Training Error and Bayes Error in Deep Learning

Masashi Sugiyama

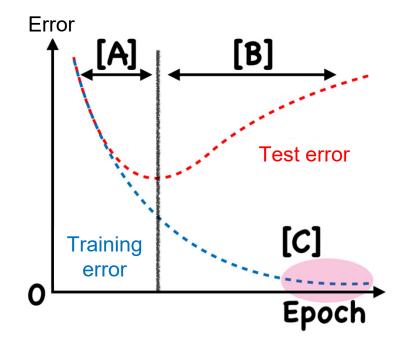
 RIKEN Center for Advanced Intelligence Project/ The University of Tokyo, Japan

http://www.ms.k.u-tokyo.ac.jp/sugi/

This Talk in a Nutshell

Overfitting: Too small training error can yield a large test error.

- With deep learning, it is easy to achieve zero training error.
- But the minimum achievable test error is not necessarily zero.



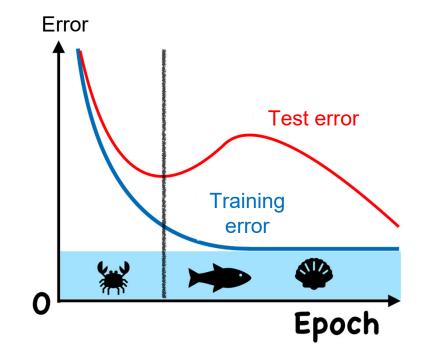
This Talk in a Nutshell

In this talk, we discuss:

- Can we mitigate overfitting by avoiding too small training error?
- 2. Can we estimate the Bayes error accurately?

References:

- Ishida, T., Yamane, I., Sakai, T., Niu, G. & Sugiyama, M. (ICML2020).
- Ishida, T., Yamane, I., Charoenphakdee, N., Niu, G., & Sugiyama, M. (ICLR2023).



Takashi Ishida

(RIKEN/UTokyo)



Contents

- 1. Can we mitigate overfitting by avoiding too small training error?
- 2. Can we estimate the Bayes error accurately?
- 3. Summary

Formulation of Supervised Classification

We are given input-output training data:

$$\{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x}, \boldsymbol{y}) \qquad \boldsymbol{x} \in \mathbb{R}^d, \boldsymbol{y} \in \{1, \dots, c\}$$

We want to obtain a classifier g(x)that minimizes the test error: $R(g) = \mathbb{E}_{p(x,y)}[\ell(y,g(x))]$

 $\ell(y, \hat{y})$: Pointwise loss (e.g., cross-entropy)

Since the true distribution is unknown, we minimize the training error in practice:

$$\widehat{R}(g) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, g(\boldsymbol{x}_i))$$

Coping with Overfitting

Regularization:

 Restrict the model complexity to avoid too small training error.

$$\widehat{R}(g) + \lambda \cdot \Omega(g)$$

$$\lambda \ge 0$$

Training error

Regularizer

Regularization parameter

Flooding: Ishida+ (ICML2020)

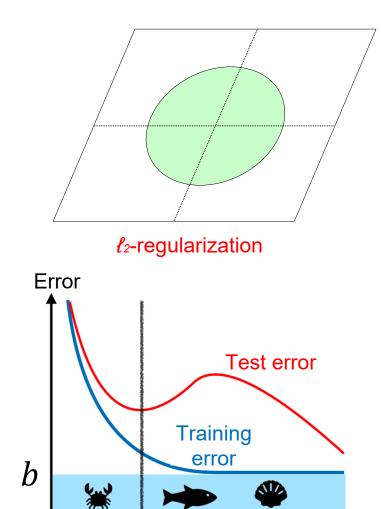
• Directly restrict the training error to be not too small.

