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Learning under Distribution Shifts 2

Given: | 2 Input
e Training data b i Et T, |

g data {(z;",y;") }i P (2, y) Y - Output
Goal:

e Learn predictor y = f(a) minimizing the test risk
(with some additional data from the test domain).

ming R(f)  R(f) = Ep, () [€(f(x),y)] £:loss

Challenge:

e Overcome changing distributions!

Ptr (SE‘, y) # pte(wv y)

B Non-stationary of the environments.
M Sample selection bias due to privacy concerns.




NIPS Workshop 2006 Whlstler

NIPS Workshop on Learmng when Test and Training Inputs Have
Different Distributions, Whistler 2006

Learning when test and training inputs have different distributions HOHSHo Quinonero-Candela, Sugiyama,

Joaquin Quifionero Candela - Masashi Sugiyama - Anton Schwaighofer - Neil D Lawrence Schwa|g hofer & Lawrence (Eds),
Sat Dec 09 05:00 PM — 05:00 PM (JST) @ Nordic Dataset Shift in Machine Learning,
MIT Press, 2009.

Event URL: http://ida first.fraunhofer.de/projects/different06/ »

Many machine learning algorithms assume that the training and the test data are drawn from the same
distribution. Indeed many of the proofs of statistical consistency, etc., rely on this assumption. However, in
practice we are very often faced with the situation where the training and the test data both follow the same DATAS ET S H I FT l N
conditional distribution, p(y|x), but the input distributions, p(x), differ. For example, principles of experimental

design dictate that training data is acquired in a specific manner that bears little resemblance to the way the MAC H I N E LEAR NI N G
test inputs may later be generated. The aim of this workshop will be to try and shed light on the kind of

situations where explicitly addressing the difference in the input distributions is beneficial, and on what the ANTON ;.;J:if::‘:;ﬁgu.:_'f:;m'.r[lD"uf:-,:u::.;s;m S, ]
most sensible ways of doing this are.

@ “Distribution Shift” workshops
at NeurIP82021 2022, and 2023.

stribution Shifts (DistShift)

ers with Foundation Models

ember 2023, New Orleans, USA

New Orleans Convention Center
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Types of Distribution Shifts

Z:Input Y : Output

Joint shift: Ptr (X, Y) # Pre(T, Y)
Covariate shift: Per(T) 7 Pre()
Label shift: Ptx(Y) 7 Pre(y)
Output noise: pur(Y|x) # pre(yl)
Class-conditional shift:  per(€|y) # pre(|y)
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Covariate Shift Adaptation

Shimodaira (JSP12000)

Training and test input distributions are different,

Pr(T) # Dre(T)
but the output-given-input distribution is unchanged:

per (Y1) = pre(y|x) = p(y|x)

6l Inp_u_t | <. Training Function
14 densities {\ . <. & data
1.2: pte(w) osl '.o .
N Pex () o «, _ Test
06 or L A
04! X Target
02 05| “% 4 function
= 1 > 3 0 i 2 3
Given:
. idld.
e Labeled training data: {(z{", y;") 1, "~ pe (@, y)
] t o Lal@l
e Unlabeled test data: {7} "~ pre(x)



Importance-Weighted Training

Nty Ngr

. Tr T . pe m’l, r r
argmin | 3 (@), uf) | evgmin 31wl 01
Li=1 1= ¢

t 1 i.i.d. '
{(wirjyir)}?;rl ~ pee(x,y) Importance
Ordinary training Weighted training
NS is not consistent 1 e ® is consistent

0.5} 05!

05! -0.5¢

How do we estimate the importance?




Direct Importance Estimation 3
Given: training and test input data

i.1.d. ]
{Zi b (@) {Z} T~ pre()

Goal: estimate the density ratio gzjgmg

Kernel mean matching: Huang+ (NeurlPs2006)
e Match the means of pte(x) and r(x)p.(x) in RKHS #H .

min By, () [K (@, )] = Ep,, @) [K (, Jr@)|l;, K(-,-): Characteristic kernel

Least-squares importance fitting (LSIF):

] o Kanamori, Hido
e Fita model r(x) to f)z Eg by least squares: & sugiyama
Y (NeurlPS2008)
argmin . () (’f“(-’ﬂ) - Z;tegD ] = argminE,, () [r()"] — 2E,, () [r(2)]
r tr (8

e Extendable to Bregman divergences: ~ °SUgvama Suzuk (i\l*;a“;l‘ggqg)i
H )—argmmEp (@) [0 (r(2))r(2) = Y (r(@))] = Ep,, ()09 (r(2))]

argmin Breg,, (
r ptr



Joint Importance-Predictor Estlmatlon .,

Sugiyama & Kawanabe, &

Classical approaches are two steps: i RS

Environments,

1. Importance weight estimation (e.g., LSIF):; "7Press207> gaEE
r = argmin Jl( ) Jl( ) Ept () [( (a:) — pte(w))z]

r per ()

2. Importance-weighted predictor training:

fzmgmmﬁqm>@w,> Ep..(x.y) 7(2)0(f(2),y)]

For lic < 1,0, > e, > 0, the test risk is bounded as
5Ro () < Jo, (f,r)  Jo(f,r) = Ju(r) + JE(f,7)
Re(f) = Ep, (@) £(f(x),y)] ML 5020, SNCa200 1)

AN

e Joint upper-bound minimization: f = argmin m>1%1 Te, (f,7)
f T
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Continuous Distribution Shifts 1

So far, we focused on a fixed test domain:
e \We trained a predictor to match the test domain.

