IEEE World Congress on Computational Intelligence 2024, July 2, 2024 Yokohama, Japan

Towards More Robust and Reliable Machine Learning

IEEE WCCI 2024

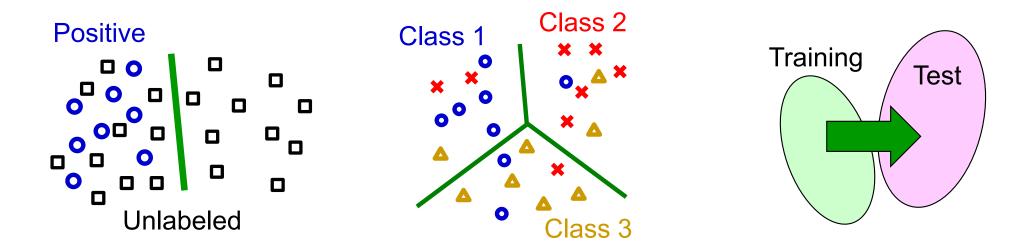
Masashi Sugiyama

RIKEN Center for Advanced Intelligence Project/ The University of Tokyo, Japan

http://www.ms.k.u-tokyo.ac.jp/sugi/

Reliable Machine Learning

- Reliability of machine learning systems can be degraded by various factors:
 - Insufficient information: weak supervision.
 - Label noise: human error, sensor error.
 - Data bias: changing environments, privacy.
- Improving the reliability is an urgent challenge!



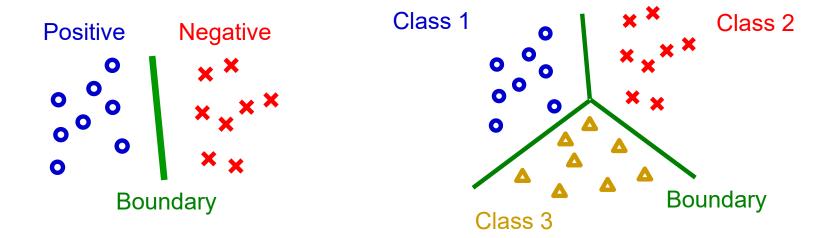
Contents

- 1. Weakly Supervised Learning
- 2. Noisy-Label Learning
- 3. Transfer Learning
- 4. Towards More Reliable Learning

Weakly Supervised Classification

4

Supervised classification from big labeled data is successful: speech, image, language, ...



However, there are many applications where big labeled data is not available:

- Medicine, disaster, robot, brain, ...
- We want to utilize "weak" supervision that can be collected easily!

Positive-Unlabeled (PU) Classification 5 Li+ (IJCAI2003) Given: PU samples (no N samples). $\{\boldsymbol{x}_{i}^{\mathrm{P}}\}_{i=1}^{n_{\mathrm{P}}} \stackrel{\text{i.i.d.}}{\sim} p(\boldsymbol{x}|y=+1) \quad \{\boldsymbol{x}_{j}^{\mathrm{U}}\}_{j=1}^{n_{\mathrm{U}}} \stackrel{\text{i.i.d.}}{\sim} p(\boldsymbol{x})$ Goal: Obtain a classifier minimizing the PN risk. $\min_{f} R(f) \quad R(f) = \mathbb{E}_{p(\boldsymbol{x}, y)} \left[\ell \left(y, f(\boldsymbol{x}) \right) \right]$ \mathbb{E} : expectation ℓ : loss $y = \{+1, -1\}$ Positive [Negative] **Example:** Ad click prediction • Clicked ad: User likes it \rightarrow P Unclicked ad: User dislikes it or User likes it but doesn't have Unlabeled (mixture of time to click it \rightarrow U (=P or N)

positives and negatives)

PU Unbiased Risk Estimation

du Plessis+ (NeurIPS2014, ICML2015)

6

Decompose the risk:

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(+1, f(\boldsymbol{x}) \right) \right] + (1-\pi) \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=-1)} \left[\ell \left(-1, f(\boldsymbol{x}) \right) \right]$$

Risk for P data
Risk for N data $R^{-}(f)$

• Without N data, $R^{-}(f)$ can not be estimated directly:

• Eliminate the expectation over N data as

$$R^{-}(f) = \mathbb{E}_{p(\boldsymbol{x})} \left[\ell \left(-1, f(\boldsymbol{x}) \right) \right] - \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(-1, f(\boldsymbol{x}) \right) \right]$$
$$p(\boldsymbol{x}) = \pi p(\boldsymbol{x}|\boldsymbol{y}=+1) + (1-\pi)p(\boldsymbol{x}|\boldsymbol{y}=-1)$$

Unbiased risk estimator:

$$\widehat{R}_{\rm PU}(f) = \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(+1, f(\boldsymbol{x}_i^{\rm P})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big(-1, f(\boldsymbol{x}_j^{\rm U})\Big) - \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(-1, f(\boldsymbol{x}_i^{\rm P})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big(-1, f(\boldsymbol{x}_j^{\rm U})\Big) - \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(-1, f(\boldsymbol{x}_i^{\rm P})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big(-1, f(\boldsymbol{x}_j^{\rm U})\Big) - \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(-1, f(\boldsymbol{x}_i^{\rm P})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big(-1, f(\boldsymbol{x}_j^{\rm U})\Big) - \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(-1, f(\boldsymbol{x}_i^{\rm P})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big(-1, f(\boldsymbol{x}_j^{\rm U})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big)$$

