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About Myself

Masashi Sugiyama: Py
e Director: RIKEN AIP, Japan

e Professor: University of Tokyo, Japan

e Consultant: several local startups

Interests: Machine learning (ML)

e ML theory & algorithm -

e ML applications (signal, image, language,
brain, robot, mobility, advertisement,
biology, medicine, education...)

Academic activities:

e Program Chairs for NeurlPS2015,
AISTATS2019, ACML2010/2020...

e Keynote speaker at ICLR2023.
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What is "RIKEN"?

Name in Japanese: IE{tZE®ZEFT

o

e Pronounced as: rikagaku kenkyusho
e Meaning: Physics and Chemistry Research Institute

Acronym in Japanese: #f (RIKEN)
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What is RIKEN-AIP? 6

RIKEN founded Center for Advanced Intelligence
Project (AIP) in 2016, under Ministry of Education,
Culture, Sports, Science and Technology (MEXT):

e 130 employed researchers (40% international, 25% female)
e 250 visiting researchers A,
e 130 domestic students el
e 140 international interns (total) i
e 40+ international collaboration partners

e 40+ industry projects =
Main office el
*‘%\g in the heart of Tokyo Senﬁal
.u
LrKana Tsukuba
» Shlga gawa
, ,»"_.K)ZOTG : . ._/ Tokyo
‘9_"";_, i+ f Nara Nagoya
- Distributed offices

across Japan



Selected Research of RIKEN-AIP

Developing New Al Technolog

Theory of deep learning:
e Better prediction than shallow learning
e No curse of dimensionality El|fz — £*112,] < exs + O(T~7557)
e Global optimization S1.52,54: Smoothness
Developing new methods: :
e Weakly supervised learning
e Noise robust learning
e Causal inference

Shallow __=
o

irse of di

Gaussian
/N noise

SGD
Weakly Supervised Classification Noise Transition Correction Causal Inference
Various weakly supervised classification problems Noise transit trix T': 7= [l : H
can be solved by risk-rewriting systematically! _"c';‘za“’f::'aif""T? B . o [BEos in the Presence of Hidden Cause
) 3 y flipping probability. a0t o .
- Major approaches: re.s e . In causal inference, how to handle

 Loss correction by T~ to eliminate noise. hidden cause is a big challenge! T2y, e
o Classifier adjustment by T' to simulate noise. -
We want to estimate T only from noisy data: We developed the first method | — ':I
* Use human cognition as a “mask” for T'. to estimate the entire structure
»Learn T"and a classifier dynamically. in the presence of hidden cause:

» Decompose T into simpler companents. a Spoech separation techiiiue 1

* Regularize T to be estimable. employed to separate hidden cause.

= Extension to input-dependent noise T'(z). e & Sy (MSTATS2020, A1)

Accelerating Scientific Research

Medical science:
e Prostate/pancreatic cancer detection
e ALS early diagnosis
e Fetal heart screening
e Colonoscopy

Material science:
e Database creation with text mining

Data-driven science: bt Seoratinten

e Selective inference for
reliability evaluation

Solving Socially Critical Problems

< -high el

Natural disaster:

e Remote sensing disaster analysis

Elderly healthcare:

e Chat-robot-guided
cognitive function improvement

Education:
e Automatic essay evaluation
e Interactive essay writing support

‘Smoking <hould be banned! 1t causes bad
breath and makes your clothes stinky!

. Functional Contrast ostimate
Seed region  connectivity map with 95% C.l.

Studying AI-ELSI

Al Ethical guidelines:
e Japanese Society for Al, Ministry of Internal

Affairs and Communications, Cabinet Office
e |[EEE, G20, OECD

Personal data management:
e Individual-based accessibility control system

Al security and reliability: R

e Adversarial attack/defense . T | % ehy
(] o

e Fairness faking/guarantee

ETHICALLY /
ALIGNED DESIGN < &
irst Edi

First Edition

BEOLDIANL |

= = TFNEDERD o Cloud strage
= - L= AMZEEE e N A
H —_— (Google Drive, Drpbox) -
: encrypted data
v
‘ PLR AN
1\ npiz;
— BT 2 corporate app. |
[(ROMBLETLCEGenderdh | [ REQIDIMELL] Gender |
| SEERLBAEIHTANTOS ] s HEIBLSR TIEVNSSICRAS carporate computer t Sorypted deta




Reliable Machine Learning

Reliability of machine learning systems
can be degraded by various factors:

e Insufficient information: weak supervision.
e Label noise: human error, sensor error.

e Data bias: changing environments, privacy.

