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What Is This Lecture about?

Machine learning from big labeled data
has been highly successful.

e Speech recognition, image understanding,

2

natural language translation, recommendation, ...

However, there are various applications

where massive labeled data is not available.

e Medicine, disaster, robots, brain, ...




What Is This Lecture about? 3

There are many approaches to coping with
the label-cost problem:

e Improve data collection (e.g., crowdsourcing)
e Use a simulator to generate pseudo data

e Use domain knowledge (i.e., engineering)

e Use cheap but weak data (e.g., unlabeled)

Disclaimer:

e There are many great works on
weakly supervised learning.

e Coverage of this lecture is biased and limited.



Binary Supervised Classification*
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Larger amount of labeled data yields
better classification accuracy.

Estimation error of the boundary L 1m
decreases in order 1/v/n. |

7 . Number of labeled samples




Unsupervised Classification °

Gathering labeled data is costly. Let's use
unlabeled data that are often cheap to collect:

e Unsupervised classification is typically clustering.

e This works well only when each cluster
corresponds to a class.



Semi-Supervised Classification °

Chapelle, Scholkopf & Zien (MIT Press 2006) and many

Use a large number of unlabeled samples and
a small number of labeled samples.

Find a boundary along the cluster structure
induced by unlabeled samples:

e Sometimes very useful.
e But not that different from unsupervised classification.

Negative
'

Positive Unlabeled



Classification of Classification ’
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PU Classification J

du Plessis, Niu & Sugiyama (NIPS2014, ICML2015)
Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)
Kiryo, Niu, du Plessis & Sugiyama (NIPS2017)

Only PU data is available; N data is missing:
e Click vs. non-click

e Friend vs. non-friend |
Unlabeled (mixture of

positives and negatives)

Positive OO O O
O
o OOI:I O g -
O
OO O ] DI:I
O O @) O
O O O O
O

From PU data, PN classifiers are trainable!



Pconf Classification 10

Ishida, Niu & Sugiyama (NeurlPS2018)

Only P data is available, not U data:
e Data from rival companies cannot be obtained.
e Only positive results are reported (publication bias).

“Only-P learning” is unsupervised.
From Pconf data, PN classifiers are trainable!

Positive confidence
70% (@)

95%
On
O50[
O
OO O 5%



UU Classification 1

du Plessis, Niu & Sugiyama (TAAI2013)
Nan, Niu, Menon & Sugiyama (ICLR2019)

From two sets of unlabeled data with different
class priors, PN classifiers are trainable!

| | |
| W N [l o = N w

D
y 4




SDU Classification 12

Bao, Niu & Sugiyama (ICML2018)

Delicate classification (money, religion...):
e Highly hesitant to directly answer questions.
e Less reluctant to just say “same as him/her”.

From SU data, PN classifiers are trainable!

S (similar pairs)
[
e+

e Learning from DU data is also possible.

e Learning from SDU data is also possible.
Shimada, Bao, Sato & Sugiyama (NeCo02021)

0 D (dissimilar pairs)

O



Multiclass Methods 13

x* (Class 2

Class1 ©
o

oO

o

Labeling patterns
iIn multi-class problems
Is extremely painful.

e Complementary labels: o |
. Ishida, Niu, Hu & Sugiyama (NIPS2017)
SpeC|fy a class that ishida, Niu, Menon & Sugiyama (ICML2019)
a pattern does not belong to ("not 17).

. . Feng, Kaneko, Han, Niu, An & Sugiyama (ICML2020)
® Pa rtlal Iabels Feng, Lv, Han, Xu, Niu, Geng, An & Sugiyama (NeurlPS2020)

Specify a subset of classes
that contains the correct one (“1 or 27).

e Single-class confidence: cao, Feng, shu, xu, An, Niu & Sugiyama (arxiv2021)
One-class data with full confidence
("1 with 60%, 2 with 30%, and 3 with 10%")

o
o
o

Boundary
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PN Classification 15
(Ordinary Supervised Classification)

Labeled data: {(z:,y:)}"; "~ p(z, v)

e Input = € R?: d-dimensional real vector
e Output y € {+1,—1} : Binary class label

P @) XX
o)
o "o « x X
o ° X
o) 0 X % N

Boundary



Some Definitions 16

Classifier: f:R* — R
e Label prediction by y = sign(f(x))

(e.qg., linear, additive, kernel, deep models).
Margin: m = yf(x) JENER=
o m >0 = sign(f(x)) =y

mmmm) Classification is correct.

o m <0 = sign(f(x)) #vy
mmm) Classification is wrong.

