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What Is This Lecture about?

Machine learning from big labeled data
has been highly successful.
 Speech recognition, image understanding,

natural language translation, recommendation, …

However, there are various applications
where massive labeled data is not available.
 Medicine, disaster, robots, brain, …
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What Is This Lecture about?
There are many approaches to coping with 

the label-cost problem:
 Improve data collection (e.g., crowdsourcing)
 Use a simulator to generate pseudo data
 Use domain knowledge (i.e., engineering)
 Use cheap but weak data (e.g., unlabeled)

Disclaimer:
 There are many great works on

weakly supervised learning.
 Coverage of this lecture is biased and limited.
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Binary Supervised Classification

Larger amount of labeled data yields 
better classification accuracy.
Estimation error of the boundary

decreases in order         .
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Unsupervised Classification 5

Gathering labeled data is costly. Let’s use 
unlabeled data that are often cheap to collect:

 Unsupervised classification is typically clustering.
 This works well only when each cluster 

corresponds to a class.

Unlabeled



Semi-Supervised Classification

Use a large number of unlabeled samples and 
a small number of labeled samples.
Find a boundary along the cluster structure

induced by unlabeled samples:
 Sometimes very useful.
 But not that different from unsupervised classification.
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Chapelle, Schölkopf & Zien (MIT Press 2006) and many



Supervised

Unsupervised

Semi-supervised

Classification of Classification 7
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Textbook
Masashi Sugiyama,

Han Bao,
Takashi Ishida,
Nan Lu,
Tomoya Sakai,
Gang Niu.
Machine Learning from 
Weak Supervision:
An Empirical Risk 
Minimization Approach,
320 pages, MIT Press, 
2022.
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PU Classification 9

Only PU data is available; N data is missing:
 Click vs. non-click
 Friend vs. non-friend

From PU data, PN classifiers are trainable!

Positive

Unlabeled (mixture of
positives and negatives)

du Plessis, Niu & Sugiyama (NIPS2014, ICML2015)
Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)

Kiryo, Niu, du Plessis & Sugiyama (NIPS2017)



Pconf Classification

Only P data is available, not U data:
 Data from rival companies cannot be obtained.
 Only positive results are reported (publication bias).

“Only-P learning” is unsupervised.
From Pconf data, PN classifiers are trainable!
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Ishida, Niu & Sugiyama (NeurIPS2018)

Positive confidence
95%

70%

5%

20%



UU Classification 11

From two sets of unlabeled data with different 
class priors, PN classifiers are trainable!
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SDU Classification

Delicate classification (money, religion…):
 Highly hesitant to directly answer questions.
 Less reluctant to just say “same as him/her”.

From SU data, PN classifiers are trainable!

 Learning from DU data is also possible.
 Learning from SDU data is also possible.
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Bao, Niu & Sugiyama (ICML2018)

Shimada, Bao, Sato & Sugiyama (NeCo2021)

S (similar pairs) D (dissimilar pairs)



Multiclass Methods
Labeling patterns

in multi-class problems
is extremely painful.
 Complementary labels:

Specify a class that
a pattern does not belong to (“not 1”).

 Partial labels:
Specify a subset of classes
that contains the correct one (“1 or 2”).

 Single-class confidence:
One-class data with full confidence
(“1 with 60%, 2 with 30%, and 3 with 10%”) 
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Class 1 Class 2

Boundary

Class 3

Ishida, Niu, Hu & Sugiyama (NIPS2017)
Ishida, Niu, Menon & Sugiyama (ICML2019)

Feng, Kaneko, Han, Niu, An & Sugiyama (ICML2020)
Feng, Lv, Han, Xu, Niu, Geng, An & Sugiyama (NeurIPS2020)

Cao, Feng, Shu, Xu, An, Niu & Sugiyama (arXiv2021)
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PN Classification
(Ordinary Supervised Classification)
Labeled data:
 Input             :   -dimensional real vector
 Output                      : Binary class label
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Some Definitions
Classifier: 
 Label prediction by                          

(e.g., linear, additive, kernel, deep models).
Margin: 


Classification is correct.


Classification is wrong.

Zero-one loss:
 0 for correct prediction.
 1 for wrong prediction.
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Classification Error
and Empirical Approximation

Classification error (expected zero-one loss 
over all test data):

 Our goal: Find a minimizer of            .
But this is impossible since          is unknown: 
 Let’s use samples:

 Empirical approximation:
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: Expectation

i.i.d.: Independent and identically distributed



Minimization of
Empirical Classification Error

However, minimization of            is NP-hard,
due to discrete nature of       :
 We may not be able to obtain

a global minimizer in practice.