Improving the reliability is an urgent challenge!

Positive -
0o o Training
Do o o
o O o o
o o0 gl o (u ] -
oo O 0
o
goo o

Unlabeled



Contents
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Transfer Learning

Towards More Reliable Learning



Weakly Supervised Classification 19

Supervised classification from big labeled data
Is successful: speech, image, language, ...

Class 1 Class 2

Positive Negative

o X
X
o © X
OO x X
o x

o
o X x
Boundary Boundary

However, there are many applications
where big labeled data is not available:

e Medicine, disaster, robot, brain, ...

We want to utilize "weak™ supervision
that can be collected easily!



Positive-Unlabeled (PU) Classification 11

Li+ (IJCAI2003)

Given: PU samples (no N samples)
(@}, "W plaly = +1) {2} X pla)

Goal: Obtain a classifier minimizing the PN risk.

min R(f) R(f) = Eya |¢(v. /(@))]
[ : expectaton £ :loss Yy = {+1,—1}

Positive [Negative]
OO0 O 0
Example: Ad click prediction o °,718 o o
e Clicked ad: User likes it > P u°§D Jle -
e Unclicked ad: User dislikes it ool B g
or User likes it but doesn’t have » .
time to click it 2> U (=P or N) Unlabeled (mixture of
positives and negatives)




PU Unbiased Risk Estimation 12

du Plessis+ (NeurlPS2014, ICML2015)

Decompose the risk:
R(P) = Eptalysn) [£( + 1 F(@)) | + (0= o[£~ 1. £ (@)

~ Y Y _
Risk for P data Risk for N data R~ (f)

Scott+ (AISTATS2009)

— — . i Ramaswamy+ (ICML2016)
p(y = +1) : Class prior (assumed known) > aswamy® (OML2016)

Yao+ (ICLR2022)

Without N data, R~ (f) can not be estimated directly:
e Eliminate the expectation over N data as

R™(f) =By [ = 1.5@)) | = 7Byapm i) [ = 1. (@) )]
ple) = mp(aly = +1) + (1 - m)p(aly = —1)

Unbiased risk estimator:

np np

ﬁPU(f):%Z (+1f )+—Z€( )—% f(—l,f(wf))

= 7=1 =1



Non-Negative Risk Correction 13

Kiryo+ (NeurlPS2017) , Lu+ (AISTATS2020)

R(f) = Byaly—s [0 +1.F(@))] + (1= mByal,—) [¢( ~ 1. f(@))]

Y Y

Risk for P data Risk for N data R~ (f)
Risk for N data: & (/) =B, [¢(( - 1. f(@))] RS (-1, 7@)]
Empirical estimate: &yy(/) = %Z (—1 f@))= %ie(—l,f(w}?))

05

When loss is non-negative: Plain PU (test)
e True R (f) is non-negative. K\ PN (test)

e But empirical estimate
can be negative!

o
N

o
N

= - a
e b a  nn mi rpeegSeie

Risk w.r.t. zero-one loss
o

S
2

Non-negative correction: U e, PanPU (i

’I'LP -0.3 ~i™ s A ”"""'“’r\fr;-.‘,iv 1
D W P A_ 1 1 1 1 1 1 1 1 1 .'\
RPU (f) — Z E (f(w?: )) _|— Hax {O’ RPU (f) } -0-40 20 40 60 80 100 120 140 160 180 200

np 1=1 Stochastic gradient iterations




Signal Enhancement by PU Classification 14

lto & Sugiyama (ICASSP2023, Best Paper Award)

Signal
Enhancement

Noisy signal -

Existing method: Use

(noise removal)

Parallel training
data

noisy/noiseless parallel training data

e In practice, use synthetic data
— Do not generalize well in reality.

Proposed method: Use non-parallel

noisy signal and noise.