Non-Negative Risk Correction

 $R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(+1, f(\boldsymbol{x}) \right) \right] + (1-\pi) \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=-1)} \left[\ell \left(-1, f(\boldsymbol{x}) \right) \right]$ Risk for P data Risk for N data $R^{-}(f)$

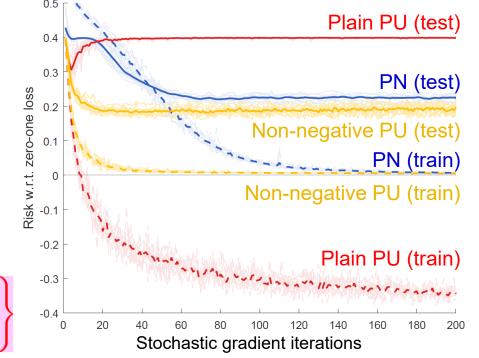
Risk for N data: $R^{-}(f) = \mathbb{E}_{p(\boldsymbol{x})} \left[\ell \left(-1, f(\boldsymbol{x}) \right) \right] - \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(-1, f(\boldsymbol{x}) \right) \right]$ **Empirical estimate:** $\widehat{R}_{\mathrm{PU}}^{-}(f) = \frac{1}{n_{\mathrm{U}}} \sum_{i=1}^{n_{\mathrm{U}}} \ell \left(-1, f(\boldsymbol{x}_{i}^{\mathrm{U}}) \right) - \frac{\pi}{n_{\mathrm{P}}} \sum_{i=1}^{n_{\mathrm{P}}} \ell \left(-1, f(\boldsymbol{x}_{i}^{\mathrm{P}}) \right)$

When loss is non-negative:

- True $R^{-}(f)$ is non-negative.
- But empirical estimate can be negative!

Non-negative correction:

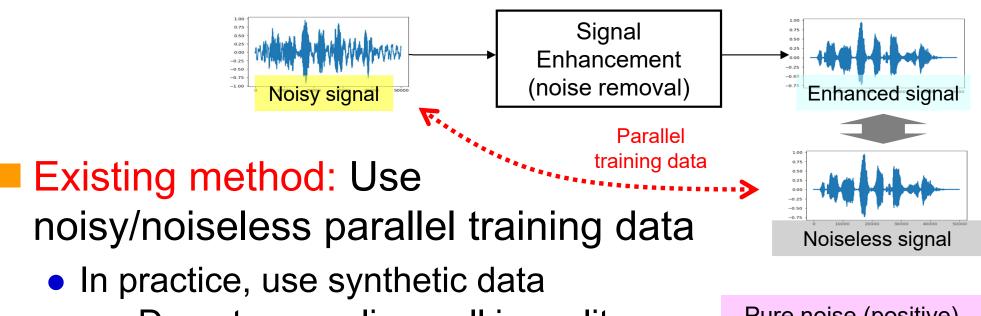
$$\widetilde{R}_{\rm PU}(f) = \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(f(\boldsymbol{x}_i^{\rm P})\Big) + \max\left\{0, \ \widehat{R}_{\rm PU}^-(f)\right\}$$



Kiryo+ (NeurIPS2017), Lu+ (AISTATS2020)

Signal Enhancement by PU Classification ⁸

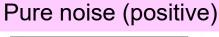
Ito+ (ICASSP2023, Best Paper Award)



 \rightarrow Do not generalize well in reality.

Proposed method: Use non-parallel pure noise and noisy signals.

		Methods	SI-SNRi [dB]
Non-parallel	ſ	Proposed	14.62 (0.20)
	1	MixIT ^{Wisdom+} (NeurIPS2020)	12.19 (4.50)
Parallel -	\rightarrow	Supervised	15.86 (1.28)

