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Reliable Machine Learning

Reliability of machine learning systems
can be degraded by various factors:

e Insufficient information: weak supervision.
e Label noise: human error, sensor error.

e Data bias: changing environments, privacy.

Improving the reliability is an urgent challenge!
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Weakly Supervised Classification 4

Supervised classification from big labeled data
Is successful: speech, image, language, ...
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However, there are many applications
where big labeled data is not available:

e Medicine, disaster, robot, brain, ...

We want to utilize "weak™ supervision
that can be collected easily!



Positive-Unlabeled (PU) Classification °

Li+ (IJCAI2003)

Given: PU samples (no N samples)
(@}, " plaly = +1) {2 1Y K p(e)

Goal: Obtain a classifier minimizing the PN risk.

min R(f) R(f) = Eyia |¢(v. /(@))]
[ : expectaton £ :loss Yy = {+1,—1}

Positive [Negative]
OO0 O 0
Example: Ad click prediction o °,718 o o
e Clicked ad: User likes it > P u°§D Jle -
e Unclicked ad: User dislikes it ool B g
or User likes it but doesn’t have » .
time to click it 2> U (=P or N) Unlabeled (mixture of
positives and negatives)




PU Unbiased Risk Estimation 6

du Plessis+ (NeurlPS2014, ICML2015)

Decompose the risk:
R(f) = 7Ep(z]y—t1) :f ( + 1 f (w))l + (=) Ep(ajy=—1) [f ( > (w)l]

~ Y Y _
Risk for P data Risk for N data R~ (f)

Scott+ (AISTATS2009)

— — . i Ramaswamy+ (ICML2016)
p(y = +1) : Class prior (assumed known) > aswamy® (OML2016)

Yao+ (ICLR2022)

Without N data, R~ (f) can not be estimated directly:
e Eliminate the expectation over N data as

R™() = Epia [0 = 1, F(@))] = 7Byape ) [6( = 1,7 @))]
pl) = p(aly = +1) + (1 - mp(aly = —1)

Unbiased risk estimator:

np np

ﬁPU(f):%Z (+1f )+—Z€( )—% f(—l,f(wf))

= 7=1 =1



Non-Negative Risk Correction

Kiryo+ (NeurlPS2017) , Lu+ (AISTATS2020)

R(f) = Eptaly—s) £ + 1. F(@)) ]| + (1 = mByal,—) [0 ~ 1. f(@))]

Y Y

Risk for P data Risk for N data R~ (f)
Risk for N data: 7 (5) =B, [¢( - 1. 7(@))] R (=1, f(@))]
Empirical estimate: &p(/) = %Z (—1 @)= %ie(—l,f(w}?))

05

When loss is non-negative: Plain PU (test)
e True R (f) is non-negative. K\ PN (test)

e But empirical estimate
can be negative!
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Non-negative correction: U e, PanPU (i

’I'LP -0.3 ~i™ s A ”"""'“’r\fr;-.‘,iv 1
D W P A_ 1 1 1 1 1 1 1 1 1 .'\
RPU (f) — Z E (f(w?: )) _|— Hax {O’ RPU (f) } -0-40 20 40 60 80 100 120 140 160 180 200

np 1=1 Stochastic gradient iterations




Signal Enhancement by PU Classification 8

lto+ (ICASSP2023, Best Paper Award)

Signal
= Enhancement

" Noisy signal = (noise removal)

100
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~ Enhanced S|gnal

Parallel

Existing method: Use

noisy/noiseless parallel training data

e In practice, use synthetic data
— Do not generalize well in reality.

Proposed method: Use non-parallel
pure noise and noisy signals.

Methods SI-SNRi [dB]

Proposed 14.62 (0.20)
MiXIT nouposozoy  12.19 (4.50)

Parallel —> Supervised 15.86 (1.28)

Non-parallel

tralnlng data

»w

Noiseless S|gnal

Pure noise (positive)




Various Extensions (Binary)

9

Similar unbiased risk estimation is possible!

Positive-Unlabeled (PU)

0o o

Lo olo 4 o - Unlabeled-Unlabeled (UU)

o0 p (m] (m g O a
% o 0 o0jo o
g @ O 0 oo o
du Plessis+ (NeurlPS2014, ICML2015, MLJ2017), o o (m |
Niu+ (NeurlPS2016), Kiryo+ (NeurlPS2017), Hsieh+ (ICML2019) o O0 (m]
Click prediction O oo
o
Olo 0O Op
(m] (u] (] O
o g O
Positive-confidence (Pconf) ptdo o
(0] du Plessis+ (TAAI2013), Lu+ (ICLR2019, AISTATS2020),
95(y 70 A) ° o Charoenphakdee+ (ICML2019), Lei+ (ICML2021)

Different populations

: 020%
OO o 5%

Ishida+ (NeurlPS2018), Shinoda+ (IJCAI2021)

Purchase prediction

Positive Negative
o X
%X
o % w %X
o X
° o
o X x
Boundary

Similar-Dissimilar (SD)

Bao+ (ICML2018), Shimada+ (NeC02021),
Dan+ (ECMLPKDD2021), Cao+ (ICML2021),

Feng+ (ICML2021)

Sensitive prediction




Various Extensions (Multiclass) 10

Labeling patterns in multi-class
problems is even more painful.