Methods SI-SNRi [dB]

Proposed

Wisdom+

MixIT (Neurips2020)

Non-parallel

14.62 (0.20)
12.19 (4.50)
15.86 (1.28)

100
075
050
025
— P
-0.25
—o.s!

~ Enhanced S|gnal

»w

Noiseless S|gnal

noisy environments
(signal active)

= non- parallel

noisy env1r0nments

(signal inactive)




Various Extensions (Binary) 15

Similar unbiased risk estimation is possible!

Positive-Unlabeled (PU) Similar-Dissimilar (SD)
0o (= 0
Jo olo g o Unlabeled-Unlabeled (UU)
o
o (o (m ] (m] (W) O n) nD (m] -
o 0O o O (m] O8O o
u Plessis+ (Neur! o a .
Niu+ (l\?eulr:;::’82016()’,\1Kir;llzfil(\)llﬁ'rllgslglaa%,Sﬁgléﬁo(:gl)\hL2O19) oo o (m] DiiT(ngtﬁi?@iz%??;agi;“fﬁ?ﬁﬁfggé1)')
Click dicti o Feng+ (ICML2021) '
ick prediction o » .
D o % o Sensitive prediction
olo O Opnp
(m] i ° I:ll:ll:I
y . (m] .y .
Positive-confidence (Pconf) nono o Positive-Negative-
05% 79% o[ o gy Uniabeled (PNU)
. . O
OO Different populations D © x %o
020% (o OOD O xn xm
OOO 5% _ | - 0©0 0| o xo_
Ishida+ (NeurlPS2018), Shinoda+ (IJCAI2021) Seml'supeersed CIaSS|f|Cat|0n o 0O O Ox
without manifold/clusters > © 5080 *o

Purchase prediction

Sakai+ (ICML2017, ML2018)




Various Extensions (Multiclass) 16

Labeling patterns in multi-class
problems is even more painful.

Multi-class weak-labels: ... neuips2017
e Complementary label: Chous (1OML2020)
Specifies a class that a pattern Boundary

does not belong to ("not 17).

e Partial label: Specifies a subset of classes Feng+ (ICML2020,
NeurlPS2020),

that contains the correct one (“1 or 27). Lv+ (ICML2020)

e Single-class confidence: cao+ (arxiv2021)
One-class data with full confidence
(“1 with 60%, 2 with 30%, and 3 with 10%")

Similar unbiased risk estimation is possible!



Summary: Weakly Supervised Learning 17

Empirical risk minimization framework
for weakly supervised learning:

e Any loss, classifier, and optimizer can be used.

Supervised

Machine Learning
from Weak Supervision

P N, U, S, D, Pconf,

Semi- Nconf, Sconf, Dconf,... *g
supervised Comp, Partial, SCconf,... o
Different weak information 8’
: can be systematically [S, At S o,
Unsupervised combined! § _

Sugiyama, Bao, Ishida,
e . . Lu, Sakai & Niu,
Classification accuracy High MIT Press, 2022.
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Supervised Learning with Noisy Output 19

Output Y

Regression (additive noise) Classification (label flipping noise)
| T Class1 o x ¥  Class 2
(w’ia yz) o © . X x
o ® 2% Target o x
' ° ® function . °
Te ° (33?37 yz) True
> boundary
Input & o
T
¢ loss . _—
' T ' . probabillistic
7 i Y : noisy output ~ classitier

Hasn't such a classic problem been solved?
e Regression: Yes, noisy big data yield consistency.

e Classification: Specific noise reduction mechanism
IS needed to achieve consistency!



Classical Approaches 20

Unsupervised outlier removal: « g
e Substantially more difficult than classification.
Robust loss: X
e Works well for regression, s & EE=
but limited effectiveness \\ hinge | '
for classification. Huber Ramp 2
Classification margin |

-2 -1 0 1 2 3

Regularization:

e Effective in suppressing overfitting,
but too smooth for strong noise.

Need new approaches!

[2_ reg u |a rizati on https://en.wikipedia.org./wizi/(gverfitting




Correction with Noise Transition 2

Noise transition matrix T Bl o | o
e Clean-to-noisy flipping probability. T = |01]08]0.1
05[05] 0

Major approaches: Patinis (CVPR2017)
e Classifier adjustment by I’ to simulate noise.
e Loss correction by T_1 to eliminate noise.