1
Zero-one loss: £y/1(m) = 5 (1 — sign (m))

e O for correct prediction.
e 1 for wrong prediction.



Classification Error 17

and Empirical Approximation

Classification error (expected zero-one loss

over all test data): E : Expectation

Ro/1(f) = Ep(a,y) {50/1 (yf(a:'))} loj1(m) = % (1 — sign (m))

e Our goal: Find a minimizer of Ry, (f).
But this is iImpossible since »(z,y) IS unknown:
e Let's use samples: {(x;,v;)}i—; LS p(x,y)

I.I.d.: Independent and identically distributed
e Empirical approximation:

EO/l(f) = % ZEO/l (y@f(wz)) = Ro/1(f) + Op (
i=1

-



Minimization of 18
Empirical Classification Error

EO/l(f) — % 250/1 (yzf(-l'z))
i=1

However, minimization of Ry, (f) is NP-hard,
due to discrete nature of £y;:

e \We may not be able to obtain
a global minimizer in practice.

Let’'s use a smoother loss!

o —_ ) w .
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Surrogate Loss 19

Let’'s use a smoother loss as a surrogate:

‘ - - - -

. Y EEE

' Exponential (Boosting)

Zero-one
Hinge (SVM)
Ramp (Robust SVM)

Logistic (Log. regression)

Many existing methods
can be accommodated
in this framework!

5 O



PN Empirical Risk Minimization?

Classification risk for loss /:
R(f) = Epa | £(vf (@) )]

Empirical risk:
e Expectation is approximated by sample average:

Ren(r) = = 3 ¢(wif @) = B+ 0, (=)

n  i..d.
(@i, v3) fiey ~ plz,y)
e Minimize it within a certain model class
(e.g., linear, additive, kernel, deep,...):

fon = arg;nin Ren(f)
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PU Classification: Setup 2

Given: Positive and unlabeled samples
{@]}ir, "R p(aly = +1)
{2}, = pla)

Goal: Obtain a PN classifier

Unlabeled (mixture of
positives and negatives)

Positive
OO0 O
0o o =
oo o O O
O 0O O

O od = O
O



PN Risk Decomposition  %°
Risk of classifier f :
R(f) = Epta ) |£(uf@))| €108
= TEp(afy=r1) | L f(@))] + (1 = DEpapy=) [ — f(2))]

\ J \ J
Y

~
Risk for P data Risk for N data

7w = p(y = +1): Class-prior probability
(assumed known; can be estimated)

Scott & Blanchard (AISTATS2009)

Blanchard, Lee & Scott (JMLR2010)

du Plessis, Niu & Sugiyama (IEICE2014, MLJ2017)
Ramaswamy, Scott & Tewari (ICML2016)

Yao, Liu, Han, Gong, Niu, Sugiyama & Tao (ICLR2022)
https://www.ms.k.u-tokyo.ac.jp/sugi/slide/20211101_CIKM-LQ.pdf

Since we do not have N data in the PU setting,
the risk cannot be directly estimated.



PU Risk Estimation 24

R(f) = mEpapy=i) [((f@)) | + 0 = M) Bpiapy=) [ - f(@))]
U-density is a mixture of P- and N-densities:

p(x) = mp(zly = +1) + (1 = m)p(zly = —1)

p(xly = +1) p(xly = —1)




PU Risk Estimation (cont.) 25

du Plessis, Niu & Sugiyama (ICML2015)

R(f) = mEp(apy=s1) |£(£@)) | + (1 = MEpa=) ¢ — F@))
p(x) = mp(zly = +1) + (1 = m)p(zly = —1)

This allow us to eliminate the N-density:
(1 —m)p(zly = —1) = p(x) — mp(x|y = +1)
R(f) — WEp(a:Iy:—l—l) [ﬁ (f(m))]
By 6~ 1@)] - B o - )

e Unbiased risk estimation is possible from PU data,
just by replacing expectations by sample averages!