Multi-class weak-labels:

o Complementary label: Ishida+ (NeurlPS2017, ICML2019),
Chou+ (ICML2020)

Specifies a class that a pattern Boundary
does not belong to ("not 17).

e Partial label: Specifies a subset of classes reng+ (0M2020, NeuriPS2020).
that contains the correct one (“1 or 27).

e Single-class confidence:  cao+ arxiveo21)
One-class data with full confidence
(“1 with 60%, 2 with 30%, and 3 with 10%")

Similar unbiased risk estimation is possible!



Summary: Weakly Supervised Learning (WSL) 11

Empirical risk minimization framework for WSL.:
e Any loss, classifier, and optimizer can be used.

Supervised

Machine Learning
from Weak Supervision

P, N, U, S, D, Pconf,

Semi- Nconf, Sconf, Dconf,... g :ln:r;pilric.al - h
supervised Comp, Partial, SCconf,... o &
Different weak information = . (\
. can be systematically D . d
Unsupervised combined! S Ny v
—

Masashi Sugiyama, Han Bao,
Takashi Ishida, Nan Lu, Tomoya Sakai,
and Gang Niu

Low Classification accuracy High

Sugiyama+
(MIT Press, 2022)

Recent progress:

e Unified frameworks, new problems, new algorithms,...
Chiang+ (arXiv2023), Chen+ (ICML2024) Wang+ (NeurlPS2023) Wang+ (ICML2024)

e Imitation learning, large language models,...
Cai+ (NeurlPS2023) Zhang+ (ICML2024)
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Supervised Learning with Noisy Output 13

Output Y

Regression (additive noise) Classification (label flipping noise)
| T Class1 o x ¥  Class 2
(w’ia yz) o © . X x
o ® 2% Target o x
' ° ® function . °
Te ° (33?37 yz) True
> boundary
Input & o
mn
¢ loss . _—
' T ' . probabillistic
7 i Y : noisy output ~ classitier

Hasn't such a classic problem been solved?
e Regression: Yes, noisy big data yield consistency.

e Classification: Specific noise reduction mechanism
IS needed to achieve consistency!



Classical Approaches 14

Unsupervised outlier removal: « g
e Substantially more difficult than classification.
Robust loss: X
e Works well for regression, s & EE=
but limited effectiveness \\ hinge | '
for classification. Huber Ramp 2
Classification margin |

-2 -1 0 1 2 3

Regularization:

e Effective in suppressing overfitting,
but too smooth for strong noise.

Need new approaches!

[2_ reg u |a rizati on https://en.wikipedia.org./wizi/(gverfitting




Correction with Noise Transition 1°

Noise transition matrix T Bl o | o
e Clean-to-noisy flipping probability. T = |01]08]0.1
05[05] 0

Major approaches: Patinis (CVPR2017)
e Classifier adjustment by I’ to simulate noise.
e Loss correction by T_1 to eliminate noise.

We want to estimate I' only from noisy data:
e Use human cognition as a “mask” for I".  Han+ (NeurlPs2018

)

- - Xia+ (NeurlPS2019)

e Reduce estimation error of 1" Voo (NourPS2020)
e Learn 1" and classifier simultaneously. Zhang+ (ICML2021)
e Estimate I' under weaker conditions. Li+ (ICML2021)



Volume Minimization 16

Li+ (ICML2021)
(1,0,0)" ]

Noise transition matrix T D
forms a simplex.

Noisy training data {(x:,¥i) }i—1
can be mapped in the simplex.

.
ey
Yy
Yy

Find a minimum volume simplex  (0,1,0)"
that contains all training data:
min > 4(g, T ' g(x;)) + Mlog det(T")
T',g “
i=1 A>0
e \With noiseless labels, we can find the true T..
e Even without noiseless labels,

“sufficiently scattered” training data
allow identification of the true T'!




Beyond Input-Independent Noise 1/

ReaI-WorId nOise may be Input-independent Input-dependent

Input-dependent: F-rabdl DU TC IR o S

e E.g., noise level is high
near the boundary.

Modeling input-dependent noise: T}, ;(x) = p(y|y, x)
e Extremely challenging to estimate
the noise transition matrix function!