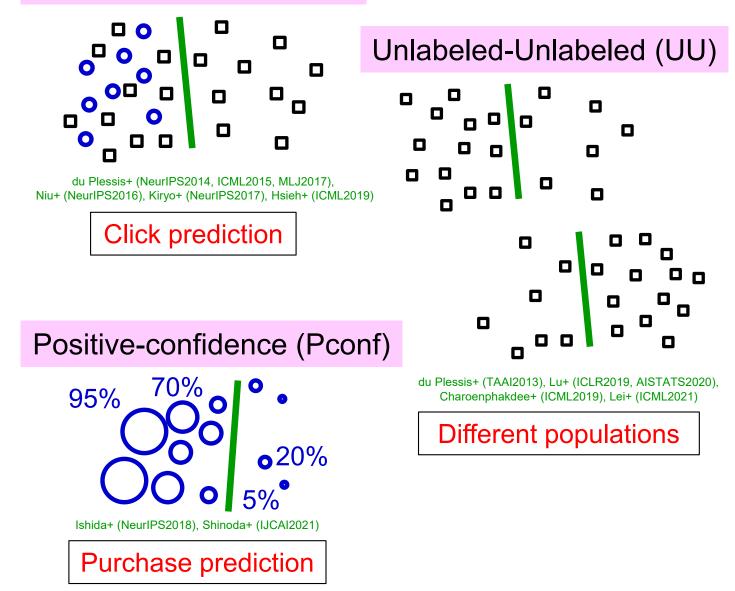


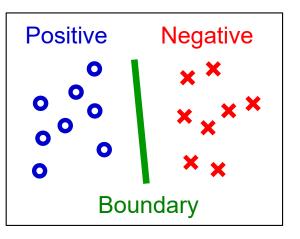
Noise + Speech (unlabeled)

Various Extensions (Binary)

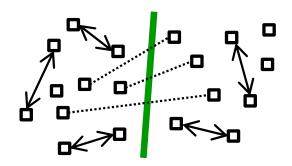
Similar unbiased risk estimation is possible!

Positive-Unlabeled (PU)





Similar-Dissimilar (SD)



Bao+ (ICML2018), Shimada+ (NeCo2021), Dan+ (ECMLPKDD2021), Cao+ (ICML2021), Feng+ (ICML2021)

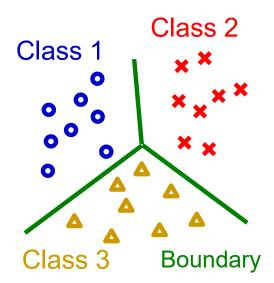
Sensitive prediction

Various Extensions (Multiclass) ¹⁰

Labeling patterns in multi-class problems is even more painful.

Multi-class weak-labels:

 Complementary label: Ishida+ (NeurIPS2017, ICML2019), Chou+ (ICML2020)
 Specifies a class that a pattern does not belong to ("not 1").

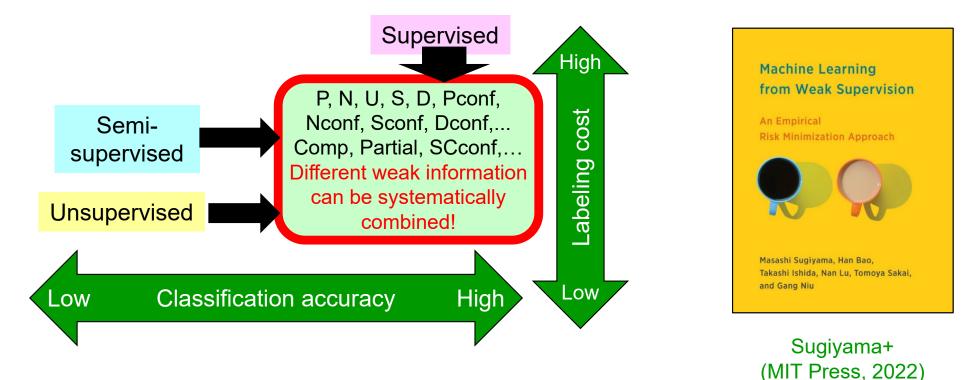


- Partial label: Specifies a subset of classes Feng+ (ICML2020, NeurIPS2020), Lv+ (ICML2020)
 that contains the correct one ("1 or 2").
- Single-class confidence: Cao+ (arXiv2021)
 One-class data with full confidence
 ("1 with 60%, 2 with 30%, and 3 with 10%")

Similar unbiased risk estimation is possible!

Summary: Weakly Supervised Learning (WSL) 11

- Empirical risk minimization framework for WSL:
 - Any loss, classifier, and optimizer can be used.



Recent progress:

Cai+ (NeurIPS2023)

• Unified frameworks, new problems, new algorithms,... Chiang+ (arXiv2023), Chen+ (ICML2024) Wang+ (NeurIPS2023) Wang+ (ICML2024)

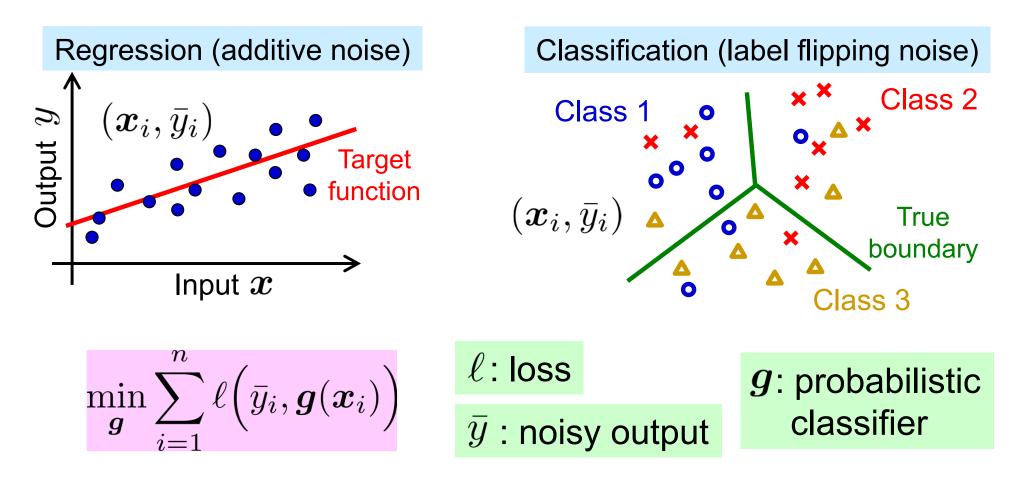
Zhang+ (ICML2024)

• Imitation learning, large language models,...