We want to estimate I’ only from noisy data:
e Use human cognition as a “mask” for I".  Han+ (NeurlPs2018

)

- - Xia+ (NeurlPS2019)

e Reduce estimation error of 1" Voo (NourPS2020)
e Learn 1" and classifier simultaneously. Zhang+ (ICML2021)
e Estimate I' under weaker conditions. Li+ (ICML2021)



22

Li+ (ICML2021)

Volume Minimization

Noisy training data {(xi, ¥:) }ie: B,y = Blyfs)
can be mapped in the simplex
formed by noise transition matrix T..

Minimizing the volume of
the simplex can give a solution:

n

min » 45, T g(x;)) + Alog det(T")
195 A >0

e With noiseless labels, we can find the true T'.

e Even without noiseless labels,
“sufficiently scattered” training data
allow identification of the true 1'!




Beyond Input-Independent Noise 23

ReaI-WorId nOise may be Input-independent Input-dependent

Input-dependent: F-rabdl DU TC IR o S

e E.g., noise level is high
near the boundary.

Modeling input-dependent noise: 1), ;(x) = p(y|y, x)
e Extremely challenging to estimate
the noise transition matrix function!

Exploring heuristic solutions:

e Parts-based estimation. Xia+ (NeurlPS2020)
e Use of additional confidence scores. Berthon+ (ICML2021)
e Manifold regularization. Cheng+ (CVPR2022)



Co-teaching 24

Memorization of neural nets: S (GLR2017)

e Stochastic gradient descent fits clean data faster.  ,° tx_*,

. : © "o
e However, naive early stopping does not work well. o < *

“Co-teaching” between two neural nets: o

e [each small-loss data each other.
Han+ (NeurlPS2018)

r
|
|
|
e Teach only disagreed data. 10 |
: .
\

Yu+ (ICML2019)

e Gradient ascent for large-loss data.
Han+ (ICML2020)

No theory but very robust in experiments:
e Works well even if 50% random label flipping!

rrrrr



Summary: Noisy-Label Learning 2°

Explicit treatment of label noise is necessary:

e L oss correction by noise transition is promising.

. e 1,z =ply

However, noise transition is v.g = PyY)

generally non-identifiable:

T'p=T,(T!p) T=T.T,

e Recent development allows consistent

estimation under mild assumptions.

Real-world noise is often input-dependent:
e Heuristic solutions have been developed.
e Further theoretical development is needed.
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Transfer Learning f

Training and test data often follow
different distributions, due t0  trining —

e changing environments, °.°
".p o ©° R

e sample selection bias (privacy). * . ° 2e"?

Transfer learning:

e [rain a test-domain predictor using
training data from different domains. |

A - N i A - G .
., .oa ) W %}}w 7 : e L= e g .
= S N e .4 - TR
=, o 3 : > R a s _ : 4 i. - 3 . -. J. -
T S S - LA
v T, - “ N = : »\.-ﬂa Yl - 3 . e Yy Tt e
Bt e ‘R }z‘-?_.._ = N Bl .+ =% e = : i g0, it i .
ot ] 7 P ¥ T g ot kil ¥ . - o G L . o

e . i SRS &

B T L am—r -~

" NIPS Workshop 2006 - Whistler

Quifionero-Candela, Sugiyama,
Schwaighofer & Lawrence
(MIT Press 2009)

NIPS Workshop on Learning when Test and Training Inputs Have
Different Distributions, Whistler 2006



Basics: Importance-Weighted Training 28

Covariate shift: Only input distributions change.

Pir(X) 7 pro() Shimodaira (JSPI2000)
€T | t : Output
P (Ylx) = pre(y|) 0 Rt

Importance
argmin > 0(f (i), yi") s ipte(mg)f(f(w?),y?r)
f 1 f i—1 ptr(wi )

{(wgray:r) 1= 1 ‘&.ptr(may)

0 1‘ 2 3
Ordinary training is Importance-weighted
not consistent training is consistent



Direct Importance Estimation 22
Given: training and test input data

{CBtr s 1 1de. ptr(él’:) {mte nte

Kernel mean matCh|ng Huang+ (NeurlPS2006)
e Match the means of r(x)pi.(x) and pte(a:) in RKHS H .

