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This Talk in a Nutshell

Overfitting: Too small training error
can yield a large test error.

 With deep learning, it is easy
to achieve zero training error.

 But the minimum achievable test error
is not necessarily zero.
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This Talk in a Nutshell

 In this talk, we discuss:
1. Can we mitigate overfitting

by avoiding too small training error?
2. Can we estimate the Bayes error

accurately?

References:
 Ishida, T., Yamane, I., Sakai, T., Niu, G.

& Sugiyama, M. (ICML2020).
 Ishida, T., Yamane, I., Charoenphakdee, N.,

Niu, G., & Sugiyama, M. (ICLR2023).
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Formulation of Supervised Classification
We are given input-output training data:

We want to obtain a classifier          
that minimizes the test error: 

Since the true distribution is unknown,
we minimize the training error in practice:
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Coping with Overfitting
Regularization:
 Restrict the model complexity

to avoid too small training error.

Flooding:
 Directly restrict the training error

to be not too small.

6

Ishida+ (ICML2020)

Training error Regularizer Regularization
parameter

Flood level

Test error

Training
error

Error
ℓ2-regularization



Behavior of Flooding

When ,                        :
 Perform gradient descent.

When , :
 Perform gradient ascent.

Therefore, when ,
the solution does not stay,
but is fluctuated (to find a better solution):
 We treat 𝑏 as a hyper-parameter.

7

Training error Flood level

Training
error

Error



Illustrative Experiments

With flooding, the test error improves.
Flooding induces epoch-wise double descent for the test error.
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Theoretical Justification

With proper choice of , the mean squared error (MSE)
of the flooded estimator is smaller than the original one .
 In practice, smaller is safer.
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Experiments

Flooding significantly improves the prediction accuracy!
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Bayes Error Estimation
Bayes error: Minimum achievable test error.
 Irreducible part of the test error!

Why do we want to estimate it?
 Investigate whether test-set overfitting

occurs or not.

 Use it for measuring task difficulty
(e.g., acceptance/rejection decision
at competitive conferences)
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Best test error (March 2023)
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Bayes Error Estimation
Naïve approach:
 With (big) supervised data, train a classifier.

 Use its validation error as an estimated Bayes error.

Drawback:
 Not accurate due to limited supervised training/validation data.

Our solution:
 Bayes error estimation without training a classifier.
 We focus on binary classification (i.e., ).
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Bayes Error Estimation from Confidence Data
Expression of the Bayes error without :

Suppose we are given confidence data:

 Our model-free and
instance-free estimator:

 Unbiased and consistent:
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Illustrative Example 15
Te

st
 e

rro
r o

r
es

tim
at

ed
 B

ay
es

 e
rro

r

# of samples per class

True
Bayes error

Proposed
method



Illustrative Example 16
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Extension 1: Noisy Soft Labels and Sign Labels 17

Suppose we are given
 Noisy soft labels:
 Sign labels:

Proposed estimator:

 Unbiased and consistent:
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Extension 2: Multiple Hard Labels
Suppose we are given
 Multiple hard labels:

Proposed estimator:

 Asymptotically unbiased:
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Extension 3: Positive Confidence
Suppose we are given
 Positive confidence:

Proposed estimator:

 Unbiased and consistent:
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Benchmark Experiments 20

ViT’s
test error
is already
close to

the Bayes 
error!

3.852%
(± 0.041%)ResNet18’s test error

3.478%
(± 0.079%)Estimated Bayes error

Already close to
the Bayes error!

CIFAR-10 (  vs. )
 Soft labels: class proportions of 50 

human hard labels per image from 
CIFAR-10H (Peterson+ ICCV2019). 

Fashion-MNIST ( vs. )
 Multiple hard labels annotated by humans 

for each image from Fashion-MNIST.



Difficulty of Paper Acceptance at ICLR
Use the weighted average of

ICLR reviewers’ scores
based on their confidence.

Results:
The Bayes error is 6~10%

(higher than CIFAR-10
and Fashion-MNIST).

No big changes over years.

Demonstrates the benefit of our instance-free approach!
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Summary
Flooding: Keep the training error not too small.
 Instance-wise flooding.
 Instance-wise adaptive flooding.
 Soft flooding.
 Time-series extension.
 Theoretical analysis. 

Bayes error estimation without explicit classifier training:
 Multi-class extension with clean soft labels.
 Extension to the false positive rate.

Can we combine these two for auto-overfitting mitigation?
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