Let’s use a smoother loss!
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Surrogate Loss
Let’s use a smoother loss as a surrogate:
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Zero-one
Hinge (SVM)
Ramp (Robust SVM)
Exponential (Boosting)
Logistic (Log. regression)

Many existing methods
can be accommodated

in this framework!



PN Empirical Risk Minimization
Classification risk for loss   :

Empirical risk:
 Expectation is approximated by sample average:

 Minimize it within a certain model class
(e.g., linear, additive, kernel, deep,…):
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PU Classification: Setup 22

Given: Positive and unlabeled samples

Goal: Obtain a PN classifier

Positive

Unlabeled (mixture of
positives and negatives)



PN Risk Decomposition
Risk of classifier    :

Since we do not have N data in the PU setting, 
the risk cannot be directly estimated.
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Risk for P data Risk for N data

: Class-prior probability
(assumed known; can be estimated)

Scott & Blanchard (AISTATS2009)
Blanchard, Lee & Scott (JMLR2010)

du Plessis, Niu & Sugiyama (IEICE2014, MLJ2017)
Ramaswamy, Scott & Tewari (ICML2016)

Yao, Liu, Han, Gong, Niu, Sugiyama & Tao (ICLR2022)
https://www.ms.k.u-tokyo.ac.jp/sugi/slide/20211101_CIKM-LQ.pdf

: loss



PU Risk Estimation

U-density is a mixture of P- and N-densities:
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PU Risk Estimation (cont.)

This allow us to eliminate the N-density:

 Unbiased risk estimation is possible from PU data,
just by replacing expectations by sample averages!
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du Plessis, Niu & Sugiyama (ICML2015)



PU Empirical Risk Minimization

 Replacing expectations by sample averages gives 
an empirical risk:

Optimal convergence rate is attained:

26

: # of P, U samples

Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)



Theoretical Comparison with PN

Estimation error bounds for PU and PN:

Comparison: PU bound is smaller than PN if 

 PU can be better than PN, provided many PU data!
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Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)

: # of P, N, U samples



Further Correction

PU formulation:

 If                     ,                 .
 However, its PU empirical approximation can be 

negative due to “difference of approximations”.

 This problem is more critical for flexible models 
such as deep nets.
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Risk for P data Risk for N data



Non-Negative PU Classification

We constrain the sample approximation term
to be non-negative through back-prop training:

 Now the risk estimator is biased. Is it really good?
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Stochastic gradient iterations

Er
ro

r
PU test

PN test

PU train

PN train

Overfitting

Empirical error
goes negative

Kiryo, Niu, du Plessis & Sugiyama (NIPS2017)



Theoretical Analysis

 is still consistent and its bias decreases 
exponentially:
 In practice, we can ignore the bias of            !

Mean-squared error of            is not more than
the original one.
 In practice,             is more reliable!

 Risk of                     for linear models attains
optimal convergence rate: 
 Learned function is optimal.

 Extension to leaky-ReLU:
 Corresponding to gradient ascent.
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Kiryo, Niu, du Plessis & Sugiyama (NIPS2017)

: # of P, U samples

Lu, Zhang, Niu &
Sugiyama (AISTATS2020)



Signal Enhancement 31

 Existing method: Use
noisy/noiseless parallel training data
 In practice, use synthetic data
→ Do not generalize well in reality.

 Proposed method: Use non-parallel
noisy signal and noise.

Ito & Sugiyama (ICASSP2023)

Noisy signal Enhanced signal

Signal 
Enhancement

(noise removal)

SI-SNRi [dB]Methods
14.62 (0.20)Proposed
12.19 (4.50)MixIT
15.86 (1.28)Supervised

Non-parallel

Parallel

Noiseless signal

Parallel training 
data

Wisdom+
(NeurIPS2020)



Contents

1. Introduction
2. PN Classification
3. PU Classification
4. Pconf Classification
5. UU Classification
6. SDU Classification
7. Comp. Classification
8. Summary

32

• P: Positive
• N: Negative
• U: Unlabeled
• Conf: Confidence
• S: Similar
• D: Dissimilar
• Comp: Complementary



Pconf Classification: Setup

Given: Positive-confidence samples

 Positive patterns:
 Their confidence:

Goal: Obtain a PN classifier
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Ishida, Niu & Sugiyama (NeurIPS2018)

Pconf

95%
70%

5%

20%



Pconf Risk Estimation
Classification risk:

Naïve “confidence-weighting” is not correct.