2
/K pte dw—/K w)ptr

Least-squares importance fitting (LSIF): «anamori+ (Neurips2008)

e Fit a model r(x) to zzgg by least squares:

argmin [ / (T(w) _ %)2 ptr(;r;)dw]

E— [ / r(2)2pe (@) dz — 2 / T(a:)pte(az)d:c]

T

i.d.
- ’I\J Pte (CL‘)

min
reH

K(x,-): kernel

H

They do not estimate pi(a), pie(a), but 22} directly!



Classical Two-Step Adaptation 30

Importance weight estimation
(e.g., least-squares importance fitting): s,

JMLR2009)

R 2
W = argmin Eptr(az) (’w(CC) gtigg)

Weighted predictor training:

f= arg}nin B () [0 (2)€(f (), )]

However, estimation error in Step 1
IS not taken into account in Step 2.

e \We want to integrate these two steps!

Sugiyama & Kawanabe
(MIT Press 2012)



Joint Weight-Predictor Optimization 3’

Zhang+ (ACML2020, SNCS2021)

Given: Labeled training data and unlabeled test data

. i i.d.
[, yim) e = pu(e,y) {2t} " pe()

Joint minimization of a risk upper bound:

min _ Jy (w, f) sRe(f)? < Jo(w, f) (<10 >/
wzo,fe}. Rg(f) Ept (il? y)[ (f(w)ay)]

(@)
ng(w, f) = Eptr(w) {(w(a:) — 1;:—(:13)) } & 1st step
+(Ep,, (2,y) [w(@)l (f(2),y)])? € 2 step

e Classic approach corresponds to 2-step minimization.



Extensions to Continuous Shifts 32

Training Test 1 Test 2 Test T
Per (2, y) p1(x,y) pa(x,y) pr(x,y)
(o] (o]
° oo . \\\o :o
..'.O o © P 2 \\ ° o
x v, o ”¢ 2 \\g
xx* ..... -7 "xx\\\o
% % * %X % ®
®

Continuous label shift:  Bai+ (NeurlPs2022)

e Only class-prior p:(y) changes.
Continuous covariate shift:  zhang+ (arxiv2023)
e Only input density p: () changes.

Without knowing the shift intensity, our methods

achieve the same dynamic regret as [z T
. sy . E ZRt(ft) - meRt(f)
the case with known shift intensity. P 1€
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Joint Shift 34

Many distribution shift works focus on
a particular shift type (e.g., covariate shift):

ptr(w) 7é pte(w) ptr(y’m) — pte(y|$)
e However, identification of the shift type is challenging.

Label noise is also a type of distribution shift:
per(y|x) = Zp(@\y, 2 )pie(y|x) Y :Noisy class label

Y H_I

Noise transition
e Nice theory for input-independent noise.

e But input-dependent noise is hard. o, papendent

Let’'s consider joint shift:
ptr(:na y) 7& pte(ma y)




Mini-Batch-Wise Loss Matching 3°

Given: Fang+ (NeurlPS2020)
e (Large) labeled training data: {(z}", y;")}= N per (T, Y)
o (Small) labeled test data:  {(a'¢,yi*)} e, "R pio(a, y)

We try to learn the importance weight
dynamically in the mini-batch-wise manner.
I+ f—nVﬁ(f) n > 0 : step size

For each mini-batch {(&}, ") }iy, {(@%°, #4°) 1]
importance weights are estimated by

kernel mean matching for loss values:
Huang+ (NeurlPS2006)

tr ~tr

1 & Pre(Z; 5 G
g rif 5:1-: ) 0(f ~te r.R — Z .
Tty Zz_; z (f( ‘ nte Z_: ¢ tr)

ptr( 1, 7y1,




Current Challenges 36

Weakly Supervised Classification (Binary)

For joint shift adaptation,
requiring labeled test data is too strong.

e Can we use weakly supervised learning?

Importance weighting requires
the test domain to be included ERCTINN Pre
in the training domain. Pir

e Can we properly handle

. : Pte
out-of-training-domain test data” Dix t
Can we handle continuous joint shift? >
Training Test 1 Test 2 Test T
Pu(®,y) pi(z,y) pa2(, y) o pr(z,y)
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