Contents

- 1. Weakly Supervised Learning
- 2. Noisy-Label Learning
- 3. Transfer Learning
- 4. Towards More Reliable Learning

Supervised Learning with Noisy Output ¹³



Hasn't such a classic problem been solved?

- Regression: Yes, noisy big data yield consistency.
- Classification: Specific noise reduction mechanism is needed to achieve consistency!

Classical Approaches

Unsupervised outlier removal:

• Substantially more difficult than classification.

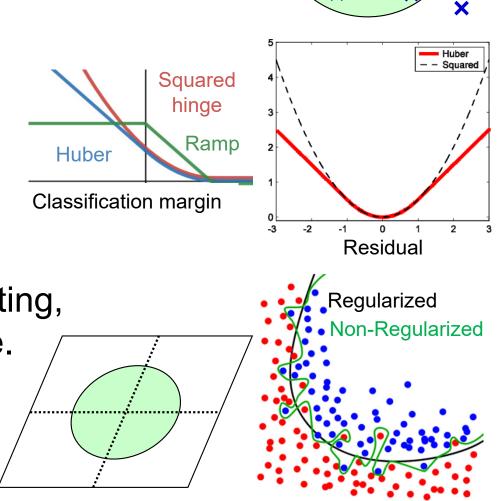
Robust loss:

• Works well for regression, but limited effectiveness for classification.

Regularization:

 Effective in suppressing overfitting, but too smooth for strong noise.

Need new approaches!



X

*l*₂-regularization http://www.second

https://en.wikipedia.org/wiki/Overfitting

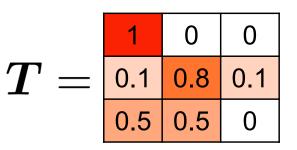
14

X

Correction with Noise Transition ¹⁵

Noise transition matrix T:

• Clean-to-noisy flipping probability.

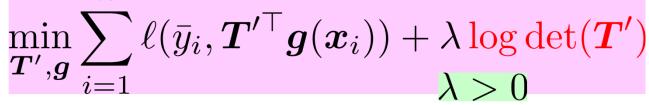


- Major approaches: Patrini+ (CVPR2017)
 - Classifier adjustment by $T^{^+}$ to simulate noise.
 - Loss correction by $oldsymbol{T}^{-1}$ to eliminate noise.
- We want to estimate T only from noisy data:
 - Use human cognition as a "mask" for T.
 - Reduce estimation error of T.
 - Learn T and classifier simultaneously.
 - Estimate T under weaker conditions.

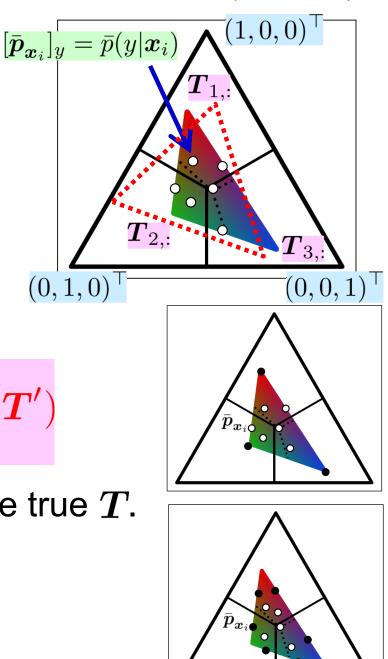
Han+ (NeurIPS2018) Xia+ (NeurIPS2019) Yao+ (NeurIPS2020) Zhang+ (ICML2021) Li+ (ICML2021)

Volume Minimization

- Noise transition matrix T forms a simplex.
- Noisy training data $\{(x_i, \bar{y}_i)\}_{i=1}^n$ can be mapped in the simplex.
- Find a minimum volume simplex that contains all training data:



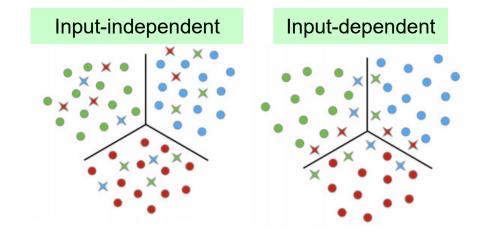
- With noiseless labels, we can find the true T.
- Even without noiseless labels,
 "sufficiently scattered" training data allow identification of the true T !



Li+ (ICML2021)

Beyond Input-Independent Noise ¹⁷

- Real-world noise may be input-dependent:
 - E.g., noise level is high near the boundary.



