MIT

Sep. 18, 2023

Machine Learning from Weak, Noisy, and Biased Supervision

Masashi Sugiyama

RIKEN Center for Advanced Intelligence Project/ The University of Tokyo, Japan

http://www.ms.k.u-tokyo.ac.jp/sugi/

About Myself

Masashi Sugiyama:

- Director: RIKEN AIP, Japan
- Professor: University of Tokyo, Japan
- Consultant: several local startups

Interests: Machine learning (ML)

- ML theory & algorithm \rightarrow
- ML applications (signal, image, language, brain, robot, mobility, advertisement, biology, medicine, education...)

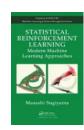
Academic activities:

- Program Chairs for NeurIPS2015, AISTATS2019, ACML2010/2020...
- Keynote speaker at ICLR2023.

Sugiyama & Kawanabe, Machine Learning in Non-Stationary Environments, MIT Press, 2012

Sugiyama, Suzuki & Kanamori, Density Ratio Estimation in Machine Learning, Cambridge University Press, 2012

Sugiyama, Statistical Reinforcement Learning, Chapman and Hall/CRC, 2015



ENSITY RATIC

N MACHINI LEARNING

Sugiyama, Introduction to Statistical Machine Learning, Morgan Kaufmann, 2015

STATISTICAL MACHINE LEARNING

Nakajima, Watanabe & Sugiyama, Variational Bayesian Learning Theory, Cambridge University Press, 2019

Sugiyama, Bao, Ishida,

Machine Learning from

Lu, Sakai & Niu.

Weak Supervision, MIT Press. 2022. HACHINE LEARNING MARKINE JOINSAN MARKINE JOINSAN MARKINE LEARNING MARKINE LEARNING MARKINE JOINSAN MARKINE JOI

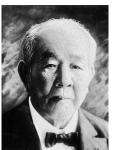
What is "RIKEN"?

Name in Japanese:

- Pronounced as: rikagaku kenkyusho
- Meaning: Physics and Chemistry Research Institute

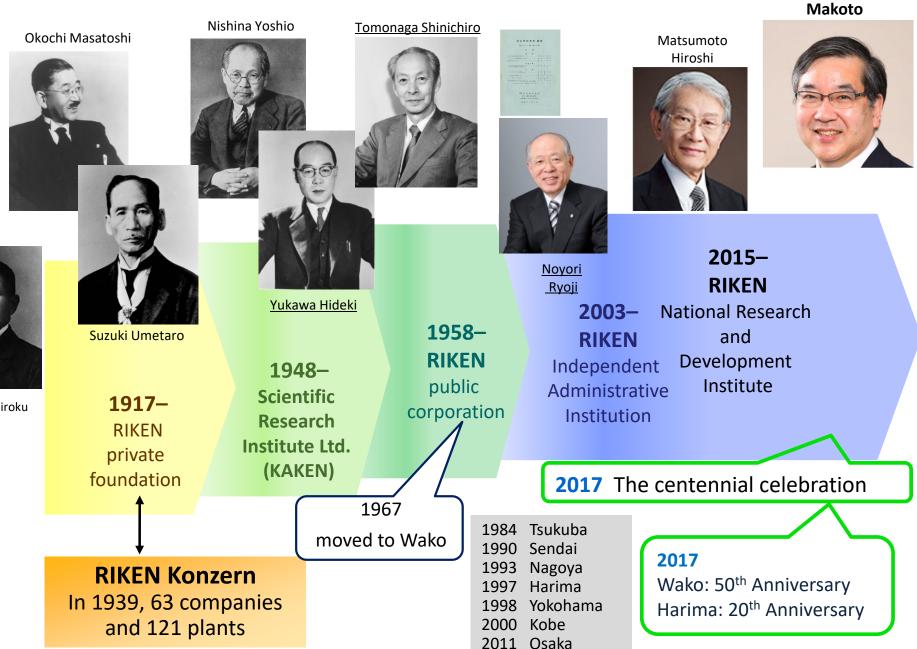
Acronym in Japanese: 理研 (RIKEN)

