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Masashi Sugiyama:
 Director: RIKEN AIP, Japan
 Professor: University of Tokyo, Japan
 Consultant: several local startups
 Interests: Machine learning (ML)
 ML theory & algorithm 
 ML applications (signal, image, language, 

brain, robot, mobility, advertisement, 
biology, medicine, education…)

 Academic activities:
 Program Chairs for NeurIPS2015, 

AISTATS2019, ACML2010/2020…
 Keynote speaker at ICLR2023.
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What is “RIKEN”?

Name in Japanese:     理化学研究所

 Pronounced as:
 Meaning:

Acronym in Japanese: 理研 (RIKEN)
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Physics and Chemistry Research Institute
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What is RIKEN-AIP?
 RIKEN founded Center for Advanced Intelligence 

Project (AIP) in 2016, under Ministry of Education, 
Culture, Sports, Science and Technology (MEXT):
 130 employed researchers (40% international, 25% female)
 250 visiting researchers
 130 domestic students
 140 international interns (total)
 40+ international collaboration partners
 40+ industry projects

6

Sendai

Nara

Kyoto

Fukuoka

Shiga

Tokyo

Tsukuba

Nagoya

Kana
gawa

Distributed offices
across Japan

Main office
in the heart of Tokyo



Selected Research of RIKEN-AIP 7



Reliable Machine Learning

 Reliability of machine learning systems
can be degraded by various factors:
 Insufficient information: weak supervision. 
 Label noise: human error, sensor error.
 Data bias: changing environments, privacy.

 Improving the reliability is an urgent challenge!
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Contents

1. Weakly Supervised Learning
2. Noisy-Label Learning
3. Transfer Learning
4. Towards More Reliable Learning
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Weakly Supervised Classification
 Supervised classification from big labeled data 

is successful: speech, image, language, …

 However, there are many applications
where big labeled data is not available:
 Medicine, disaster, robot, brain, …

We want to utilize “weak” supervision
that can be collected easily!
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Positive-Unlabeled (PU) Classification 11

Given: PU samples (no N samples).

Goal: Obtain a classifier minimizing the PN risk.

Unlabeled (mixture of
positives and negatives)

Positive

Example: Ad click prediction
 Clicked ad: User likes it  P
 Unclicked ad: User dislikes it

or User likes it but doesn’t have
time to click it  U (=P or N)

Li+ (IJCAI2003)

: loss: expectation

[Negative]



PU Unbiased Risk Estimation
 Decompose the risk:

Without N data,            can not be estimated directly:
 Eliminate the expectation over N data as

 Unbiased risk estimator:
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: Class prior (assumed known)

du Plessis+ (NeurIPS2014, ICML2015)

Scott+ (AISTATS2009)
Ramaswamy+ (ICML2016)

du Plessis+ (MLJ2017)
Yao+ (ICLR2022)

Risk for P data Risk for N data



Non-Negative Risk Correction

 Risk for N data:

 Empirical estimate:

When loss is non-negative: 
 True             is non-negative.
 But empirical estimate        

can be negative!

 Non-negative correction:
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Kiryo+ (NeurIPS2017) , Lu+ (AISTATS2020)

Plain PU (test)

PN (test)

Non-negative PU (test)

Plain PU (train)

PN (train)
Non-negative PU (train)

Stochastic gradient iterations

Risk for P data Risk for N data



Signal Enhancement by PU Classification 14

 Existing method: Use
noisy/noiseless parallel training data
 In practice, use synthetic data
→ Do not generalize well in reality.

 Proposed method: Use non-parallel
noisy signal and noise.

Ito & Sugiyama (ICASSP2023, Best Paper Award)

Noisy signal Enhanced signal

Signal 
Enhancement

(noise removal)

SI-SNRi [dB]Methods
14.62 (0.20)Proposed
12.19 (4.50)MixIT
15.86 (1.28)Supervised

Non-parallel

Parallel

Noiseless signal

Parallel training 
data

Wisdom+
(NeurIPS2020)



Various Extensions (Binary)
 Similar unbiased risk estimation is possible!
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du Plessis+ (NeurIPS2014, ICML2015, MLJ2017),
Niu+ (NeurIPS2016), Kiryo+ (NeurIPS2017), Hsieh+ (ICML2019) Bao+ (ICML2018), Shimada+ (NeCo2021),

Dan+ (ECMLPKDD2021), Cao+ (ICML2021),
Feng+ (ICML2021)

Ishida+ (NeurIPS2018), Shinoda+ (IJCAI2021)

Sakai+ (ICML2017, ML2018)

du Plessis+ (TAAI2013), Lu+ (ICLR2019, AISTATS2020),
Charoenphakdee+ (ICML2019), Lei+ (ICML2021)



Various Extensions (Multiclass)
 Labeling patterns in multi-class

problems is even more painful.

Multi-class weak-labels:
 Complementary label:

Specifies a class that a pattern
does not belong to (“not 1”).

 Partial label: Specifies a subset of classes
that contains the correct one (“1 or 2”).

 Single-class confidence:
One-class data with full confidence
(“1 with 60%, 2 with 30%, and 3 with 10%”) 

 Similar unbiased risk estimation is possible!
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Class 1
Class 2

BoundaryClass 3

Ishida+ (NeurIPS2017, 
ICML2019),

Chou+ (ICML2020)

Feng+ (ICML2020, 
NeurIPS2020),

Lv+ (ICML2020)

Cao+ (arXiv2021)



Summary: Weakly Supervised Learning

Empirical risk minimization framework
for weakly supervised learning:
 Any loss, classifier, and optimizer can be used.
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Comp, Partial, SCconf,…
Different weak information

can be systematically
combined!