- Modeling input-dependent noise: $T_{y, \bar{y}}(m{x}) = ar{p}(ar{y}|y, m{x})$
 - Extremely challenging to estimate the noise transition matrix function!

Exploring heuristic solutions:

- Parts-based estimation.
- Use of additional confidence scores.
- Manifold regularization.

Xia+ (NeurIPS2020) Berthon+ (ICML2021)

Cheng+ (CVPR2022)

Co-teaching

Memorization of neural nets:

- Stochastic gradient descent fits clean data faster.
- However, naïve early stopping does not work well.
- "Co-teaching" between two neural nets:
 - Teach small-loss data each other.

Han+ (NeurIPS2018)

• Teach only disagreed data.

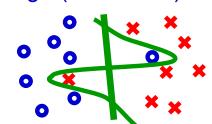
```
Yu+ (ICML2019)
```

Gradient ascent for large-loss data.

Han+ (ICML2020)

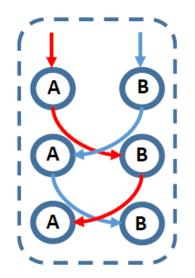
No theory but very robust in experiments:

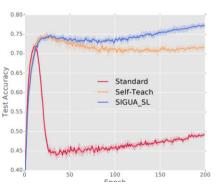
Works well even if 50% random label flipping!



Arpit+ (ICML2017)

Zhang+ (ICLR2017)





18

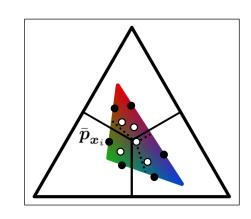
Summary: Noisy-Label Learning ¹⁹

Explicit treatment of label noise is necessary:

- Loss correction by noise transition is promising.
- However, noise transition is generally non-identifiable:

 $oldsymbol{T}^{ op}oldsymbol{p} = oldsymbol{T}_2^{ op}(oldsymbol{T}_1^{ op}oldsymbol{p}) \qquad oldsymbol{T} = oldsymbol{T}_1oldsymbol{T}_2$

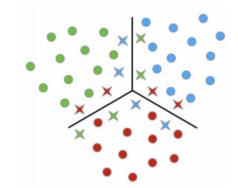
 $T_{y,\bar{y}} = \bar{p}(\bar{y}|y)$



 Recent development allows consistent estimation under mild assumptions.

Real-world noise is often input-dependent:

- Heuristic solutions have been developed.
- Further theoretical development is needed.



Contents

- 1. Weakly Supervised Learning
- 2. Noisy-Label Learning
- 3. Transfer Learning
- 4. Towards More Reliable Learning

Transfer Learning

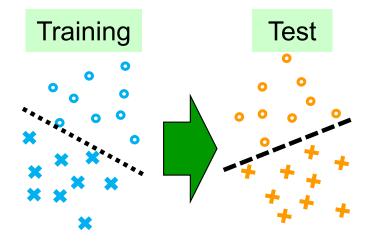
Training/test data often follow different distributions:

- Changing environments,
- Sample selection bias (privacy).

Transfer learning:

• Train a test-domain predictor using training data from different domains.

NIPS Workshop on Learning when Test and Training Inputs Have Different Distributions, Whistler 2006



Quiñonero-Candela+ (MIT Press 2009)

NeurIPS 2021 Workshop on

Distribution Shifts

Connecting Methods and Applications

NeurIPS 2022 Workshop on

Distribution Shifts (DistShift)

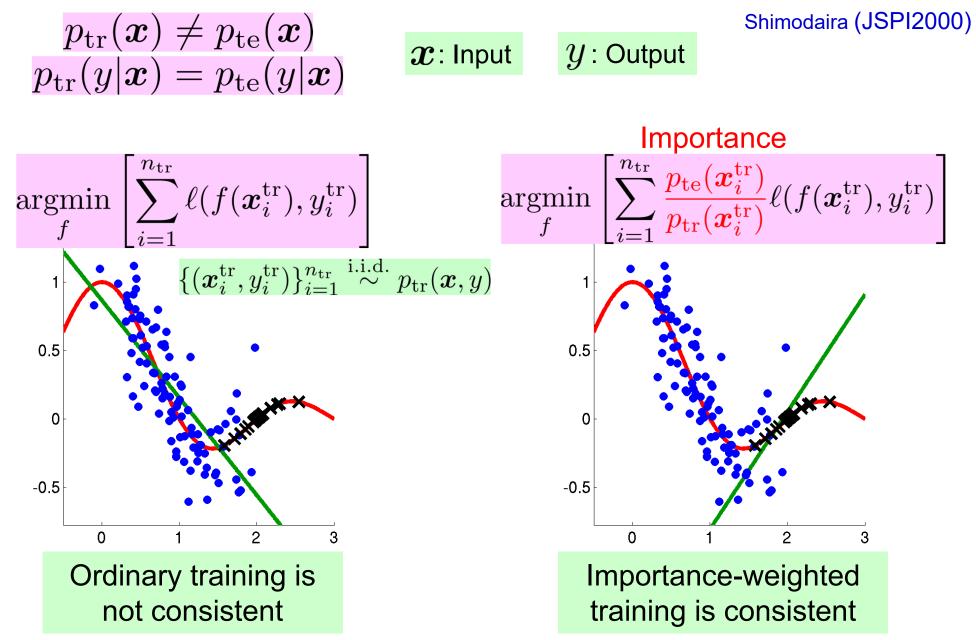
Connecting Methods and Applications

NeurIPS 2023 Workshop on Distribution Shifts (DistShift)

New Frontiers with Foundation Models

Basics: Importance-Weighted Training ²²

Covariate shift: Only input distributions change.



