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Reliable Machine Learning

 Reliability of machine learning systems
can be degraded by various factors:
 Insufficient information: weak supervision. 
 Label noise: human error, sensor error.
 Data bias: changing environments, privacy.

 Improving the reliability is an urgent challenge!
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Weakly Supervised Classification
 Supervised classification from big labeled data 

is successful: speech, image, language, …

 However, there are many applications
where big labeled data is not available:
 Medicine, disaster, robot, brain, …

We want to utilize “weak” supervision
that can be collected easily!
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Positive-Unlabeled (PU) Classification 5

Given: PU samples (no N samples).

Goal: Obtain a classifier minimizing the PN risk.

Unlabeled (mixture of
positives and negatives)

Positive

Example: Ad click prediction
 Clicked ad: User likes it  P
 Unclicked ad: User dislikes it

or User likes it but doesn’t have
time to click it  U (=P or N)

Li+ (IJCAI2003)

: loss: expectation

[Negative]



PU Unbiased Risk Estimation
 Decompose the risk:

Without N data,            can not be estimated directly:
 Eliminate the expectation over N data as

 Unbiased risk estimator:
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: Class prior (assumed known)

du Plessis+ (NeurIPS2014, ICML2015)

Scott+ (AISTATS2009)
Ramaswamy+ (ICML2016)

du Plessis+ (MLJ2017)
Yao+ (ICLR2022)
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Non-Negative Risk Correction

 Risk for N data:

 Empirical estimate:

When loss is non-negative: 
 True             is non-negative.
 But empirical estimate        

can be negative!

 Non-negative correction:

7
Kiryo+ (NeurIPS2017) , Lu+ (AISTATS2020)
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Signal Enhancement by PU Classification 8

 Existing method: Use
noisy/noiseless parallel training data
 In practice, use synthetic data
→ Do not generalize well in reality.

 Proposed method: Use non-parallel
pure noise and noisy signals.

Ito+ (ICASSP2023, Best Paper Award)

Noisy signal Enhanced signal

Signal 
Enhancement

(noise removal)

SI-SNRi [dB]Methods
14.62 (0.20)Proposed
12.19 (4.50)MixIT
15.86 (1.28)Supervised

Non-parallel

Parallel

Noiseless signal

Parallel
training data

Wisdom+
(NeurIPS2020)

Pure noise (positive)

Noise + Speech (unlabeled)



Various Extensions (Binary)
 Similar unbiased risk estimation is possible!
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du Plessis+ (TAAI2013), Lu+ (ICLR2019, AISTATS2020),
Charoenphakdee+ (ICML2019), Lei+ (ICML2021)
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Various Extensions (Multiclass)
 Labeling patterns in multi-class

problems is even more painful.

Multi-class weak-labels:
 Complementary label:

Specifies a class that a pattern
does not belong to (“not 1”).

 Partial label: Specifies a subset of classes
that contains the correct one (“1 or 2”).

 Single-class confidence:
One-class data with full confidence
(“1 with 60%, 2 with 30%, and 3 with 10%”) 

 Similar unbiased risk estimation is possible!
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Summary: Weakly Supervised Learning (WSL)
 Empirical risk minimization framework for WSL:

 Any loss, classifier, and optimizer can be used.

 Recent progress:
 Unified frameworks, new problems, new algorithms,…

 Imitation learning, large language models,…
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Supervised Learning with Noisy Output

 Hasn’t such a classic problem been solved?
 Regression: Yes, noisy big data yield consistency.
 Classification: Specific noise reduction mechanism

is needed to achieve consistency!
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Classical Approaches
 Unsupervised outlier removal:
 Substantially more difficult than classification.

 Robust loss:
 Works well for regression,

but limited effectiveness
for classification.

 Regularization:
 Effective in suppressing overfitting,

but too smooth for strong noise.

 Need new approaches!
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Correction with Noise Transition
 Noise transition matrix    ：
 Clean-to-noisy flipping probability.

Major approaches:
 Classifier adjustment by to simulate noise.
 Loss correction by            to eliminate noise.  

We want to estimate      only from noisy data:
 Use human cognition as a “mask” for     .
 Reduce estimation error of     .
 Learn      and classifier simultaneously.
 Estimate       under weaker conditions.
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Patrini+ (CVPR2017)

Han+ (NeurIPS2018)
Xia+ (NeurIPS2019)
Yao+ (NeurIPS2020)

Li+ (ICML2021)

Zhang+ (ICML2021)
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Volume Minimization
 Noise transition matrix

forms a simplex.
 Noisy training data                 

can be mapped in the simplex.

 Find a minimum volume simplex
that contains all training data:

 With noiseless labels, we can find the true    .
 Even without noiseless labels,

“sufficiently scattered” training data
allow identification of the true     !
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Li+ (ICML2021)



Beyond Input-Independent Noise
 Real-world noise may be

input-dependent:
 E.g., noise level is high

near the boundary.