Brief History



Kikuchi Dairoku

Takamine Jokichi

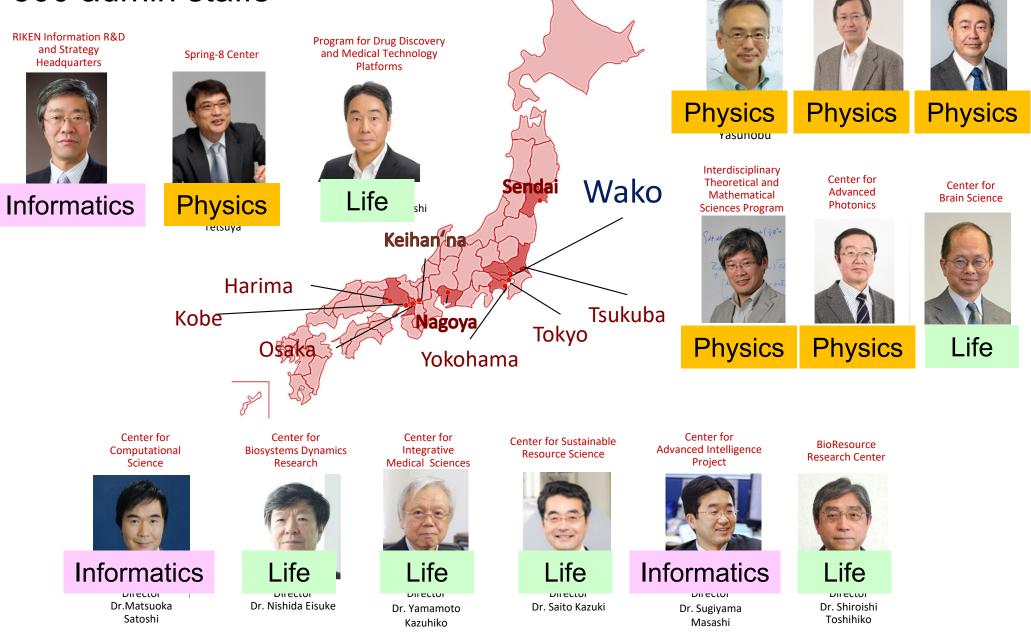


2016 Keihanna

Gonokami

Office and Research

2900 researchers 500 admin staffs



Nishina Center for

Accelerator-Based

Science

Center for Emergent

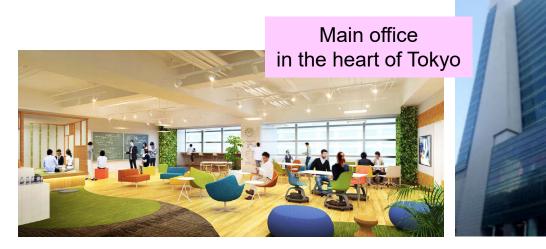
Matter Science

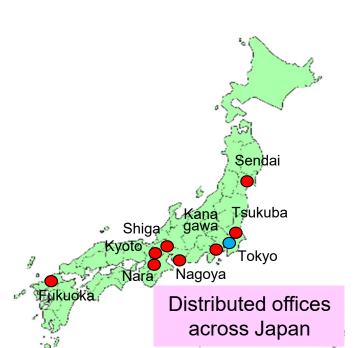
Center for

Quantum Computing

What is **RIKEN-AIP**?

- RIKEN founded Center for Advanced Intelligence Project (AIP) in 2016, under Ministry of Education, Culture, Sports, Science and Technology (MEXT):
 - 130 employed researchers (40% international, 25% female)
 - 250 visiting researchers
 - 130 domestic students
 - 140 international interns (total)
 - 40+ international collaboration partners
 - 40+ industry projects





NCF AND TECHNOLOGY-JAPA

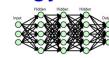
Selected Research of RIKEN-AIP

Developing New AI Technology

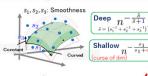
- Theory of deep learning:
- Better prediction than shallow learning
- No curse of dimensionality
- Global optimization
- Developing new methods:
- Weakly supervised learning
- Noise robust learning
- Causal inference

Weakly Supervised Classification

Noise Transition Correction Noise transition matrix T: $T^{-}_{0} = 1000$ • Clean-to-noisy flipping probability. Major approaches: "Second Second Seco



 $\mathbb{E}[\|f_T - f^*\|_{L_2}^2] \le \epsilon_M + O(T^{-\frac{2r\beta}{2r\beta+1}})$



to estimate the entire structure in the presence of hidden cause: • Speech separation technique is employed to separate hidden cause.

Solving Socially Critical Problems

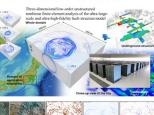
Natural disaster:

- Fugaku-based earthquake simulation
- Remote sensing disaster analysis
- Elderly healthcare:
- Chat-robot-guided
 cognitive function improvement

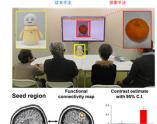
Education:

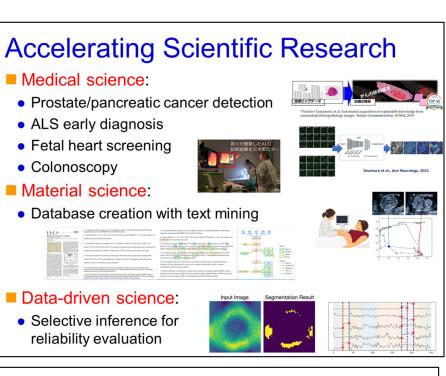
- Automatic essay evaluation
- Interactive essay writing support

 Marking characterization
 Markin



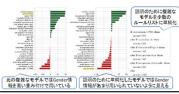
地形データ 水土砂沢宮領板





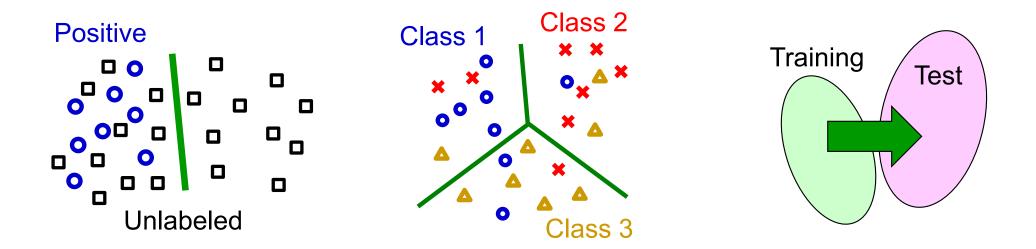
Studying AI-ELSI

- Al Ethical guidelines:
- Japanese Society for AI, Ministry of Internal Affairs and Communications, Cabinet Office
- IEEE, G20, OECD
- Personal data management:
- Individual-based accessibility control system
- Al security and reliability:
- Adversarial attack/defense
- Fairness faking/guarantee



Reliable Machine Learning

- Reliability of machine learning systems can be degraded by various factors:
 - Insufficient information: weak supervision.
 - Label noise: human error, sensor error.
 - Data bias: changing environments, privacy.
- Improving the reliability is an urgent challenge!

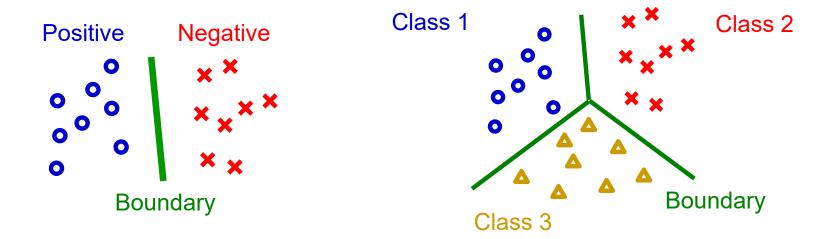


Contents

- 1. Weakly Supervised Learning
- 2. Noisy-Label Learning
- 3. Transfer Learning
- 4. Towards More Reliable Learning

Weakly Supervised Classification ¹⁰

Supervised classification from big labeled data is successful: speech, image, language, ...



- However, there are many applications where big labeled data is not available:
 - Medicine, disaster, robot, brain, ...
- We want to utilize "weak" supervision that can be collected easily!