Direct Importance Estimation ²³

Goal: Estimate $\frac{p_{te}(\boldsymbol{x})}{p_{tr}(\boldsymbol{x})}$ from training and test input data $\{\boldsymbol{x}_{i}^{tr}\}_{i=1}^{n_{tr}} \stackrel{\text{i.i.d.}}{\sim} p_{tr}(\boldsymbol{x}) \quad \{\boldsymbol{x}_{j}^{te}\}_{j=1}^{n_{te}} \stackrel{\text{i.i.d.}}{\sim} p_{te}(\boldsymbol{x})$

Kernel mean matching: Huang+ (NeurIPS2006)

• Match the means of $p_{te}(x)$ and $r(x)p_{tr}(x)$ in a reproducing kernel Hilbert space \mathcal{H} .

$$\min_{r \in \mathcal{H}} \left\| \int K(\boldsymbol{x}, \cdot) p_{\text{te}}(\boldsymbol{x}) d\boldsymbol{x} - \int K(\boldsymbol{x}, \cdot) r(\boldsymbol{x}) p_{\text{tr}}(\boldsymbol{x}) d\boldsymbol{x} \right\|_{\mathcal{H}}^{2}$$

$$K(oldsymbol{x},\cdot)$$
 : kernel

Least-squares importance fitting (LSIF):

• Fit a model r(x) to $\frac{p_{te}(x)}{p_{tr}(x)}$ by least squares: Kanamori+ (NeurIPS2008)

$$\begin{aligned} \underset{r}{\operatorname{argmin}} & \left[\int \left(r(\boldsymbol{x}) - \frac{p_{\text{te}}(\boldsymbol{x})}{p_{\text{tr}}(\boldsymbol{x})} \right)^2 p_{\text{tr}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \right] \\ &= \underset{r}{\operatorname{argmin}} \left[\int r(\boldsymbol{x})^2 p_{\text{tr}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} - 2 \int r(\boldsymbol{x}) p_{\text{te}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \right] \end{aligned}$$

They do not estimate $p_{tr}(x), p_{te}(x)$, but $\frac{p_{te}(x)}{p_{tr}(x)}$ directly!

Classical Two-Step Adaptation ²⁴

1. Importance weight estimation (e.g., least-squares importance fitting): Kanamori+ (JMLR2009)

$$\widehat{r} = \operatorname*{argmin}_{r} \widehat{\mathbb{E}}_{p_{\mathrm{tr}}(\boldsymbol{x})} \left[\left(r(\boldsymbol{x}) - \frac{p_{\mathrm{te}}(\boldsymbol{x})}{p_{\mathrm{tr}}(\boldsymbol{x})} \right)^2 \right]$$

2. Weighted predictor training:

$$\widehat{f} = \operatorname*{argmin}_{f} \widehat{\mathbb{E}}_{p_{\mathrm{tr}}(\boldsymbol{x}, y)} [\widehat{\boldsymbol{r}(\boldsymbol{x})} \ell(f(\boldsymbol{x}), y)]$$

Sugiyama+ (MIT Press 2012)

However, estimation error in Step 1 is not taken into account in Step 2.

• We want to integrate these two steps!

Joint Weight-Predictor Optimization ²⁵

Zhang+ (ACML2020, SNCS2021)

Given: Labeled training data and unlabeled test data

$$\{(\boldsymbol{x}_i^{\mathrm{tr}}, y_i^{\mathrm{tr}})\}_{i=1}^{n_{\mathrm{tr}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x}, y) \qquad \{\boldsymbol{x}_j^{\mathrm{te}}\}_{j=1}^{n_{\mathrm{te}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{te}}(\boldsymbol{x})$$