Correct form is given by importance sampling:

resulting in an empirical risk:
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UU Classification: Setup

Given: Two sets of unlabeled data

Assumption: Only class-priors are different

Goal: Obtain a PN classifier
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Optimal UU Classifier

Sign of the difference of class-posteriors:

Under uniform test class-prior,

Sign of     is unknown, but just knowing

still allows optimal separation!
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Boundary

du Plessis, Niu & Sugiyama (TAAI2013)



UU Risk Estimation
For
 uniform test class-prior:
 symmetric loss:

the classification risk can be expressed as

resulting an empirical risk (up to label flip):
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Lu, Niu, Menon & Sugiyama (ICLR2019)



Extension to UUU…

Um classification:    U sets                are given.
Apply UU for pairs of U sets:
 However, it is computationally expensive.

Surrogate set classification:

 Learn an    -class classifier        that probabilistically 
assigns the dataset ID to each sample.

 It can be deterministically converted to the classifier 
that assigns PN labels to each sample.
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Lu, Lei, Niu, Sato & Sugiyama (ICML2021)

Scott & Zhang (NeurIPS2020)
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SU Classification 41

Given: Similar and unlabeled samples

Goal: Obtain a PN classifier
This is a special case of UU classification:

Bao, Niu & Sugiyama (ICML2018)



Extensions to DU/SD/SDU 42

DU and SD classification are
also special cases of
UU classification:
 DU:

 SD:

SDU classification is also possible
by combining DU/SU/SD classification
(in the same way as PNU classification).

Shimada, Bao, Sato & Sugiyama (NeCo2021)



Further Extensions
 Noisy SD: Two types of noise:

 Pairing corruption noise:
Pairwise labels (S/D) are noisy.

 Labeling corruption noise:
Latent class labels (P/N) are noisy.

 Similar-confidence (Sconf):
 Similar pairs with confidence.

 Pairwise confidence comparison:
 Sample pairs with one having larger

Pconf than the other.

 Confidence difference:
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Dan, Bao & Sugiyama

(ECMLPKDD2021)

Cao, Feng, Xu, An, Niu & Sugiyama
(ICML2021)

Feng, Shu, Lu, Han, Xu, Niu,
An & Sugiyama (ICML2021)
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Wang, Feng, Jiang, Niu, Zhang & 
Sugiyama (NeurIPS2023)
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Complementary Labels

Labeling patterns in multi-class problems:
 Selecting a correct class from a long list of 

candidate classes is extremely painful.
Complementary labels:
 Specify a class that

a pattern does not belong to.
 This is much easier and

faster to perform!
From complementary labels,

classifiers are trainable!
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Boundary
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Ishida, Niu, Hu & Sugiyama (NIPS2017)
Ishida, Niu, Menon & Sugiyama (ICML2019)



Complementary Classification

Given: Complementarily labeled data

 Pattern    does not belong to class                        .
Goal: Obtain a multiclass classifier
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Class 1 Class 2

Boundary
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Multi-Class Classification
 -class classifier:

 -class loss:
 One-versus-rest:

 Pairwise comparison: 

 -class classification risk:
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: one-vs-rest classifier for   



Complementary Risk Estimation

Risk can be equivalently expressed as

 Complementary loss:

Empirical risk estimation is possible from 
complementary data!
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Ishida, Niu, Menon & Sugiyama (ICML2019)



Generalizations
 From unbiased risk estimation to

surrogate complementary loss:
 Surrogate approximation

later. 

Multiple complementary labels
(=partial labels):
 Consider the size of

complementary sets.

 Release from the uniform assumption:
 Selected completely at random.
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Wang, Ishida, Zhang,
Niu & Sugiyama (arXiv2023)

Chou, Niu, G., Lin &
Sugiyama (ICML2020)

Feng, Kaneko, Han, Niu,
An & Sugiyama (ICML2020)
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Empirical Risk Minimization Framework
for Weakly Supervised Learning

Any loss, classifier, regularizer, and optimizer 
can be used.
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Towards More Reliable ML

 Reliability for expectable situations:
 Model the corruption process explicitly

and correct the solution.
 How to handle modeling error?

 Reliability for unexpected situations:
 Consider worst-case robustness (“min-max”).
 How to make it less conservative?

 Include human support (“rejection”).
 How to handle real-time applications?

 Exploring somewhere in the middle
would be practically more useful:
 Use partial knowledge of the corruption process.
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