$$|\hat{R}(g) - b| + b$$

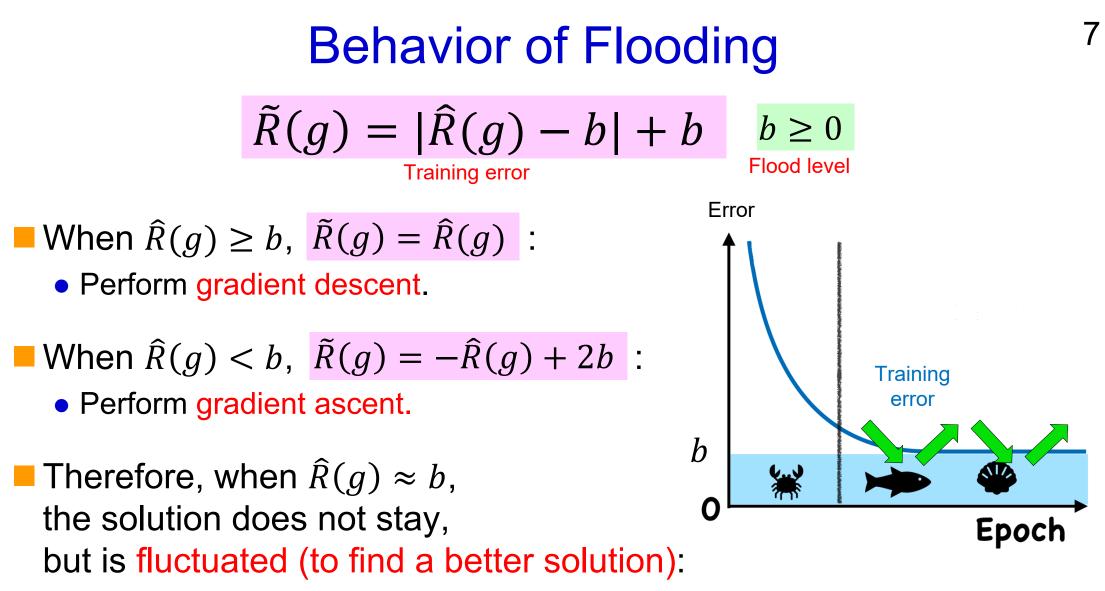
$$b \ge 0$$

Flood level

O

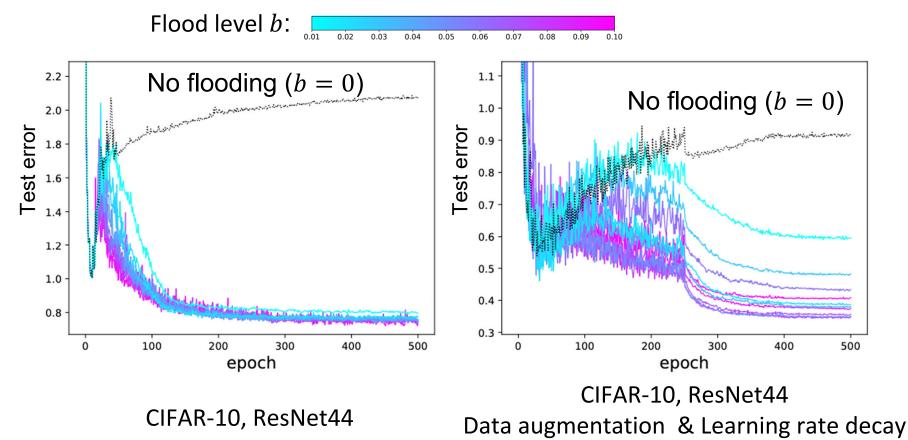


Epoch



• We treat *b* as a hyper-parameter.

Illustrative Experiments



With flooding, the test error improves.

Flooding induces epoch-wise double descent for the test error.

Theoretical Justification $\tilde{R}(g) = |\hat{R}(g) - b| + b$ $b \ge 0$ Training lossFlood level

With proper choice of b, the mean squared error (MSE) of the flooded estimator \tilde{R} is smaller than the original one R.

• In practice, smaller *b* is safer.

Theorem 1. Fix any measurable vector-valued function g. If the flooding level b satisfies $\widehat{R}(g) < b < R(g)$, we have $MSE(\widehat{R}(g)) > MSE(\widehat{R}(g))$.(10) $If b \le \widehat{R}(g)$, we have $MSE(\widehat{R}(g)) = MSE(\widetilde{R}(g))$. $MSE(\widehat{R}(g)) = MSE(\widehat{R}(g))$.(11) $R(g) = \mathbb{E}_{p(x,y)}[\ell(y, g(x))]$ $\widehat{R}(g) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, g(x_i))$