PU Empirical Risk Minimization?®
R(f) = 7Ep(aiy=s1) | ((F@)) | +Epia [¢( = F@)) | = 7Epiaty=sn) [¢( = (@),

Replacing expectations by sample averages gives
an empirical risk:

np nu np

Rru(r) = 32 0(7@h) 132 e( - 1) = 3 e~ fiah)

nu 1=1
np 1.1.d. niy 1. 1 d.

{@; 2, "~ plely =+1)  {z; 1Y X p(e)

Optimal convergence rate is attained:
Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)
~ 27 1

R — R(f*) <C(d |

(Fro) = RU™) < 00) (= + o=

with probability 1 — 0

fru = argmin Rpy(f)
f* = argmin; R(f) np,ny :# of P, U samples



Theoretical Comparison with PN’

Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)

Estimation error bounds for PU and PN:
R(fov) - R(f*) < C(5) ( 2 L )

NN
—~ T l—m
R — R(f") < C(o |
(Fr) = R < 00) (= + ==
fen = arg;nin Rex(f) with probability 1 — 6
Rex(f) = %Zf(yif(wi)) np,nn,nu : # of P, N, U samples
=1l
Comparison: PU bound is smaller than PN if
7 1 1 —m
+—<
Ve J/nu /NN

e PU can be better than PN, provided many PU data!



Further Correction 28
R(f) = mEytaly=sn) [¢(F(@)) | + (1= W) Eyiaiymn [¢( - S())

|\

. Y Y -
Risk for P data Risk for N data R~ ( f)

PU formulation: p(z) = mp(zly = +1) + (1 — m)p(zly = —1)
R(f) = By | £ = f@)) |- 7Epapym i) [ — f(@))]
o |If /(m)>0,vm, R (f)>0.

e However, its PU empirical approximation can be
negative due to “difference of approximations”.

ny n

Roo(f) = =St = @) = =3 e( - siah)) 20

nuy «

1=1 =1

e This problem is more critical for flexible models
such as deep nets.



Non-Negative PU Classification®®

Kiryo, Niu, du Plessis & Sugiyama (NIPS2017)

PU test

0.5
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PN train

0.0
0.1 \
031 PU train Empirical error

0 100 200 300 400 500 goes negative
Stochastic gradient iterations

We constrain the sample approximation term
to be non-negative through back-prop training:

np

Reu(f) = 7= > 0(f(@))) +max {o, LS o(-s@) - S e(~stah) }

=l =1 =1

e Now the risk estimator is biased. Is it really good?



Theoretical Analysis 50

Kiryo, Niu, du Plessis & Sugiyama (NIPS2017)

np

Beu(f) = — > £(f(af))+max {0, ~ if(—f(w?))—% if(—f(wf ) }

np —1 —

Reu(f)is still consistent and its bias decreases
exponentially: O(e™"*™"") np,ny: # of P, U samples
e In practice, we can ignore the bias of Rpy(f)!

Mean-squared error of Rey(f) is not more than
the original one.
e In practice, Rpu(f) is more reliable!

Risk of argmin; Rpy(f)for linear models attains
optimal convergence rate: ( 1 .1 )
e Learned function is optimal. \vre o)

: _ . Lu, Zhang, Niu &
Extension to leaky ReLU'Sugiyama (AISTATS2020)

e Corresponding to gradient ascent. = e

ReLU function
—— Generalized Leaky RelLU




Signal Enhancement >

Ito & Sugiyama (ICASSP2023)

Signal =
= > Enhancement >

~ Noisy signal - (noise removal) " Enhanced signal

»om«»

Noiseless S|gnal

A

Parallel training

Existing method: Use ..., data
noisy/noiseless parallel tralnlng data

e In practice, use synthetic data
— Do not generalize well in reality.