Modeling input-dependent noise:
 Extremely challenging to estimate

the noise transition matrix function!

 Exploring heuristic solutions: 
 Parts-based estimation.
 Use of additional confidence scores.
 Manifold regularization.
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Xia+ (NeurIPS2020)

Cheng+ (CVPR2022)

Input-independent Input-dependent

Berthon+ (ICML2021)



Co-teaching
Memorization of neural nets:
 Stochastic gradient descent fits clean data faster.
 However, naïve early stopping does not work well.

 “Co-teaching” between two neural nets:
 Teach small-loss data each other.

 Teach only disagreed data.

 Gradient ascent for large-loss data.

 No theory but very robust in experiments:
 Works well even if 50% random label flipping!
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Han+ (NeurIPS2018)

Arpit+ (ICML2017)
Zhang+ (ICLR2017)

Yu+ (ICML2019)

Han+ (ICML2020)



Summary: Noisy-Label Learning
 Explicit treatment of label noise is necessary:

 Loss correction by noise transition is promising.

 However, noise transition is
generally non-identifiable:

 Recent development allows consistent
estimation under mild assumptions.

 Real-world noise is often input-dependent:
 Heuristic solutions have been developed.
 Further theoretical development is needed.
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Transfer Learning
 Training/test data often follow different distributions:

 Changing environments,
 Sample selection bias (privacy).

 Transfer learning:
 Train a test-domain predictor using

training data from different domains.
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Quiñonero-Candela+
(MIT Press 2009)



 Covariate shift: Only input distributions change.

22Basics: Importance-Weighted Training

Shimodaira (JSPI2000)

Importance

Importance-weighted
training is consistent

Ordinary training is 
not consistent

: Input : Output



Direct Importance Estimation
Goal: Estimate          from training and test input data

 Kernel mean matching:
 Match the means of        and

in a reproducing kernel Hilbert space    .

 Least-squares importance fitting (LSIF):
 Fit a model          to           by least squares:

 They do not estimate                    , but          directly!
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Huang+ (NeurIPS2006)

: kernel 

Kanamori+ (NeurIPS2008)



Classical Two-Step Adaptation

1. Importance weight estimation
(e.g., least-squares importance fitting):

2. Weighted predictor training:

 However, estimation error in Step 1
is not taken into account in Step 2.
 We want to integrate these two steps!
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Sugiyama+
(MIT Press 2012)

Kanamori+
(JMLR2009)



Joint Weight-Predictor Optimization

Given: Labeled training data and unlabeled test data

 Joint minimization of a risk upper bound:

 Classic approach corresponds to 2-step minimization.

25
Zhang+ (ACML2020, SNCS2021)

 2nd step

 1st step



Extensions to Sequential Shifts

 Sequential label shift:
 Only class-prior  changes.

 Sequential covariate shift:
 Only input density          changes.

Without knowing the shift intensity, we can achieve 
the same dynamic regret as
the case with known shift intensity.
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Joint Shift
Many distribution shift works focus on

a particular shift type (e.g., covariate shift):

 However, identification of the shift type is challenging.

 Label noise is also a type of distribution shift:

 Nice theory for input-independent noise:
 But input-dependent noise is hard.

 Let’s consider joint shift:
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Mini-Batch-Wise Loss Matching
Given:

 (Large) labeled training data:
 (Small) labeled test data:

We try to learn the importance weight
dynamically in the mini-batch-wise manner.

 For each mini-batch                                               , 
importance weights are estimated by
kernel mean matching for loss values:
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Huang+ (NeurIPS2006)

: step size

Fang+ (NeurIPS2020)



Out-of-Domain Extension
 Limitation of importance weighting:

 The training domain must cover the test domain.

What if the test domain sticks out
from the training domain?

Out-of-domain extension：
 Split training data into in-/out-domains

by outlier detection (e.g., 1-class SVM):

 Compute the loss separately:
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Fang+ (NeurIPS2023)



Ongoing Challenges
 For joint shift adaptation,

requiring labeled test data is too strong.
 Can we use weakly supervised learning?

 Can we handle
sequential joint shift?
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Towards Machine Learning
with (Almost) No Assumptions

 So far:
 Develop an algorithm with guarantee under some assumption.
 If the assumption is correct, it works well with guarantee

(but if not, there is no guarantee).
 In practice:
 We don’t know whether the assumption holds or not.
 We try it and if we are lucky, it works well

(if we are unlucky, we suffer…).
 Future challenge:
 Develop an algorithm with minimum guarantee

under (almost) no assumptions.
 This is the first method we should use in practice. 
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Thank you!