Experiments

		w/o early stopping		w/ early stopping	
Dataset	Model & Setup	w/o flood	w/ flood	w/o flood	w/ flood
MNIST	MLP	98.45%	98.76%	98.48%	98.66%
	MLP w/ weight decay	98.53%	98.58%	98.51%	98.64%
	MLP w/ batch normalization	98.60%	<u>98.72%</u>	98.66%	98.65%
Kuzushiji	MLP	92.27%	93.15%	92.24%	92.90%
	MLP w/ weight decay	92.21%	92.53%	92.24%	93.15%
	MLP w/ batch normalization	92.98%	<u>93.80%</u>	92.81%	93.74%
SVHN	ResNet18	92.38%	92.78%	92.41%	92.79%
	ResNet18 w/ weight decay	93.20%	-	92.99%	<u>93.42%</u>
CIFAR-10	ResNet44	75.38%	75.31%	74.98%	75.52%
	ResNet44 w/ data aug. & LR decay	88.05%	<u>89.61%</u>	88.06%	89.48%
CIFAR-100	ResNet44	46.00%	45.83%	46.87%	46.73%
	ResNet44 w/ data aug. & LR decay	63.38%	<u>63.70%</u>	63.24%	-

Flooding significantly improves the prediction accuracy!

Contents

11

- 1. Can we mitigate overfitting by avoiding too small training error?
- 2. Can we estimate the Bayes error accurately?
- 3. Summary

Bayes Error Estimation

Bayes error: Minimum achievable test error.

• Irreducible part of the test error!

Why do we want to estimate it?

- Investigate whether test-set overfitting occurs or not.
- Use it for measuring task difficulty (e.g., acceptance/rejection decision at competitive conferences)

Best test error (March 2023)				
MNIST	0.09%			
CIFAR-10	0.50%			
CIFAR-100	3.92%			
ImageNet	8.90%			

kwwsv=22sdshuvz lwkfrqhffrp 2vrwd

kwsv=221fp aff2 kwsv=221fa1ff2 kwsv=22q1sv1ff

Bayes Error Estimation

Naïve approach:

• With (big) supervised data, train a classifier.

 $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x}, y) \rightarrow f(\boldsymbol{x}) \qquad \boldsymbol{x} \in \mathbb{R}^d, y \in \{1, \dots, c\}$

• Use its validation error as an estimated Bayes error.

$$\{(\mathbf{x}'_{i}, y'_{i})\}_{i=1}^{n'} \stackrel{\text{i.i.d.}}{\sim} p(\mathbf{x}, y) \rightarrow \frac{1}{n'} \sum_{i=1}^{n} \mathbf{1}[f(\mathbf{x}'_{i}) = y'_{i}]$$

Drawback:

Not accurate due to limited supervised training/validation data.

Our solution: Ishida+ (ICLR2023)

- Bayes error estimation without training a classifier.
- We focus on binary classification (i.e., $y \in \{+1, -1\}$).

Bayes Error Estimation from Confidence Data¹⁴

Expression of the Bayes error β without g(x):

 $\beta = \mathbb{E}_{p(\boldsymbol{x})}[\min \{p(\boldsymbol{y} = +1 | \boldsymbol{x}), p(\boldsymbol{y} = -1 | \boldsymbol{x})\}]$

Suppose we are given confidence data: $c_i = p(y = +1|x_i)$

 Our model-free and instance-free estimator:

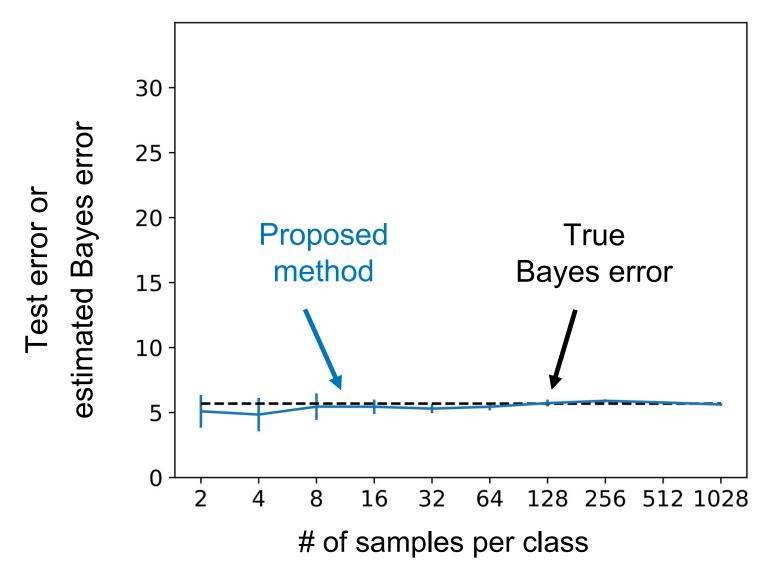
$$\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \min\{c_i, 1 - c_i\}$$