Proposed method: Use non-parallel  ™Gaaiscive
noisy signal and noise. =

Methods SI-SNRi [dB]

Proposed 14.62 (0.20)
Non-parallel

R | NI=S < 3
MiXIT wewipszoro)  12.19 (4.50) B Q._>
Parallel  _s5 Supervised 15.86 (1.28) noisy environments

(signal inactive)

o
Q——) noisy
signals

non-parallel
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Pconf Classification: Setup 33

Ishida, Niu & Sugiyama (NeurlPS2018)

Given: Positive-confidence samples

{(.’13,,;,7"7;) ? 1
e Positive patterns: {ZL‘,L i—1 LS p(ac|y — 1)

e Their confidence: r; = P(y = +1|x;)

Goal: Obtain a PN classifier Pconf

70% O

95%
O
020%
O O O 5%



Pconf Risk Estimation 34
Classification risk: R(f) = By )| ¢(vf(@))|

Nailve “confidence-weighting” is not correct.
R(f) # Eptapy=sn) [r(@)0(f(@)) + (1= r(2))t( = f(=))]
r(z) = P(y = +1|x)
Correct form is given by importance sampling:
B 1 —r(x)

R(f) = TEpialy=rn) [£(f@)) + — (= f@)]

resulting in an empirical risk:
Rrcont(£) o 3 [0( (@) + =20 = f()]
1=1

T

{@:}7, "X plaly = +1) ri = Py = +1|x;)
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UU Classification: Setup  =°

du Plessis, Niu & Sugiyama (TAAI2013)
Lu, Niu, Menon & Sugiyama (ICLR2019)
Lu, Zhang, Niu & Sugiyama (AISTATS2020)

Given: Two sets of unlabeled data

1.1.d. 1.1.d.
{2}, "X ple) {x}, "~ p(x)

Assumption: Only class-priors are different
p(y) #p'(v)  plzly) =p'(x[y)
Goal: Obtain a PN classifier

I p(x) . - 1 p(x)

T 2| .
1r " u g
Or . n Or " n
4l = - . T ]

= " e ". '
-2t .. ™ . {(Ijz ZL:]_ i n " .. {w; ?:1
_3 : * : : :
0 2

Z4 -2 0 2 4 4 -2



Optimal UU Classifier 37

du Plessis, Niu & Sugiyama (TAAI2013)

Sign of the difference of class-posteriors:
g(x) = sign[p(y = +1[x) — p(y = —1|z)]
Under uniform test class-prior,
g(z) = Csignlp(x) — p'(x)]
C = sign[p(y = +1) — p'(y = +1)]
Sign of C' is unknown, but just knowing

sign[p(z) — p'(z)]
still allows optimal separation!
Boundary



UU Risk Estimation 38

FOr Lu, Niu, Menon & Sugiyama (ICLR2019)

e uniform test class-prior: 7 = 1/2

e symmetric loss: ¢(m) + ¢(—m) = Const.

the classification risk can be expressed as
R(f) = Epa,y) [5 (yf (w)ﬂ

X Eyia) [ F(@)) ]| + By [¢( = f(2)))] + Const.
resulting an empirical risk (up to label flip):

Ruotf) o + 3 0(#(w0) + > ¢( - 1ia)

. S
i.i.d. n’ 1.1.d.

{zi}io, ~ plx) {x;}i, ~ p(x)



Extension to UUU... 39

m (= 2)
UM classification: m U sets {={”}{2"_, are given.

Apply UU for pairs of U sets:  scott & zhang (NeurlPs2020)
e However, it is computationally expensive.

Surrogate set classification:
Lu, Lei, Niu, Sato & Sugiyama (ICML2021)
e Learn an m-class classifier f(z) that probabilistically
assigns the dataset ID to each sample

{57 =y e p(jlz) ~ f(z)

e |t can be deterministically converted to the classifier
that assigns PN labels to each sample.

p(ylx) = T(f(x))
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SU Classification 41

Bao, Niu & Sugiyama (ICML2018)

Given: Similar and unlabeled samples
{(@i, @)}y, = <w x|y =1y)

nU 1.1. d Ex'
Goal: Obtaln a PN classmer
This is a special case of UU classification:

ply=+1)=n2/(2r° — 2 + 1)
ply=+1)=m



Extensions to DU/SD/SDU 42

Shimada, Bao, Sato & Sugiyama (NeCo02021)

DU and SD classification are

also special cases of o 0
UU classification: i ”D 0
eDU: p(y=+1)=1/2 o o—T5, "

plly=+1)=m

e SD: p(y=+1) =7°/(27° — 27 + 1)
p'(y=+1)=1/2

SDU classification is also possible

by combining DU/SU/SD classification
(in the same way as PNU classification).