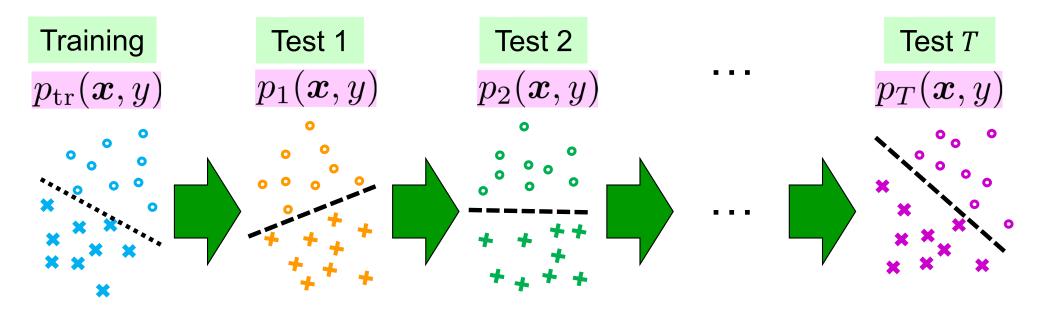
Joint minimization of a risk upper bound:

$$\begin{split} \min_{r \ge 0, f} J_{\ell'}(r, f) & \frac{\frac{1}{2} R_{\ell}(f)^2 \le J_{\ell'}(r, f)}{R_{\ell}(f) = \mathbb{E}_{p_{\text{te}}(\boldsymbol{x}, y)}[\ell(f(\boldsymbol{x}), y)]} \\ \\ & J_{\ell'}(r, f) = \mathbb{E}_{p_{\text{tr}}(\boldsymbol{x})} \left[\left(r(\boldsymbol{x}) - \frac{p_{\text{te}}(\boldsymbol{x})}{p_{\text{tr}}(\boldsymbol{x})} \right)^2 \right] & \leftarrow 1^{\text{st}} \text{ ste} \end{split}$$

$$\begin{split} r, f) &= \mathbb{E}_{p_{\mathrm{tr}}(\boldsymbol{x})} \left[\left(r(\boldsymbol{x}) - \frac{r \cdot c(\boldsymbol{x})}{p_{\mathrm{tr}}(\boldsymbol{x})} \right) \right] & \leftarrow 1^{\mathrm{st}} \operatorname{step} \\ &+ \left(\mathbb{E}_{p_{\mathrm{tr}}(\boldsymbol{x},y)} [r(\boldsymbol{x})\ell'(f(\boldsymbol{x}),y)] \right)^2 & \leftarrow 2^{\mathrm{nd}} \operatorname{step} \end{split}$$

Classic approach corresponds to 2-step minimization.

Extensions to Sequential Shifts ²⁶



Sequential label shift:

Bai+ (NeurIPS2022)

• Only class-prior $p_t(y)$ changes.

Sequential covariate shift: Zhang+ (NeurIPS2023)

- Only input density $p_t(\boldsymbol{x})$ changes.
- Without knowing the shift intensity, we can achieve the same dynamic regret as the case with known shift intensity. $\mathbb{E}\left[\sum_{t=1}^{T} R_t(f_t) - \sum_{t=1}^{T} \min_{f \in \mathcal{F}} R_t(f_t)\right]$

Contents

- 1. Weakly Supervised Learning
- 2. Noisy-Label Learning
- 3. Transfer Learning
- 4. Towards More Reliable Learning

Joint Shift

Many distribution shift works focus on a particular shift type (e.g., covariate shift):

$$p_{\mathrm{tr}}(\boldsymbol{x}) \neq p_{\mathrm{te}}(\boldsymbol{x}) \qquad p_{\mathrm{tr}}(y|\boldsymbol{x}) = p_{\mathrm{te}}(y|\boldsymbol{x})$$

Noise transition

• However, identification of the shift type is challenging.

Label noise is also a type of distribution shift:

 $ar{y}$: Noisy class label

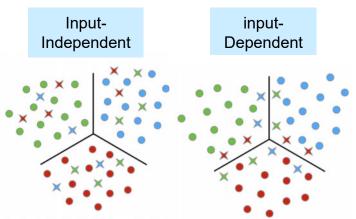
• Nice theory for input-independent noise:

 $p_{\mathrm{tr}}(\bar{y}|\boldsymbol{x}) = \sum_{y} p(\bar{y}|y, \boldsymbol{x}) p_{\mathrm{te}}(y|\boldsymbol{x})$

• But input-dependent noise is hard.

Let's consider joint shift:

 $p_{\mathrm{tr}}(\boldsymbol{x}, y) \neq p_{\mathrm{te}}(\boldsymbol{x}, y)$



 $p(\bar{y}|y, \boldsymbol{x}) = p(\bar{y}|y)$

Mini-Batch-Wise Loss Matching ²⁹

Given:

- (Large) labeled training data:
- (Small) labeled test data:

 $r_i pprox rac{p_{ ext{te}}(ilde{m{x}}_i^{ ext{tr}}, ilde{y}_i^{ ext{tr}})}{p_{ ext{tr}}(ilde{m{x}}_i^{ ext{tr}}, ilde{y}_i^{ ext{tr}})}$

$$\{ (\boldsymbol{x}_{i}^{\text{tr}}, y_{i}^{\text{tr}}) \}_{i=1}^{n_{\text{tr}}} \stackrel{\text{i.i.d.}}{\sim} p_{\text{tr}}(\boldsymbol{x}, y) \\ \{ (\boldsymbol{x}_{j}^{\text{te}}, \boldsymbol{y}_{j}^{\text{te}}) \}_{j=1}^{n_{\text{te}}} \stackrel{\text{i.i.d.}}{\sim} p_{\text{te}}(\boldsymbol{x}, y)$$