However, test domains can change over time.

Training Test 1 Test 2 TestT
Per (T, y) p1(x,y) p2(x,y) pr(x,y)

Goal: Obtain predictor f: that works well for p:(z,y).
Ri(f) =Ep, (@ l(f(x),y) t=1,....T



Continuous Label Shift 12

Training test
~N
.
Class-priors p:(y) change arbitrarily over time,
but class-conditionals stay unchanged:
pe(xly) = pu(xly) t=1,...,T
Given:
e (Large) labeled training data: {(x;", yi")}x bR Per(,y)
e (Small) unlabeled test data: (P M p ()

=R



ATLAS (Adapting To LAbel Shift) 13

Bai, Zhang, Zhao, Sugiyama & Zhou (NeurlPS2022)
e ﬁt(yfr) r r
mj}n; ﬁtr(yfr)g(f(wg ),yf )
Batch importance weighing requires retraining
In each time step.
Can we make it computationally more efficient?
e Online learning! azan (2016

We use online convex optimization, assuming

e convex loss ¢ (e.qg., logistic),
: _ T
e linear model f(x)=w =, weW. T,y : projection

wy = 1y ['wt—l — NV R_1(wi_1) n > 0 : step size

We use black box shift estimation for class priors.

Lipton+ (ICML2018)



Choice of Step Size 7 14
w; = 1y ['wt—l — nVEt—l('wt—l)}

If the speed of distribution shift is
e slow, 7 should be small to keep the previous classifier.
e fast, n should be large to quickly update the classifier.

How do we choose 7 in practice?
e Ensemble learning!  zhao+ (NeurlPs2020)

ForO<m <---<nym,werun M IearnerS'
wi™ =Ty |w{™] =7, VR, (w{™])] Ritw) = = 3~ LU LT a g

ntr = ptr y@

Final output is the weighted average (cf. Hedge):
Freund+ (JCSS1997)

M
m) (m) =1 In M
let t p; | X exp (—EX;RS('wg ))) 6—@( -
m= G=




Theoretical Analysis 15

Shift intensity: Vo =) > |pi(y) —pe—1(y)| > 0(T %)

t=2 y=1

1 1

When Vr is known:
e Dynamic regret is minimized with step size n =0(V:1T 3):

- T _
1l 9
1) Ri(w;) — min R;(w)| = O(V.2T3
Risk of our model Risk of the best model at each iteration

Ri(w) = By, (2ly)p: (v) [E('wTaz, y)]
Even when V; IS unknown:

e ATLAS still achieves the same dynamic regret!
® Number of learners: M = 1+ [4log, (1 + 27)]

m Step size: N, = 2™ ' Z/NT, m=1,...,.M



ATLAS with Hints 16

If we have some hints, can we perform better?
e Hint function: Ht('w) ~ Rt( ) Ept (x|y)pe (v) [E(’wTaJ,y)}

ATLAS-ADA:
o w; 1 =1y [wt—l — nVﬁt_l(wt_l)} & Same as ATLAS

. 1 < Use the hint to
p— H ~ o - °
o W afugg\l)n [77 t(w) + 9 Jw We—3 | ] match the next loss

T

Z Ri(w;y) — Z 5,%119\; Ri(w)

e Reusability: Gr —ZE [sup | VR, (w) — VHt('w)H2] < O(T)

2%

Dynamic regret: E = 0 (Vi Gy1)

e ATLAS-ADA is better and safel OVETH)



Continuous Covariate Shift 17
Zhang, Zhang, Zhao & Sugiyama (NeurlPS2023)
Input density p:(x) changes arbitrarily over time,
but output-given-input is unchanged: pe(ylx) = p(y|x)

_ t=1,...,T
Given:
. tr e i.i.d.
e (Large) labeled training data: {(z; i) b o per (T, y)
e (Small) unlabeled test data: {a:ff)},l,;:1 RS pe(a)

We use online density ratio estimation:

|| L 1 IL
IL ft(x,y)
L g

r 2 2 D
® ® ® ®3




Contents

Importance Weighting
Continuous Shifts

Ongoing Challenges

18



Joint Distribution Shifts

Many distribution shift works considers
a specific shift type (e.g., covariate shift).

Pir(T) 7 Pre(T)
P (Y|T) = pre(ylT) = P(Y|T)

e However, identification of the shift type is challenging.