Positive-Unlabeled (PU) Classification 11 Li+ (IJCAI2003) Given: PU samples (no N samples). $\{\boldsymbol{x}_{i}^{\mathrm{P}}\}_{i=1}^{n_{\mathrm{P}}} \stackrel{\text{i.i.d.}}{\sim} p(\boldsymbol{x}|y=+1) \quad \{\boldsymbol{x}_{j}^{\mathrm{U}}\}_{j=1}^{n_{\mathrm{U}}} \stackrel{\text{i.i.d.}}{\sim} p(\boldsymbol{x})$ Goal: Obtain a classifier minimizing the PN risk. $\min_{f} R(f) \quad R(f) = \mathbb{E}_{p(\boldsymbol{x}, y)} \left[\ell \left(y, f(\boldsymbol{x}) \right) \right]$ \mathbb{E} : expectation ℓ : loss $y = \{+1, -1\}$ Positive [Negative] **Example:** Ad click prediction • Clicked ad: User likes it \rightarrow P Unclicked ad: User dislikes it or User likes it but doesn't have Unlabeled (mixture of time to click it \rightarrow U (=P or N) positives and negatives)

PU Unbiased Risk Estimation ¹²

du Plessis+ (NeurIPS2014, ICML2015)

Decompose the risk:

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(+1, f(\boldsymbol{x}) \right) \right] + (1-\pi) \mathbb{E}_{\boldsymbol{p}(\boldsymbol{x}|\boldsymbol{y}=-1)} \left[\ell \left(-1, f(\boldsymbol{x}) \right) \right]$$

Risk for P data
Risk for N data $R^{-}(f)$

Without N data, $R^{-}(f)$ can not be estimated directly:

• Eliminate the expectation over N data as

$$R^{-}(f) = \mathbb{E}_{\boldsymbol{p}(\boldsymbol{x})} \left[\ell \left(-1, f(\boldsymbol{x}) \right) \right] - \pi \mathbb{E}_{\boldsymbol{p}(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(-1, f(\boldsymbol{x}) \right) \right]$$
$$p(\boldsymbol{x}) = \pi p(\boldsymbol{x}|\boldsymbol{y}=+1) + (1-\pi)p(\boldsymbol{x}|\boldsymbol{y}=-1)$$

Unbiased risk estimator:

$$\widehat{R}_{\rm PU}(f) = \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(+1, f(\boldsymbol{x}_i^{\rm P})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big(-1, f(\boldsymbol{x}_j^{\rm U})\Big) - \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(-1, f(\boldsymbol{x}_i^{\rm P})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big(-1, f(\boldsymbol{x}_j^{\rm U})\Big) - \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(-1, f(\boldsymbol{x}_i^{\rm P})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big(-1, f(\boldsymbol{x}_j^{\rm U})\Big) - \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(-1, f(\boldsymbol{x}_i^{\rm P})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big(-1, f(\boldsymbol{x}_j^{\rm U})\Big) - \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(-1, f(\boldsymbol{x}_i^{\rm P})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big(-1, f(\boldsymbol{x}_j^{\rm U})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big)$$

Non-Negative Risk Correction ¹³

 $\operatorname{Kiryo+}\left(\operatorname{NeurIPS2017}\right), \operatorname{Lu+}\left(\operatorname{AISTATS2020}\right) = \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)}\left[\ell\left(+1, f(\boldsymbol{x})\right)\right] + (1-\pi)\mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=-1)}\left[\ell\left(-1, f(\boldsymbol{x})\right)\right]$

Risk for N data
$$R^-(f)$$

Risk for N data: $R^{-}(f) = \mathbb{E}_{p(\boldsymbol{x})} \left[\ell \left(-1, f(\boldsymbol{x}) \right) \right] - \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(-1, f(\boldsymbol{x}) \right) \right]$

Empirical estimate: $\widehat{R}_{PU}^{-}(f) = \frac{1}{n_U} \sum_{i=1}^{n_U} \ell\left(-1, f(\boldsymbol{x}_i^U)\right) - \frac{\pi}{n_P} \sum_{i=1}^{n_P} \ell\left(-1, f(\boldsymbol{x}_i^P)\right)$

When loss is non-negative:

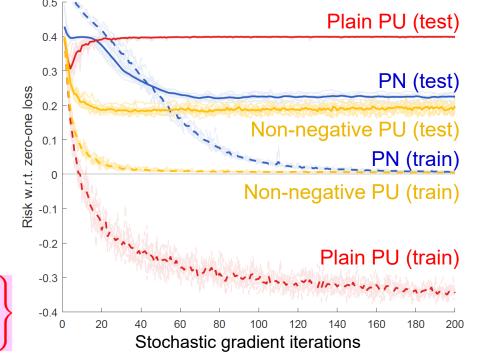
• True $R^{-}(f)$ is non-negative.

Risk for P data

 But empirical estimate can be negative!

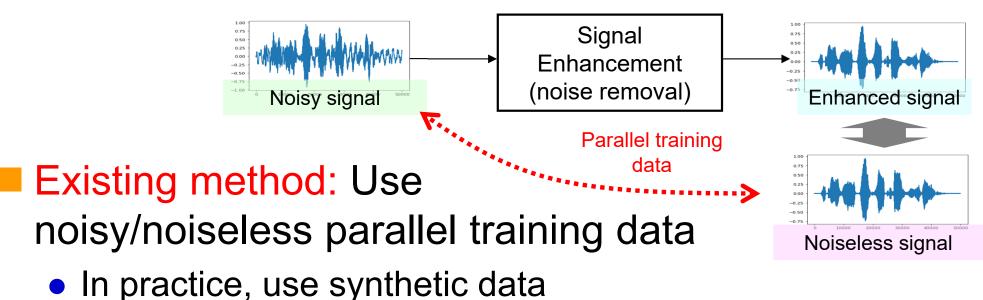
Non-negative correction:

$$\widetilde{R}_{\rm PU}(f) = \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(f(\boldsymbol{x}_i^{\rm P})\Big) + \max\left\{0, \ \widehat{R}_{\rm PU}^-(f)\right\}$$



Signal Enhancement by PU Classification 14

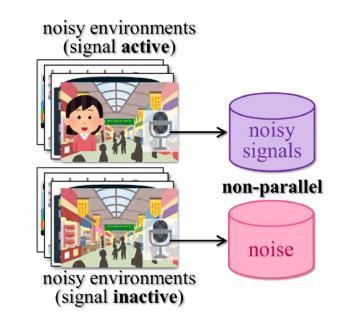
Ito & Sugiyama (ICASSP2023, Best Paper Award)



 \rightarrow Do not generalize well in reality.

Proposed method: Use non-parallel noisy signal and noise.