 $x_i \sim p(x)$

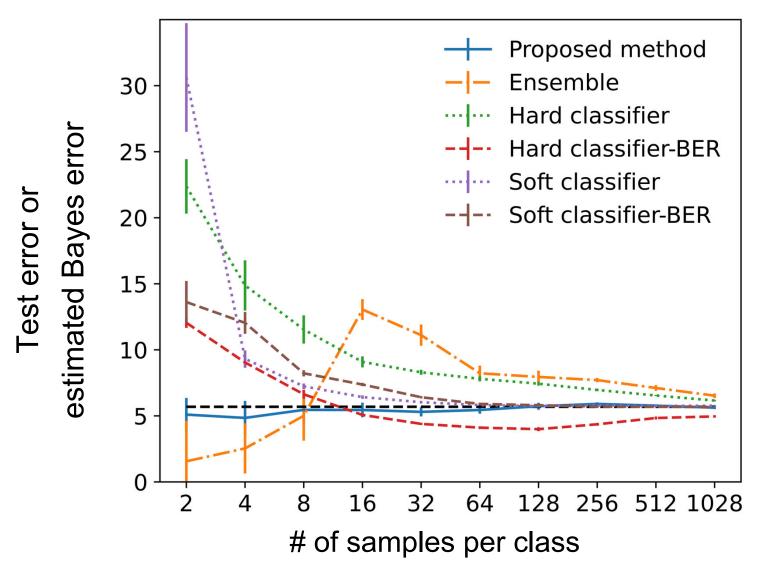
• Unbiased and consistent:

$$\mathbb{E}[\hat{\beta}] = \beta \qquad |\hat{\beta} - \beta| \le \sqrt{\frac{1}{8n} \log_{\overline{\delta}}^2} \quad \frac{\forall \delta > 0}{\text{with probability } 1 - \delta}$$

Illustrative Example



Illustrative Example



Extension 1: Noisy Soft Labels and Sign Labels ¹⁷

Suppose we are given

- Noisy soft labels: $u_i = c_i + \xi_i$ $\xi_i \sim \operatorname{truncN}(c_i, 0.4^2)$ s.t. $u_i \in [0, 1]$
- Sign labels: $s_i = \text{sign}[c_i 0.5]$ $c_i = p(y = +1|x_i)$ $x_i \sim p(x)$

i = 1, ..., n

Proposed estimator:

$$\hat{\beta}_{\text{noisy}} = \frac{1}{n} \left(\sum_{i:s_i=+1}^n (1-u_i) + \sum_{i:s_i=-1}^n u_i \right)$$

Unbiased and consistent:

$$\mathbb{E}[\hat{\beta}_{\text{noisy}}] = \beta \qquad |\hat{\beta}_{\text{noisy}} - \beta| \le \sqrt{\frac{1}{2n} \log_{\delta}^2} \quad \frac{\forall \delta > 0}{\text{with probability } 1 - \delta}$$

Extension 2: Multiple Hard Labels

Suppose we are given

• Multiple hard labels: $y_{i,j}$

$$y_{i,j} \stackrel{\text{i.i.d.}}{\sim} p(y|\boldsymbol{x}_i) \quad \boldsymbol{x}_i \sim p(\boldsymbol{x})$$
$$i = 1, \dots, n, j = 1, \dots, m$$

Proposed estimator:

$$\hat{\beta}_{\text{multi}} = \frac{1}{n} \sum_{i=1}^{n} \min\{v_i, 1 - v_i\}$$
 $v_i = \frac{1}{m} \sum_{j=1}^{m} \mathbf{1}[y_{i,j} = 1]$

• Asymptotically unbiased:

$$|\beta - \mathbb{E}[\hat{\beta}_{\text{multi}}]| \leq \frac{1}{2\sqrt{m}} + \sqrt{\frac{\log(2n\sqrt{m})}{2m}}$$