Let’s consider joint shift:

Pir (T, Y) 7 Pre(T,y)

19



Mini-Batch-Wise Loss Matching 20

Given: Fang, Lu, Niu & Sugiyama (NeurlPS2020)
e (Large) labeled training data: {(z;",y;")} = N per (T, Y)
e (Small) labeled test data: {(ate,yio)} e, K peo(, y)

We try to learn the importance weight
dynamically in the mini-batch-wise manner.
I+ f—nVﬁ(f) n > 0 : step size

For each mini-batch {(&{",7;")}ix, {(&°, 95°)}
Importance weights are estimated by

; . Huang+
kernel mean matching for loss values: (NeurPS2006)

tr =1

1 - Dre(®, ;")
pm— 7l .’i’t ~tr ~ ﬁ . ~te T €\ 9 f
s Zz_; 7 (f( ) nte Z_: 7 = tr)

ptr( 7, Jyz




Out-Of-Domain Extension

Limitation of importance weighting:
e The training domain must cover the test domain.

What if the test domain sticks out
from the training domain? Pt

21

<
SN—r

pte (33,
Per(T,Y)

Pte

Out-of-domain extension: Fang, Lu, Niu & Sugiyama (NeurlPS2023)

e Split training data into in-/out-domains
by outlier detection (e.g., 1-class SVM):  p,.

{( tein , y] )};’lein {( teout , y;eout ) };Lielout

Pte

e Compute the loss separately:

1 Ntegut

Tte;y, Zpte( 7 7y7, )E(f( r) yz )+ - Z E(f(.’l?;-eout

NtrNte i1 Ptr ( zrayz ) j=1

teout

)7yj )



Ongoing Challenges 22

For joint shift adaptation, requiring
labeled test data is too strong.

Can we use weakly supervised learning? ®
NS

e Unbiased risk estimation 'M
from Weak Su perViSion. Masashi Sugiyama, Han Bao,

e Any loss, classifier, and optimizer
can be used.

Machine Learning
from Weak Supervision

Sugiyama, Bao, Ishida,
Lu, Sakai & Niu
(MIT Press, 2022)

Weakly Supervised Classification (Binary) Weakly Supervised Classification (Multiclass)

[ M = Cl 2
TR — Multi-class weak-labels: M. iS:

e Complementary labels:
Specify a class that a pattern

Positive-Unlabeled (PU)

n%on nn o o x X
a2y o o o © x
ot'o| @ o, Unlabeled-Unlabeled (UU) P %%

° 1] ”
CHoN I o o o °" o | does not belong to (“not 17).
o a ﬂ\n o o x Ishida et al. (NIPS2017, ICML2019), Chou et al. (ICML2020)
‘ i 015, MLJ2017 =] oag o \
®Coal® g e Partial labels: Specify a subset of classes Boundary
o oo Similar-Dissimilar (SD) that contains the correct one (“1 or 27).
=]
olo o Op Feng et al. (ICML2020, NeurlPS2020), Lv et al. (ICML2020)
Positive-confidence (Pconf) 8 |e Bg . )
o o . :
95% 70%]° e gool® o e Single-class conflldence. _
: 8 One-class data with full confidence
O 7| 020% — : (“1 with 60%, 2 with 30%, and 3 with 10%")
& | Different populations | )
0 5% Cao etal. (arXiv2021)

| Sensitive prediction ‘

| Purchase prediction |




Positive-Unlabeled (PU) Classification 23

Given: PU samples (no N samples) Positive  [Negativel
i.1. n 11 oo o
(@l W plaly = +1) (@)} K p(@)  Pogala o 7
Ol:lol:l o O
Goal: Obtain a risk-minimizing classifier ° ool ® o

Unlabeled (mixture of

min R(f) R(f) = Epz.y) [ﬁ (y, f(a:))} positives and negatives)

feF
[ : expectaton £ :loss y = {+1,—1}

Unbiased risk estimator: au piessis+ (NeurlPS2014, ICML2015)

Reu(f) = %if(ﬂ,ﬂw?)%% ie(—l,f(:c}ﬂ)—%fﬁ(—l,ﬂm?))
i=1 j=1 = r=ply=+1)

e Optimal convergence rate: Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)

- ) 2T 1 fl;U — argmin EPU(]C)
- B <C feF
(Feu) = R() <€) ( = \/n—U) " e R
with probability 1 — 9




Signal Enhancement by PU Classification 24

lto & Sugiyama (ICASSP2023, Best Paper Award)

Signal
Enhancement

Noisy signal -

Existing method: Use

(noise removal)

Parallel training
data

noisy/noiseless parallel training data

e In practice, use synthetic data
— Do not generalize well in reality.

Proposed method: Use non-parallel

noisy signal and noise.

Methods SI-SNRi [dB]

Proposed

Wisdom+

MixIT (Neurips2020)

Non-parallel

14.62 (0.20)
12.19 (4.50)
15.86 (1.28)

100
075
050
025
— P
-0.25
—o.s!

~ Enhanced S|gnal

»w

Noiseless S|gnal

noisy environments
(signal active)

= non- parallel

noisy env1r0nments

(signal inactive)