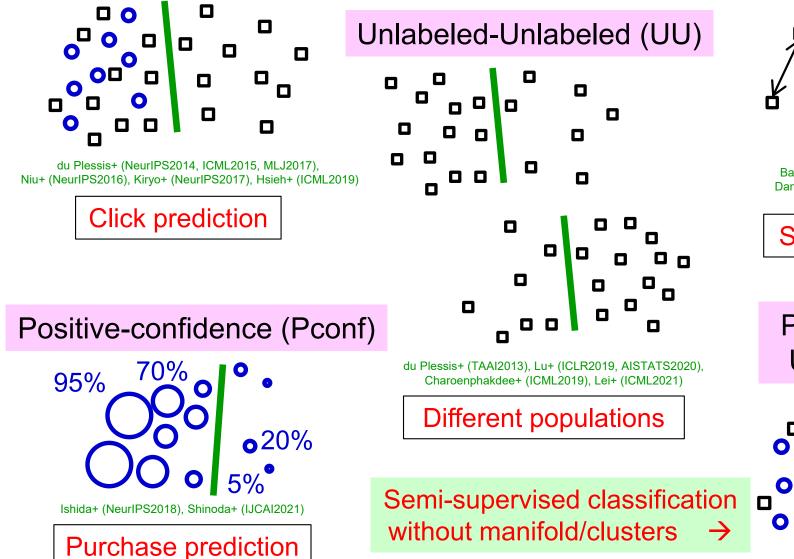
		Methods	SI-SNRi [dB]
Non-parallel	ſ	Proposed	14.62 (0.20)
	1	MixIT ^{Wisdom+} (NeurIPS2020)	12.19 (4.50)
Parallel		Supervised	15.86 (1.28)



Various Extensions (Binary)

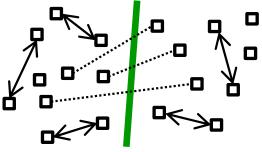
Similar unbiased risk estimation is possible!

Positive-Unlabeled (PU)



Similar-Dissimilar (SD)

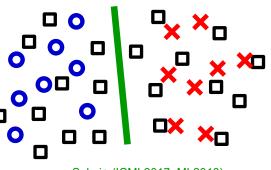
15



Bao+ (ICML2018), Shimada+ (NeCo2021), Dan+ (ECMLPKDD2021), Cao+ (ICML2021), Feng+ (ICML2021)

Sensitive prediction

Positive-Negative-Unlabeled (PNU)



Sakai+ (ICML2017, ML2018)

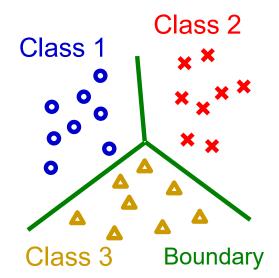
Various Extensions (Multiclass) ¹⁶

Ishida+ (NeurIPS2017,

Labeling patterns in multi-class problems is even more painful.

Multi-class weak-labels:

 Complementary label: ICML2019), Chou+ (ICML2020)
 Specifies a class that a pattern does not belong to ("not 1").



• Partial label: Specifies a subset of classes that contains the correct one ("1 or 2").

Feng+ (ICML2020, NeurIPS2020), Lv+ (ICML2020)

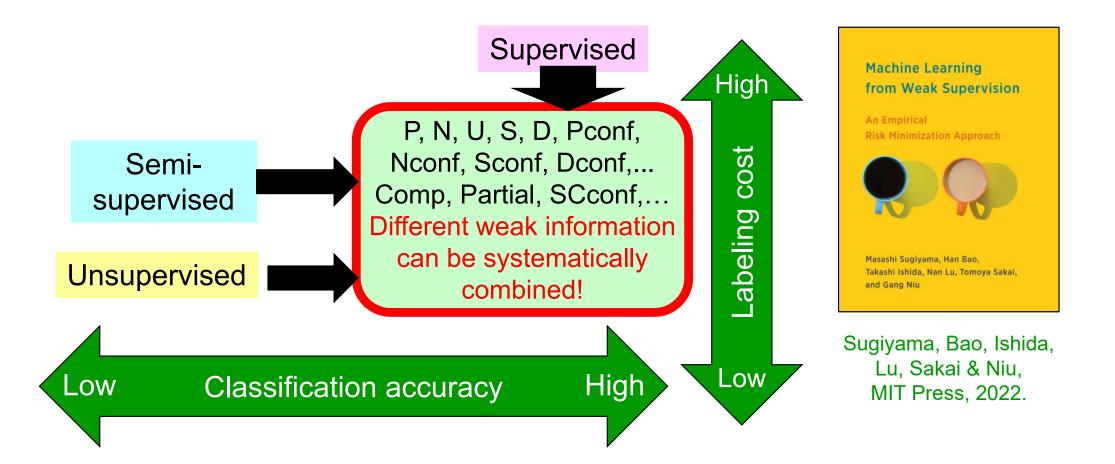
Single-class confidence: Cao+ (arXiv2021)
 One-class data with full confidence
 ("1 with 60%, 2 with 30%, and 3 with 10%")

Similar unbiased risk estimation is possible!

Summary: Weakly Supervised Learning ¹⁷

Empirical risk minimization framework for weakly supervised learning:

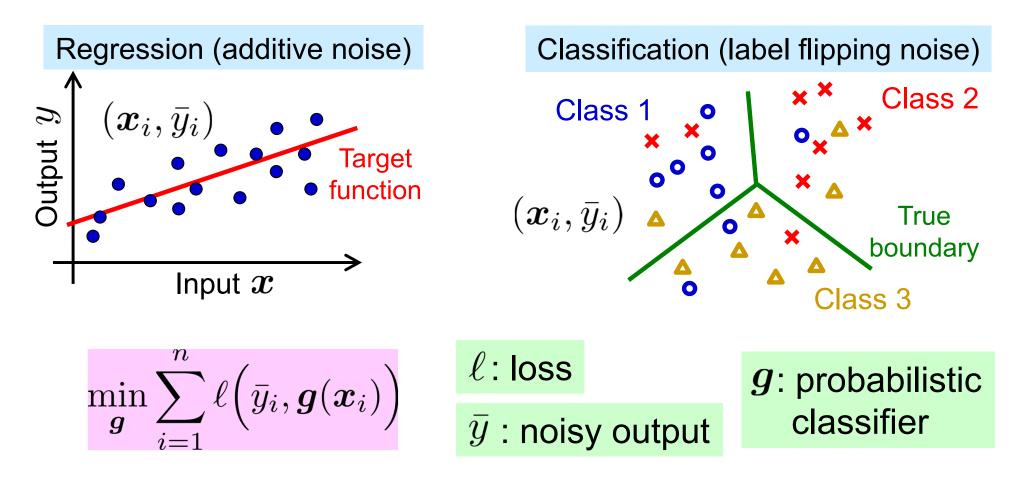
Any loss, classifier, and optimizer can be used.