We try to learn the importance weight dynamically in the mini-batch-wise manner.

$$f \leftarrow f - \eta \nabla \widehat{R}(f)$$
 $\eta > 0$: step size

For each mini-batch $\{(\tilde{x}_i^{tr}, \tilde{y}_i^{tr})\}_{i=1}^{\tilde{n}_{tr}}, \{(\tilde{x}_j^{te}, \tilde{y}_j^{te})\}_{j=1}^{\tilde{n}_{te}}, importance weights are estimated by kernel mean matching for loss values: Huang+ (NeurIPS2006)$

$$\frac{1}{\tilde{n}_{\mathrm{tr}}} \sum_{i=1}^{\tilde{n}_{\mathrm{tr}}} \boldsymbol{r_i} \ell(f(\tilde{\boldsymbol{x}}_i^{\mathrm{tr}}), \tilde{y}_i^{\mathrm{tr}}) \approx \frac{1}{\tilde{n}_{\mathrm{te}}} \sum_{j=1}^{\tilde{n}_{\mathrm{te}}} \ell(f(\tilde{\boldsymbol{x}}_j^{\mathrm{te}}), \tilde{y}_j^{\mathrm{te}})$$

Out-of-Domain Extension

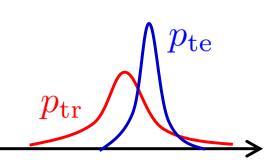
Limitation of importance weighting:

- The training domain must cover the test domain.
- What if the test domain sticks out from the training domain?

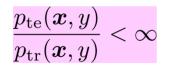
Out-of-domain extension: Fang+ (NeurIPS2023)

- Split training data into in-/out-domains by outlier detection (e.g., 1-class SVM): $\{(x_j^{\text{te}_{\text{in}}}, y_j^{\text{te}_{\text{in}}})\}_{j=1}^{n_{\text{te}_{\text{in}}}} \quad \{(x_j^{\text{te}_{\text{out}}}, y_j^{\text{te}_{\text{out}}})\}_{j=1}^{n_{\text{te}_{\text{out}}}}$
- Compute the loss separately:

$$\frac{n_{\text{te}_{\text{in}}}}{n_{\text{tr}}n_{\text{te}}} \sum_{i=1}^{n_{\text{tr}}} \frac{p_{\text{te}}(\boldsymbol{x}_{i}^{\text{tr}}, y_{i}^{\text{tr}})}{p_{\text{tr}}(\boldsymbol{x}_{i}^{\text{tr}}, y_{i}^{\text{tr}})} \ell(f(\boldsymbol{x}_{i}^{\text{tr}}), y_{i}^{\text{tr}}) + \frac{1}{n_{\text{te}}} \sum_{j=1}^{n_{\text{te}_{\text{out}}}} \ell(f(\boldsymbol{x}_{j}^{\text{te}_{\text{out}}}), y_{j}^{\text{te}_{\text{out}}})$$



$$p_{\rm tr}$$

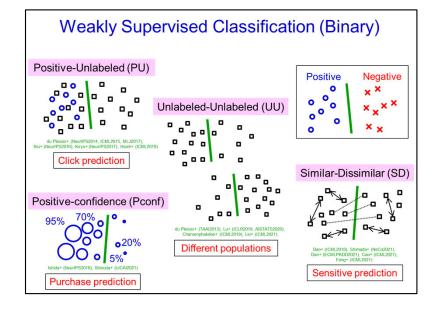


30

Ongoing Challenges

For joint shift adaptation, requiring labeled test data is too strong.

• Can we use weakly supervised learning?



Weakly Supervised Classification (Multiclass)

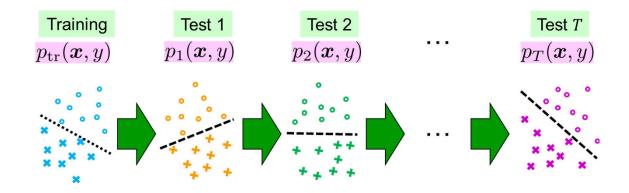
Multi-class weak-labels:

 Complementary labels: Specify a class that a pattern does not belong to ("not 1").
 Ishida et al. (NIPS2017, ICML2019), Chou et al. (ICML2020)

 Partial labels: Specify a subset of classes that contains the correct one ("1 or 2").
 Feng et al. (ICML2020, NeurIPS2020), Lv et al. (ICML2020)

 Single-class confidence: One-class data with full confidence ("1 with 60%, 2 with 30%, and 3 with 10%") Cao et al. (arXiv2021)

Can we handle sequential joint shift?



Class 2

××

Boundary

Class 1

Class 3

Towards Machine Learning with (Almost) No Assumptions

So far:

- Develop an algorithm with guarantee under some assumption.
- If the assumption is correct, it works well with guarantee (but if not, there is no guarantee).

In practice:

- We don't know whether the assumption holds or not.
- We try it and if we are lucky, it works well (if we are unlucky, we suffer...).

Future challenge:

32

- Develop an algorithm with minimum guarantee under (almost) no assumptions.
- This is the first method we should use in practice.