Exploring heuristic solutions:

e Parts-based estimation. Xia+ (NeurlPS2020)
e Use of additional confidence scores. Berthon+ (ICML2021)
e Manifold regularization. Cheng+ (CVPR2022)



Co-teaching 18

Memorization of neural nets: S (GLR2017)

e Stochastic gradient descent fits clean data faster.  ,° tx_*,

. : © "o
e However, naive early stopping does not work well. o < *

“Co-teaching” between two neural nets: o

e [each small-loss data each other.
Han+ (NeurlPS2018)

r
|
|
|
e Teach only disagreed data. 10 |
: .
\

Yu+ (ICML2019)

e Gradient ascent for large-loss data.
Han+ (ICML2020)

No theory but very robust in experiments:
e Works well even if 50% random label flipping!

rrrrr



Summary: Noisy-Label Learning 19

Explicit treatment of label noise is necessary:

e L oss correction by noise transition is promising.

. e 1, =ply

However, noise transition is v.g = PY)

generally non-identifiable:

T'p=T,(T,p) T=T.T-

e Recent development allows consistent

estimation under mild assumptions.

Real-world noise is often input-dependent:
e Heuristic solutions have been developed.
e Further theoretical development is needed.
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Transfer Learning 2

Training/test data often follow different distributions:
e Changing environments,

Training Test
e Sample selection bias (privacy). o ©
° o
] ##..p. o o] ”
Transfer learning: o 27
] [ [ ] x ... ”
e Train a test-domain predictor using x %
training data from different domains. )
: TS DATASET SHIFT IN
S MACHI_NE_LEJ{!R‘(TNG

= hie NIPS Workshop 2006 Whlstler

NIPS Workshop on Learmng when Test and Training Inputs Have
Different Distributions, Whistler 2006

Quifionero-Candela+
(MIT Press 2009)

_ 'rP‘ Workshop on

istribution Shifts (DistShift)

Distribution Shifts

ling Methods and Applications

Workshop on Distribution Shifts (DistShift)

nnecting Methods and Applications ntiers with Foundation Models



Basics: Importance-Weighted Training 22

Covariate shift: Only input distributions change.

Dir(X) 7 pro() Shimodaira (JSPI2000)
€Xr: | t : Output
P (Ylx) = pre(y|) 0 Rt

Importance
argmin > 0(f (i), yi") s ipte(mg)f(f(w?),y?r)
f 1 f i—1 ptr(wi )

{(wgray:r) 1= 1 ‘&.ptr(may)

0 1‘ 2 3
Ordinary training is Importance-weighted
not consistent training is consistent



Direct Importance Estimation 23

Goal: Estimate ﬁfgﬁ; from training and test input data
i.i.d

{wtr = e Per () {mte ?te1 ~ Pre()

Kernel mean matCh|ng Huang+ (NeurlPS2006)

e Match the means of pi.(x) and r(x)ps ()
in a reproducing kernel Hilbert space H.

fK(fv,-)pte(w)dw—/K(w,-)’r(w)p 1

Least-squares importance fitting (LSIF):

i N .
e Fit a model r(x) to gzgwg by least squares: «anamori+ (NeurlPs2008)

] -2 i

— arguin | [ r(@)pu(@)de - 2 [ r(@)po(@)ia]

T

min
reH

K(x,-): kernel

They do not estimate pi(), pie(z), but 2=t2 directly!



Classical Two-Step Adaptation 24

Importance weight estimation
(e.g., least-squares importance fitting): o,

Pte () ) °

ptr(m)

r = argmin I/prtr(w) (r(m)

Weighted predictor training:

AN

J = arg}niﬂ I/E‘E'ptr(avs,y) (@) l(f(x),y)]

Sugiyama+

However, estimation error in Step 1 i press 2012)
IS not taken into account in Step 2.

e \We want to integrate these two steps!



Joint Weight-Predictor Optimization 2°

Zhang+ (ACML2020, SNCS2021)

Given: Labeled training data and unlabeled test data

. i, i.d.
[, yim) e = pu(e,y) {2t} " pe()

Joint minimization of a risk upper bound:

min Jy/ (r, f) sRe(f)? < Ju(r, f) (<1,0 >/
r=0.f Ro(f) = By, (@ [0(f (), )]

Pte () °
Jo(r, ) = Ep,, () {(7“(“’) N pi—«n)) } < 1o step
"‘(Eptr(w,y) [fr(ac)ﬁ’(f(ac), y)])Q < 2" step

e Classic approach corresponds to 2-step minimization.