Contents

- 1. Weakly Supervised Learning
- 2. Noisy-Label Learning
 - A) Noise Transition
 - B) Algorithms
- 3. Transfer Learning
- 4. Towards More Reliable Learning

Supervised Learning with Noisy Output ¹⁹



Hasn't such a classic problem been solved?

- Regression: Yes, noisy big data yield consistency.
- Classification: Specific noise reduction mechanism is needed to achieve consistency!

Classical Approaches

Unsupervised outlier removal:

• Substantially more difficult than classification.

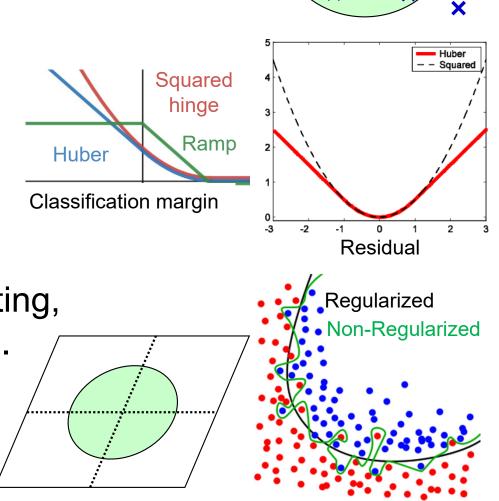
Robust loss:

• Works well for regression, but limited effectiveness for classification.

Regularization:

 Effective in suppressing overfitting, but too smooth for strong noise.

Need new approaches!



X

*l*₂-regularization

https://en.wikipedia.org/wiki/Overfitting

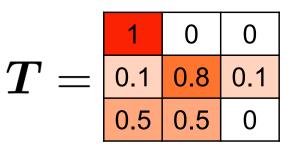
20

X

Correction with Noise Transition ²¹

Noise transition matrix T:

• Clean-to-noisy flipping probability.



- Major approaches: Patrini+ (CVPR2017)
 - Classifier adjustment by $T^{^+}$ to simulate noise.
 - Loss correction by $oldsymbol{T}^{-1}$ to eliminate noise.
- We want to estimate T only from noisy data:
 - Use human cognition as a "mask" for T.
 - Reduce estimation error of T.
 - Learn T and classifier simultaneously.
 - Estimate T under weaker conditions.

Han+ (NeurIPS2018) Xia+ (NeurIPS2019) Yao+ (NeurIPS2020) Zhang+ (ICML2021)

Li+ (ICML2021)

Volume Minimization

Li+ (ICML2021)

22

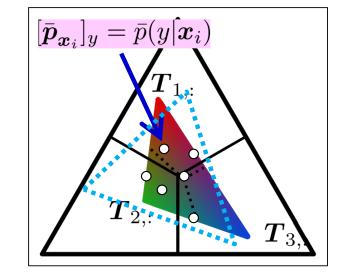
Noisy training data $\{(x_i, \bar{y}_i)\}_{i=1}^n$ can be mapped in the simplex formed by noise transition matrix T.

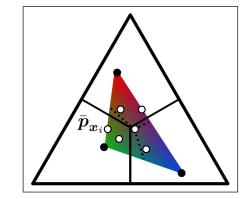
Minimizing the volume of the simplex can give a solution:

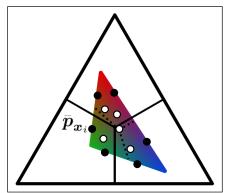
n

$$\min_{\mathbf{T}',\mathbf{g}} \sum_{i=1}^{\ell} \ell(\bar{y}_i, \mathbf{T}'^{\top} \mathbf{g}(\mathbf{x}_i)) + \lambda \log \det(\mathbf{T}') \\ \lambda > 0$$

- With noiseless labels, we can find the true T.
- Even without noiseless labels, "sufficiently scattered" training data allow identification of the true T!







Beyond Input-Independent Noise ²³

- Real-world noise may be input-dependent:
 - E.g., noise level is high near the boundary.



- Modeling input-dependent noise: $T_{y, \bar{y}}(m{x}) = ar{p}(ar{y}|y, m{x})$
 - Extremely challenging to estimate the noise transition matrix function!

Exploring heuristic solutions:

- Parts-based estimation.
- Use of additional confidence scores.
- Manifold regularization.

Xia+ (NeurIPS2020) Berthon+ (ICML2021)

Cheng+ (CVPR2022)

Co-teaching

Memorization of neural nets:

- Stochastic gradient descent fits clean data faster.
- However, naïve early stopping does not work well.
- "Co-teaching" between two neural nets:
 - Teach small-loss data each other.

Han+ (NeurIPS2018)

• Teach only disagreed data.

```
Yu+ (ICML2019)
```

Gradient ascent for large-loss data.

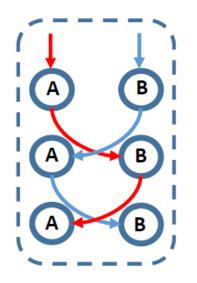
Han+ (ICML2020)

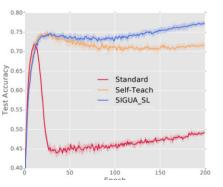
No theory but very robust in experiments:

Works well even if 50% random label flipping!