Further Extensions 43

Noisy SD: Two types of noise: ML PKDDA05,
e Pairing corruption noise: @*@m
Pairwise labels (S/D) are noisy.
e Labeling corruption noise: 6920029 '2)
_atent class labels (P/N) are noisy. X))
Similar-confidence (Sconf): Cao, Feng, Xu, An, Niu & Sugiyama
(ICML2021)

e Similar pairs with confidence. p(a:, zc’\y — y’)

Pairwise confidence comparison: Feng, Shu, Lu, Han, Xu, Niu,
e Sample pairs with one having larger An & Suglyama (IGML2021)
Pconf than the other. p(y = +1|x) > p(y = +1|z’)

: : . Wang, Feng, Jiang, Niu, Zhang &
Confidence difference: Sugivama (NourlPS2023)

c(z,z’) = ply = +1|z) — p(y = +1|z’)
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Complementary Labels  #°

Ishida, Niu, Hu & Sugiyama (NIPS2017)
Ishida, Niu, Menon & Sugiyama (ICML2019)

Labeling patterns in multi-class problems:

e Selecting a correct class from a long list of
candidate classes is extremely painful.

Complementary labels:

e Specify a class that Class® | xx Class2
a pattern does not belong to. o ©, x %%

. . . (o)
e This is much easier and °
faster to perform! Boundary

From complementary labels,
classifiers are trainable!
1/4/n

o X x



Complementary Classification 4°

Given: Complementarily labeled data
{(@i,5)}iy "~ p(@,y) Bl 5) Zp z,y)

e Pattern x does not belong to class y € {1,2,...,c}.
Goal: Obtain a multiclass classifier

| %
Class1 o x ’C‘Dlass 2
o © x X
o ¢
o

o
Boundary



Multi-Class Classification 4/

c-class classifier: f(z) = argmax g,(z)

ye{l,...,c}

gy () : one-vs-rest classifier for Y
c-class loss: L(v9@) g(z) = (g1(@),. .., g.(x))"
e One-versus-rest:

Lovr (?Jag(@) = E(Qy(ﬂ?)) + Ci ] Z E( - gy'(fﬂ))

e Pairwise comparison:
Lec(y.9)) = 3 £(g,(@) - 9, ()

y' £y

c-class classification risk:
R(g) — Ep(a:,y) [L (yag(m))}




Complementary Risk Estimatiort?®

Ishida, Niu, Menon & Sugiyama (ICML2019)

Risk can be equivalently expressed as
R(g) — Eﬁ(m,gj) {I_/ (g,g(.’L‘))]

e Complementary loss:
l_}(gj,g(zc)) —(c—1) ( ) +ZL(y, )

Empirical risk estimation is possible from
complementary data!

Reomp(9) = = 3 E(5in9(@) {0} & e



Generalizations 49

From unbiased risk estimation to Chou, Niu, G., Lin &

surrogate complementary loss: Suglyama (ICML2020)

e Surrogate approximation WR( i (] Eiied [
later. Rm\

Snmaﬁon Fm Approximation ['_2(-', Empirical ﬁc‘"

Multiple complementary labels Feng, Kaneko, Han, Niu,

: An & Sugi ICML2020
(=partial labels): ., Ané&ougyama( )
_ _ p(a,Y) =3, _ pls =D,V | s =)
e Consider the size of 1 I
_ _ ) wzy¢}7 p(wvy)a lf|Y| =1
complementary sets. P,V |s=5):=1{ ()

0, otherwise.

Release from the uniform assumption: .. shida. zhang,
e Selected completely at random. Niu & Sugiyama (arXiv2023)

p(keYl|z ke Y\{y}) =p(keY[keY\{y}) =c
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Empirical Risk Minimization Framework o1
for Weakly Supervised Learning

Any loss, classifier, regularizer, and optimizer
can be used.

Supervised

P N, U, S, D, Pconf,

Semi- Nconf, Sconf, Dconf,... “g
supervised Comp, Partial, SCconf,... O
Different weak information 2

. can be systematically o
Unsupervised combined! §

Classification accuracy




Towards More Reliable ML

Reliability for expectable situations:

e Model the corruption process explicitly
and correct the solution.
B How to handle modeling error?

Reliability for unexpected situations:

e Consider worst-case robustness (“min-max”).
B How to make it less conservative?

e Include human support (“rejection”).
B How to handle real-time applications?
Exploring somewhere in the middle
would be practically more useful:

e Use partial knowledge of the corruption process.

52