Extensions to Sequential Shifts 26

Training Test 1 Test 2 Test T
Per (2, y) p1(x,y) pa(x,y) pr(x,y)
(o] (o]
° oo . \\\o :o
..'.O o © P 2 \\ ° o
x v, o ”¢ 2 \\g
xx* ..... -7 "xx\\\o
% % * %X % ®
®

Sequential label shift:  Bai+ (NeurlPs2022)

e Only class-prior p:(y) changes.

Sequential covariate shift:  zhang+ (NeurlPs2023)

e Only input density p: () changes.

Without knowing the shift intensity, we can achieve

the same dynamic regret as B
the case with known shift intensity. ; : ”‘;?22 (/)
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Joint Shift 28

Many distribution shift works focus on
a particular shift type (e.g., covariate shift):

ptr(w) 7é pte(w) ptr(y’-’ﬂ) — pte(y|$)
e However, identification of the shift type is challenging.

Label noise is also a type of distribution shift:
per(y|x) = Zp(@\y, 2 )pie(y|x) Y :Noisy class label

Y H_I

Noise transition

e Nice theory for input-independent noise: p(yly, z) = p(yly)
e But input-dependent noise is hard. ndemmdent St et

Let’s consider joint shift:
ptr(:na y) 7& pte(ma y)




Mini-Batch-Wise Loss Matching 22

Given: Fang+ (NeurlPS2020)
e (Large) labeled training data: {(z}", y;")}= N per (T, Y)
o (Small) labeled testdata:  {(a'¢, %)}, "R pio(a, y)

We try to learn the importance weight
dynamically in the mini-batch-wise manner.
I+ f—nVﬁ(f) n > 0 : step size

For each mini-batch {(&;",7;") }ioy, {(25°, 95°)} 72
importance weights are estimated by

kernel mean matching for loss values:
Huang+ (NeurlPS2006)

tr ~tr

1 & Pre(Z; 5 G
g rif 5:1-: ) 0(f ~te r.R — Z .
Tty Zz_; z (f( ‘ nte Z_: ¢ tr)

ptr( 1, 7y1,




Out-of-Domain Extension 30

Limitation of importance weighting: Pro(

Y) o
e The training domain must cover the test domain. P« )
. . . Pte
What if the test domain sticks out
from the training domain? Ptr
>
Out-of-domain extension: Frang+ (Neurlps2023)
e Split training data into in-/out-domains Dte
by outlier detection (e.g., 1-class SVM):  p,.
(@ gl by @yl ,

e Compute the loss separately:

Tlte; = pte( r)y ) 1 e ‘e o
in 7, 1 E r E 'out .out
ey i @) o D ),

i=1 j=1




Ongoing Challenges

For joint shift adaptation,

requiring labeled test data is too strong.
e Can we use weakly supervised learning?

Weakly Supervised Classification (Binary)
Positive-Unlabeled (PU) — :
= Positive Negative
u%on o o x %
o "o B o o o ] %
od'o| o o, Unlabeled-Unlabeled (UU) 50 o X, X
oo o °
o oolf® o ﬂn"nuu" o ° X x
o+ Ohouibaoity, Kiyos Diosazomn. Homr gz B @ o
. .. oo o
o oo Similar-Dissimilar (SD)
Blg o op o
Positive-confidence (Pconf) x " \"-‘ n"n n\'ﬂ nu Xn
95%, 70%0 o, goo 9 g ::JDI:I S
OR%o o7 | Pn
07| 020% . ,
OO & o | Different populations ‘ —
5% eng (CHL202

Training
Can we handle

ptr(ma y)

sequential joint shift? ..

Weakly Supervised Classification (Multiclass)

Multi-class weak-labels: Class 2

Class 1 %
e Complementary labels: e x xX%
Specify a class that a pattern ° x"x
does not belong to (“not 17). 2

Ishida et al. (NIPS2017, ICML2019), Chou et al. (ICML2020)

e Partial labels: Specify a subset of classes i’ |
that contains the correct one (“1 or 27).

Feng et al. (ICML2020, NeurlPS2020), Lv et al. (ICML2020)

e Single-class confidence:
One-class data with full confidence
(“1 with 60%, 2 with 30%, and 3 with 10%")

Cao et al. (arXiv2021)

Test 1 Test 2
pi(z,y) p2(x,y)




Towards Machine Learning 32
with (Almost) No Assumptions

So far:

e Develop an algorithm with guarantee under some assumption.
e If the assumption is correct, it works well with guarantee

(but if not, there is no guarantee).
In practice:

e \We don’'t know whether the assumption holds or not.

e We try it and if we are lucky, it works well
(if we are unlucky, we suffer...).

Future challenge:

Thank you!

e Develop an algorithm with minimum guarantee

under (almost) no assumptions.

e This is the first method we should use in practice.