Arpit+ (ICML2017)





24

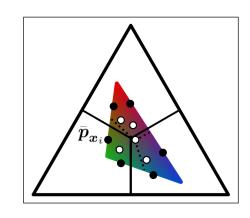
Summary: Noisy-Label Learning ²⁵

Explicit treatment of label noise is necessary:

- Loss correction by noise transition is promising.
- However, noise transition is generally non-identifiable:

 $oldsymbol{T}^{ op}oldsymbol{p} = oldsymbol{T}_2^{ op}(oldsymbol{T}_1^{ op}oldsymbol{p}) \qquad oldsymbol{T} = oldsymbol{T}_1oldsymbol{T}_2$

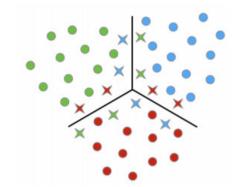
 $T_{y,\bar{y}} = \bar{p}(\bar{y}|y)$



 Recent development allows consistent estimation under mild assumptions.

Real-world noise is often input-dependent:

- Heuristic solutions have been developed.
- Further theoretical development is needed.



Contents

- 1. Weakly Supervised Learning
- 2. Noisy-Label Learning
- 3. Transfer Learning
- 4. Towards More Reliable Learning

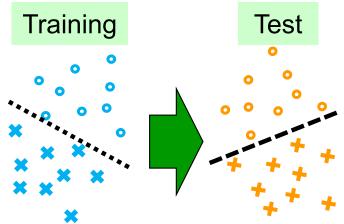
Transfer Learning

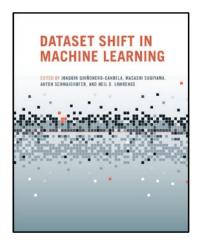
- Training and test data often follow different distributions, due to Tra
 - changing environments,
 - sample selection bias (privacy).

Transfer learning:

• Train a test-domain predictor using training data from different domains.

NIPS Workshop on Learning when Test and Training Inputs Have Different Distributions, Whistler 2006

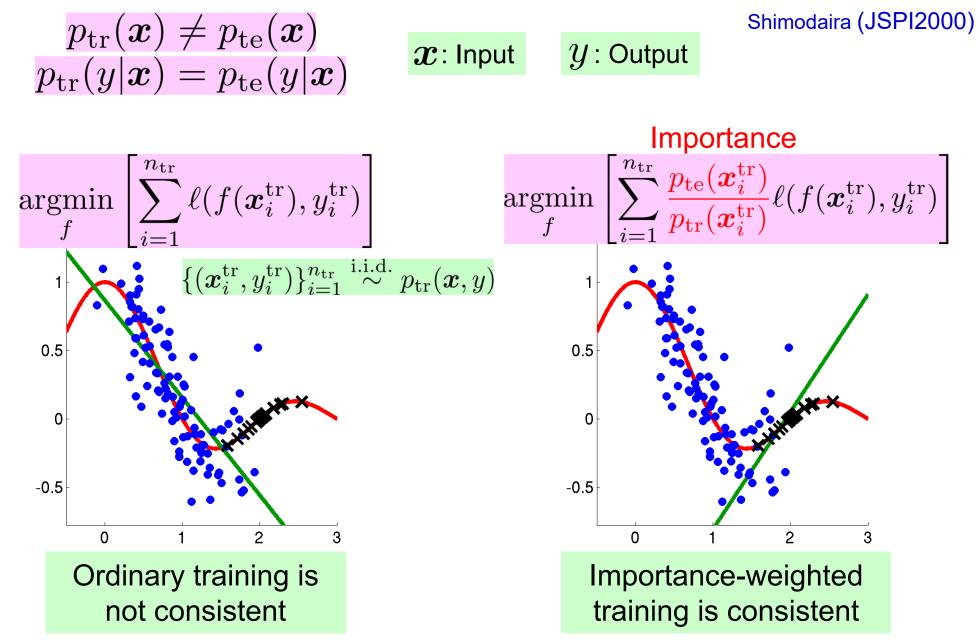




Quiñonero-Candela, Sugiyama, Schwaighofer & Lawrence (MIT Press 2009)

Basics: Importance-Weighted Training ²⁸

Covariate shift: Only input distributions change.



Direct Importance Estimation

Given: training and test input data

$$\{oldsymbol{x}_i^{ ext{tr}}\}_{i=1}^{n_{ ext{tr}}} \stackrel{ ext{i.i.d.}}{\sim} p_{ ext{tr}}(oldsymbol{x}) \qquad \{oldsymbol{x}_j^{ ext{te}}\}_{j=1}^{n_{ ext{te}}} \stackrel{ ext{i.i.d.}}{\sim} p_{ ext{te}}(oldsymbol{x})$$

Kernel mean matching: Huang+ (NeurIPS2006)

• Match the means of $\,r({m x})p_{
m tr}({m x})\,$ and $p_{
m te}({m x})$ in RKHS ${\cal H}$.

$$\min_{r \in \mathcal{H}} \left\| \int K(\boldsymbol{x}, \cdot) p_{\text{te}}(\boldsymbol{x}) d\boldsymbol{x} - \int K(\boldsymbol{x}, \cdot) r(\boldsymbol{x}) p_{\text{tr}}(\boldsymbol{x}) d\boldsymbol{x} \right\|_{\mathcal{H}}^{2} \qquad K(\boldsymbol{x}, \cdot) : \text{kernel}$$

• Fit a model
$$r(x)$$
 to $\frac{p_{te}(x)}{p_{tr}(x)}$ by least squares:

$$\begin{aligned} \underset{r}{\operatorname{argmin}} \left[\int \left(r(\boldsymbol{x}) - \frac{p_{\text{te}}(\boldsymbol{x})}{p_{\text{tr}}(\boldsymbol{x})} \right)^2 p_{\text{tr}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \right] \\ = \underset{r}{\operatorname{argmin}} \left[\int r(\boldsymbol{x})^2 p_{\text{tr}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} - 2 \int r(\boldsymbol{x}) p_{\text{te}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \right] \end{aligned}$$

They do not estimate $p_{tr}(x), p_{te}(x)$, but $\frac{p_{te}(x)}{p_{tr}(x)}$ directly!

Classical Two-Step Adaptation ³⁰

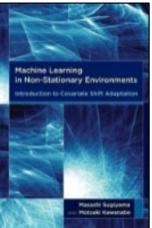
Importance weight estimation (e.g., least-squares importance fitting): Kanamori+ (JMLR2009)

$$\widehat{w} = \underset{w}{\operatorname{argmin}} \widehat{\mathbb{E}}_{p_{\operatorname{tr}}(\boldsymbol{x})} \left[\left(w(\boldsymbol{x}) - \frac{p_{\operatorname{te}}(\boldsymbol{x})}{p_{\operatorname{tr}}(\boldsymbol{x})} \right)^2 \right]$$

2. Weighted predictor training:

$$\widehat{f} = \operatorname*{argmin}_{f} \widehat{\mathbb{E}}_{p_{\mathrm{tr}}(\boldsymbol{x}, y)} [\widehat{\boldsymbol{w}}(\boldsymbol{x}) \ell(f(\boldsymbol{x}), y)]$$

- However, estimation error in Step 1 is not taken into account in Step 2.
- We want to integrate these two steps!