Extension 3: Positive Confidence

Suppose we are given

• Positive confidence:
$$r_i = p(y = +1 | \mathbf{x}_i)$$
 $\mathbf{x}_i \sim p(\mathbf{x} | y = +1)$
 $i = 1, ..., n_+$

Proposed estimator:
$$\hat{\beta}_{Pconf} = \pi_+ \left(1 - \frac{1}{n_+} \sum_{i=1}^{n_+} \max(0, 2 - \frac{1}{r_i}) \right)$$

 $\pi_+ = p(y = +1)$

• Unbiased and consistent:

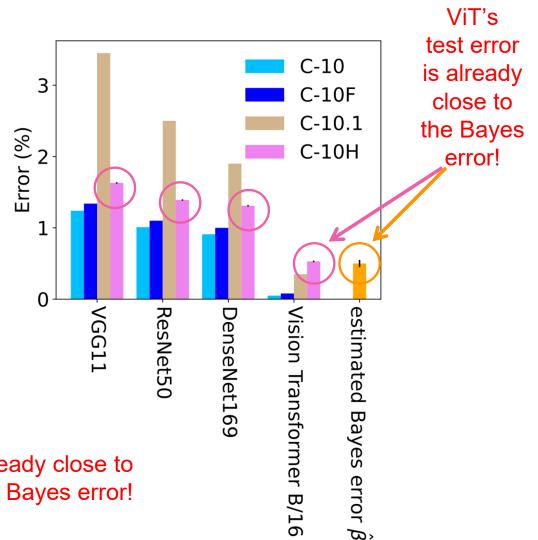
$$\mathbb{E}[\hat{\beta}_{\text{Pconf}}] = \beta \qquad |\hat{\beta}_{\text{Pconf}} - \beta| \le \sqrt{\frac{\pi_+^2}{2n} \log_{\overline{\delta}}^2} \quad \forall \delta > 0$$

with probability $1 - \delta$

Benchmark Experiments

■ CIFAR-10 (🦬 🛸 vs. 🚙 →)

 Soft labels: class proportions of 50 human hard labels per image from CIFAR-10H (Peterson+ ICCV2019).



Fashion-MNIST (A Transmission of the second sec

• Multiple hard labels annotated by humans for each image from Fashion-MNIST.

ResNet18's test error	3.852% (± 0.041%) ◀	Already close t
Estimated Bayes error	3.478% (± 0.079%)	the Bayes erro

Difficulty of Paper Acceptance at ICLR

Use the weighted average of ICLR reviewers' scores based on their confidence.

Results:

- The Bayes error is 6~10% (higher than CIFAR-10 and Fashion-MNIST).
- No big changes over years.

ICLR's Bayes error				
2017	$6.8\%(\pm 1.0\%)$			
2018	$8.7\%(\pm 0.9\%)$			
2019	$7.9\%(\pm 0.7\%)$			
2020	$8.8\%(\pm 0.5\%)$			
2021	$9.3\%(\pm 0.5\%)$			
2022	$9.6\%(\pm 0.5\%)$			
2023	$8.0\%(\pm 0.4\%)$			

Demonstrates the benefit of our instance-free approach!

Contents

- 1. Can we mitigate overfitting by avoiding too small training error?
- 2. Can we estimate the Bayes error accurately?
- 3. Summary

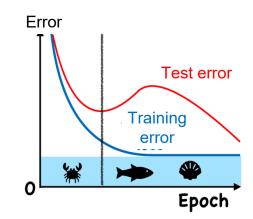
Summary

Flooding: Keep the training error not too small. Ishida+ (ICML2020)

- Instance-wise flooding. (Xie+ ICLR2022)
- Instance-wise adaptive flooding. (Anonymous TMLR submitted)
- Soft flooding. (Holland+ arXiv2023)
- Time-series extension. (Cho+ NeurIPS2022)
- Theoretical analysis. (Karakida+ ICML2023)

- Multi-class extension with clean soft labels. (Jeong+ NeurIPS2023)
- Extension to the false positive rate. (Jeong+ arXiv2024)

Can we combine these two for auto-overfitting mitigation?



 $\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \min\{c_i, 1 - c_i\}$

 $c_i = p(y = +1|x_i)$ $x_i \sim p(x)$