 46.00%  45.83% | 46.87%  46.73%

' ResNet44 w/ data aug. & LR decay | 63.38% 63.70% | 63.24% -

Flooding significantly improves the prediction accuracy!

10



Contents

Can we mitigate overfitting by avoiding
too small training error?

Can we estimate the Bayes error accurately?

Summary

11



Bayes Error Estimation

12

Bayes error: Minimum achievable test error.

e Irreducible part of the test error!

Why do we want to estimate it?

e Investigate whether test-set overfitting
Ooccurs or not.

e Use it for measuring task difficulty
(e.g., acceptance/rejection decision
at competitive conferences)

Best test error (March 2023)

MNIST 0.09%
CIFAR-10 0.50%
CIFAR-100 3.92%
ImageNet 8.90%

73 ICLR
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Bayes Error Estimation

Nalve approach:
e With (big) supervised data, train a classifier.

{(p Yy ~pxy) - f(x) xeRYLye(l,..c}
e Use its validation error as an estimated Bayes error.

(L yDY= X p(xy) = o S (x)=v
Drawback:

e Not accurate due to limited supervised training/validation data.

Our solution: Ishida+ (ICLR2023)
e Bayes error estimation without training a classifier.
e We focus on binary classification (i.e., y € {+1,—1}).
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Bayes Error Estimation from Confidence Data

Expression of the Bayes error f without g(x):
B = Ejxmin{p(y = +1]|x),p(y = —1|x)}]

Suppose we are given confidence data: ¢; = p(y = +1|x;)

~ (X
e Our model-free and p( )

Instance-free estimator: '8

|l
S|e
I
HM:

min{c;, 1 — ¢;}
l

e Unbiased and consistent:

A A Vo >0
E[f]=F B —Fl = \/ 1085 with probability 1 — &
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Test error or
estimated Bayes error

lllustrative Example
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Extension 1: Noisy Soft Labels and Sign Labels 1/

Suppose we are given
e Noisy soft labels: u; = ¢; + &; & ~ truncN(c;, 0.4%) s.t.u; € [0,1]
e Sign labels: s; = sign[c; — 0.5] ¢; =ply =+1|x;) x; ~ p(x)

. (1=1,..,n
Proposed estimator:

Enoisy 1( Z (1 ul) + Z ul )

N\ is;=+1 i:5;=

e Unbiased and consistent:

IIEI[Iénoisy] — ﬁ |:Bn01sy ﬁl \/ log(g V.5 >0

with probability 1 — 6




Extension 2: Multiple Hard Labels

Suppose we are given i
e Multiple hard labels: y;; Vi j I*L'p(ylxi) xX; ~ p(x)

i=1,..,n,j=1,...,m

Proposed estimator:

= 1 n 1 m
IBmulti = — ), min{y;, 1 —v;} Vi = — _Z 1[)’i,j = 1]
ni=1 mj=1

e Asymptotically unbiased:

|B_E[lgmult1 | = \/log(zn\/_)
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Extension 3: Positive Confidence
Suppose we are given
e Positive confidence: 1, = p(y = +1|x;) X; ~ p(x|y — +1)
[=1,..,n,

1
Proposed estimator: Bpeons = 14 (1 - Z max (0,2 — —)>
+ 1=1

Ty =p(y =+1)
e Unbiased and consistent:

S B VS >0
IIE‘:[:BPconf] _ IB |:8Pconf lgl 10g5 with probablllty 1—6
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Benchmark Experiments 20

ViT’s
, test error
CIFAR-10 ( '."{) VS. 4% ")') B C-10 is already
e Soft labels: class proportions of 50 3 mmm C-10F close to
human hard labels per image from C-10.1 the Bayes
CIFAR-10H (Peterson+ ICCV2019). 2 C-10H error!
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Fashion-MNIST (& ® vs. . &)  °

e Multiple hard labels annotated by humans
for each image from Fashion-MNIST.
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3.852%
(£ 0.041%) Already close to
3.478% the Bayes error!
(£ 0.079%)

ResNet18’s test error

Estimated Bayes error
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Difficulty of Paper Acceptance at ICLR

Use the weighted average of
ICLR reviewers’ scores
based on their confidence.

Results:

e The Bayes error is 6~10%
(higher than CIFAR-10
and Fashion-MNIST).

e No big changes over years.

Demonstrates the benefit of our instance-free approach!

ICLR’s Bayes error

2017
2018
2019
2020
2021
2022
2023

6.8%(=

8.7%
7.9%
8.8%
9.3%
9.6%

8.0%

. e Y T i T
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Summary 23

Flooding: Keep the training error not too small. Ishida+ (ICML2020)

e Instance-wise flooding. (xie+ ICLR2022) Error

e Instance-wise adaptive flooding. (Anonymous TMLR submitted) Test error
e Soft flooding. (Holland+ arxiv2023) Trining

e Time-series extension. (Cho+ NeurlPs2022) | w e

e Theoretical analysis. (Karakida+ ICML2023) Epoch

L - - . Ishida+
Bayes error estimation without explicit classifier training: ¢ ro023)

: : . (Jeong+ i n
e Multi-class extension with clean soft labels. NewlPS2023) =23 minfe, 1)
e Extension to the false positive rate. (Jeong+ arxiv2024) G =py=+11x)  x ~ p(x)

Can we combine these two for auto-overfitting mitigation?