Joint Weight-Predictor Optimization ³¹

Zhang+ (ACML2020, SNCS2021)

Given: Labeled training data and unlabeled test data

$$\{(\boldsymbol{x}_i^{\mathrm{tr}}, y_i^{\mathrm{tr}})\}_{i=1}^{n_{\mathrm{tr}}} \stackrel{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x}, y) \qquad \{\boldsymbol{x}_j^{\mathrm{te}}\}_{j=1}^{n_{\mathrm{te}}} \stackrel{\mathrm{i.i.d.}}{\sim} p_{\mathrm{te}}(\boldsymbol{x})$$

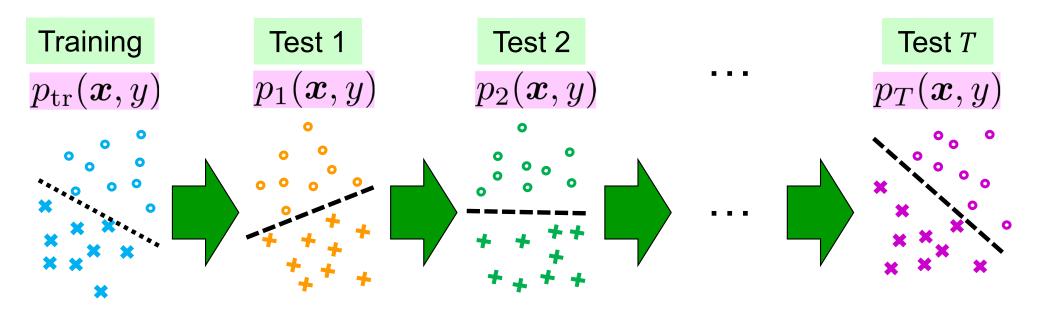
Joint minimization of a risk upper bound:

$$\min_{w \ge 0, f \in \mathcal{F}} J_{\ell'}(w, f) \quad \frac{\frac{1}{2}R_{\ell}(f)^2 \le J_{\ell'}(w, f)}{R_{\ell}(f) = \mathbb{E}_{p_{\text{te}}(\boldsymbol{x}, y)}[\ell(f(\boldsymbol{x}), y)]} \quad \ell \le 1, \ell' \ge \ell$$

$$\begin{split} J_{\ell'}(w,f) &= \mathbb{E}_{p_{\mathrm{tr}}(\boldsymbol{x})} \left[\left(w(\boldsymbol{x}) - \frac{p_{\mathrm{te}}(\boldsymbol{x})}{p_{\mathrm{tr}}(\boldsymbol{x})} \right)^2 \right] & \leftarrow 1^{\mathrm{st}} \operatorname{step} \\ &+ (\mathbb{E}_{p_{\mathrm{tr}}(\boldsymbol{x},y)}[w(\boldsymbol{x})\ell'(f(\boldsymbol{x}),y)])^2 \leftarrow 2^{\mathrm{nd}} \operatorname{step} \end{split}$$

Classic approach corresponds to 2-step minimization.

Extensions to Continuous Shifts ³²



Continuous label shift: Bai+ (NeurIPS2022)

• Only class-prior $p_t(y)$ changes.

Continuous covariate shift: Zhang+ (arXiv2023)

- Only input density $p_t(\boldsymbol{x})$ changes.
- Without knowing the shift intensity, our methods achieve the same dynamic regret as the case with known shift intensity. $\mathbb{E}\left[\sum_{t=1}^{T} R_t(f_t) - \sum_{t=1}^{T} n_t f_t\right]$

Contents

- 1. Weakly Supervised Learning
- 2. Noisy-Label Learning
- 3. Transfer Learning
- 4. Towards More Reliable Learning

Joint Shift

Many distribution shift works focus on a particular shift type (e.g., covariate shift): $p_{tr}(x) \neq p_{te}(x)$ $p_{tr}(y|x) = p_{te}(y|x)$

• However, identification of the shift type is challenging.

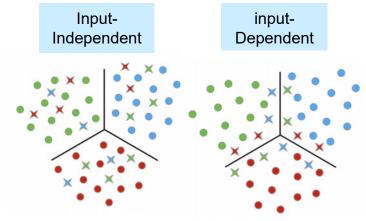
Label noise is also a type of distribution shift:

$$p_{\rm tr}(\bar{y}|\boldsymbol{x}) = \sum_{y} p(\bar{y}|y, \boldsymbol{x}) p_{\rm te}(y|\boldsymbol{x})$$
Noise transition

 $\overline{\mathcal{Y}}$: Noisy class label

- Nice theory for input-independent noise.
- But input-dependent noise is hard.
- Let's consider joint shift:

 $p_{\mathrm{tr}}(\boldsymbol{x},y) \neq p_{\mathrm{te}}(\boldsymbol{x},y)$



Mini-Batch-Wise Loss Matching ³⁵

Given:

- (Large) labeled training data:
- (Small) labeled test data:

 $r_i pprox rac{p_{ ext{te}}(ilde{m{x}}_i^{ ext{tr}}, ilde{y}_i^{ ext{tr}})}{p_{ ext{tr}}(ilde{m{x}}_i^{ ext{tr}}, ilde{y}_i^{ ext{tr}})}$

$$\{ (\boldsymbol{x}_{i}^{\text{tr}}, y_{i}^{\text{tr}}) \}_{i=1}^{n_{\text{tr}}} \stackrel{\text{i.i.d.}}{\sim} p_{\text{tr}}(\boldsymbol{x}, y) \\ \{ (\boldsymbol{x}_{j}^{\text{te}}, y_{j}^{\text{te}}) \}_{j=1}^{n_{\text{te}}} \stackrel{\text{i.i.d.}}{\sim} p_{\text{te}}(\boldsymbol{x}, y)$$

We try to learn the importance weight dynamically in the mini-batch-wise manner.

$$f \leftarrow f - \eta \nabla \widehat{R}(f)$$
 $\eta > 0$: step size

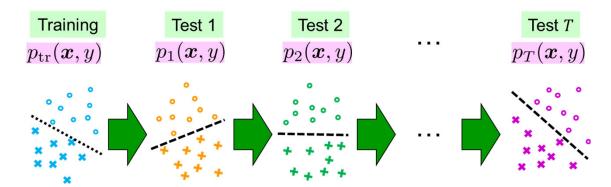
For each mini-batch $\{(\tilde{x}_i^{tr}, \tilde{y}_i^{tr})\}_{i=1}^{\tilde{n}_{tr}}, \{(\tilde{x}_j^{te}, \tilde{y}_j^{te})\}_{j=1}^{\tilde{n}_{te}}, importance weights are estimated by kernel mean matching for loss values: Huang+ (NeurIPS2006)$

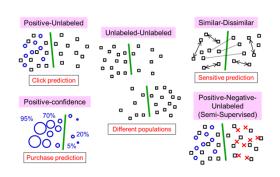
$$\frac{1}{\tilde{n}_{\mathrm{tr}}} \sum_{i=1}^{\tilde{n}_{\mathrm{tr}}} \boldsymbol{r_i} \ell(f(\tilde{\boldsymbol{x}}_i^{\mathrm{tr}}), \tilde{y}_i^{\mathrm{tr}}) \approx \frac{1}{\tilde{n}_{\mathrm{te}}} \sum_{j=1}^{\tilde{n}_{\mathrm{te}}} \ell(f(\tilde{\boldsymbol{x}}_j^{\mathrm{te}}), \tilde{y}_j^{\mathrm{te}})$$

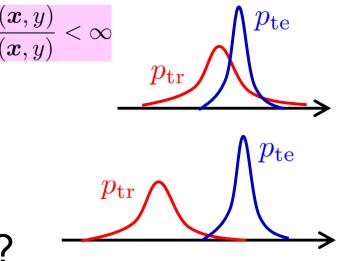
Current Challenges

- For joint shift adaptation, requiring labeled test data is too strong.
 - Can we use weakly supervised learning?
 - Importance weighting requires the test domain to be included in the training domain.
 - Can we properly handle out-of-training-domain test data?

Can we handle continuous joint shift?







Weakly Supervised Classification (Binary)

Team leader	Research scientist	
Masashi Sugiyama	Gang Niu	
Postdoctoral researcher	Postdoctoral researcher	
Jingfeng Zhang	Jiaqi Lyu	
Postdoctoral researcher	Senior visiting scientist	
Shuo Chen	Shinichi Nakajima	
Visiting scientist	Visiting scientist	
Futoshi Futami	Florian Yger	
Visiting scientist	Visiting scientist	
Takashi Ishida	Miao Xu	
Visiting scientist	Visiting scientist	
Takayuki Osa	Bo Han	
Visiting scientist	Visiting scientist	
Takahiro Mimori	Feng Liu	
Visiting scientist	Visiting scientist	
Lei Feng	Tongliang Liu	
Part-time worker I	Part-time worker I	
Masahiro Fujisawa	Yifan Zhang	

and many great interns!

Grateful to Collaborators!

- Professor
 - Masashi Sugiyama (Complexity, Computer, Information, RIKEN)
- Associate Professor
 - Naoto Yokoya (Complexity, Computer, Information, RIKEN)
- Lecturer
 - Takashi Ishida (Complexity, Computer, Information)
- Project Lecturer
 <u>Nobutaka Ito</u> (Complexity)
- Professor (to <u>Sato Lab</u> from April 202
 <u>Issei Sato</u> (Computer, Informati
- Project Assistant Professor
 Chao-Kai Chiang (Complexity)
- Project Researcher (Postdoctoral Rese
 <u>Dongxian Wu</u> (Complexity)
- Project Specialist
 - Yuko Kawashima (Complexity)
 - Soma Yokoi (Complexity)
 - Fumi Sato (Complexity)

- Doctoral Student
 - Shinji Nakadai (Computer)
 - Ryuichi Kiryo (Computer)
 - <u>Jongyeong Lee</u> (Computer)
 - Tianyi Zhang (Complexity)
 - <u>Yivan Zhang</u> (Computer)
 - Riou Charles (Computer)
 - <u>Valliappa Chockalingam</u> (Comput
 Tongtong Fang (Complexity)
 - Tongtong Fang (Complexity)
 - Boyo Chen (Complexity)
 - Xiaoyu Dong (Complexity)Yujie Zhang (Complexity)
 - <u>Xingiang Cai</u> (Complexity)
 - Jian Song (Complexity)
 - Wanshui Gan (Complexity)
 - Yuting Tang (Complexity)
 - Shintaro Nakamura (Complexity)
 - Or Raveh (Complexity)
 - Johannes Ackermann (Computer
 - <u>Wei Wang</u> (Complexity)
 - Hongruixuan Chen (Complexity)
 - Huanjian Zhou (Complexity)
 - Zhiyuan Zhan (Complexity)
 - Zhihao Liu (Complexity)



- Master Student
 - Hyunggyu Park (Complexity)<u>* Sato lab.</u>
 - Jiahuan Li (Computer)
 - Kun Yang (Complexity)
 - Xiaomou Hou (Complexity)
 - Anan Methasate (Computer)
 - Cemal Erat (Computer)
 - Kento Yamamoto (Computer)
 - Kazuki Ota (Computer)
 - Iu Yahiro (Computer)
 - Hikaru Fujita (Computer)
 - Yu Yao (Complexity)
 - Yoshifumi Nakano (Complexity)
 - Soichiro Nishimori (Complexity)
 - Ryota Ushio (Complexity)
 - Tiankui Xian (Complexity)
 - Thanawat Lodkaew (Computer)
 - Masahiro Negishi (Computer)
 - Yuto Nozaki (Computer)
 - Kanta Shimizu (Computer)
 - Zhongle Zhu (Computer)
 - Fang Liu (Computer)
 - Ming Li (Complexity)
 - Luheng Wang (Complexity)
 - Liuzhuozheng Li (Complexity)
 - Research Student
 - Meike Tütken (Computer)
 - Serhii Khomenko (Information Science)
 - Artem Lubkivskyi (Information Science)