Sugiyama, Bao, Ishida,
Lu, Sakai & Niu,
MIT Press, 2022.
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Supervised Learning with Noisy Output

 Hasn’t such a classic problem been solved?
 Regression: Yes, noisy big data yield consistency.
 Classification: Specific noise reduction mechanism

is needed to achieve consistency!
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: noisy output
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Classical Approaches
 Unsupervised outlier removal:
 Substantially more difficult than classification.

 Robust loss:
 Works well for regression,

but limited effectiveness
for classification.

 Regularization:
 Effective in suppressing overfitting,

but too smooth for strong noise.

 Need new approaches!
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https://en.wikipedia.org/wiki/Overfitting

Non-Regularized
Regularized

Classification margin

Huber

Squared
hinge

Ramp

Residual

ℓ2-regularization



Correction with Noise Transition
 Noise transition matrix    ：
 Clean-to-noisy flipping probability.

Major approaches:
 Classifier adjustment by to simulate noise.
 Loss correction by            to eliminate noise.  

We want to estimate      only from noisy data:
 Use human cognition as a “mask” for     .
 Reduce estimation error of     .
 Learn      and classifier simultaneously.
 Estimate       under weaker conditions.
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Patrini+ (CVPR2017)

Han+ (NeurIPS2018)
Xia+ (NeurIPS2019)
Yao+ (NeurIPS2020)

Li+ (ICML2021)

Zhang+ (ICML2021)
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Volume Minimization

 Noisy training data                 
can be mapped in the simplex
formed by noise transition matrix    .

Minimizing the volume of
the simplex can give a solution:

 With noiseless labels, we can find the true    .

 Even without noiseless labels,
“sufficiently scattered” training data
allow identification of the true     !

22
Li+ (ICML2021)



Beyond Input-Independent Noise
 Real-world noise may be

input-dependent:
 E.g., noise level is high

near the boundary.

Modeling input-dependent noise:
 Extremely challenging to estimate

the noise transition matrix function!

 Exploring heuristic solutions: 
 Parts-based estimation.
 Use of additional confidence scores.
 Manifold regularization.
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Xia+ (NeurIPS2020)

Cheng+ (CVPR2022)

Input-independent Input-dependent

Berthon+ (ICML2021)



Co-teaching
Memorization of neural nets:
 Stochastic gradient descent fits clean data faster.
 However, naïve early stopping does not work well.

 “Co-teaching” between two neural nets:
 Teach small-loss data each other.

 Teach only disagreed data.

 Gradient ascent for large-loss data.

 No theory but very robust in experiments:
 Works well even if 50% random label flipping!
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Han+ (NeurIPS2018)

Arpit+ (ICML2017)
Zhang+ (ICLR2017)

Yu+ (ICML2019)

Han+ (ICML2020)



Summary: Noisy-Label Learning
 Explicit treatment of label noise is necessary:

 Loss correction by noise transition is promising.

 However, noise transition is
generally non-identifiable:

 Recent development allows consistent
estimation under mild assumptions.

 Real-world noise is often input-dependent:
 Heuristic solutions have been developed.
 Further theoretical development is needed.
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Transfer Learning
Training and test data often follow

different distributions, due to
 changing environments,
 sample selection bias (privacy).

Transfer learning:
 Train a test-domain predictor using

training data from different domains.
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Training Test

Quiñonero-Candela, Sugiyama,
Schwaighofer & Lawrence 

(MIT Press 2009)



 Covariate shift: Only input distributions change.

28Basics: Importance-Weighted Training

Shimodaira (JSPI2000)

Importance

Importance-weighted
training is consistent

Ordinary training is 
not consistent

: Input : Output



Direct Importance Estimation
Given: training and test input data

 Kernel mean matching:
 Match the means of               and            in RKHS     .

 Least-squares importance fitting (LSIF):
 Fit a model          to           by least squares:

 They do not estimate                    , but          directly!
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Huang+ (NeurIPS2006)

: kernel 

Kanamori+ (NeurIPS2008)



Classical Two-Step Adaptation

1. Importance weight estimation
(e.g., least-squares importance fitting):

2. Weighted predictor training:

 However, estimation error in Step 1
is not taken into account in Step 2.
 We want to integrate these two steps!
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Sugiyama & Kawanabe
(MIT Press 2012)

Kanamori+
(JMLR2009)



Joint Weight-Predictor Optimization

Given: Labeled training data and unlabeled test data

 Joint minimization of a risk upper bound:

 Classic approach corresponds to 2-step minimization.

31
Zhang+ (ACML2020, SNCS2021)

 2nd step

 1st step



Extensions to Continuous Shifts

 Continuous label shift:
 Only class-prior  changes.

 Continuous covariate shift:
 Only input density          changes.

Without knowing the shift intensity, our methods 
achieve the same dynamic regret as
the case with known shift intensity.
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Training Test 1 Test 2 Test 𝑇

…

…

Bai+ (NeurIPS2022)

Zhang+ (arXiv2023)
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Joint Shift
Many distribution shift works focus on

a particular shift type (e.g., covariate shift):

 However, identification of the shift type is challenging.

 Label noise is also a type of distribution shift:

 Nice theory for input-independent noise.
 But input-dependent noise is hard.

 Let’s consider joint shift:
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: Noisy class label

Noise transition
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Mini-Batch-Wise Loss Matching
Given:

 (Large) labeled training data:
 (Small) labeled test data:

We try to learn the importance weight
dynamically in the mini-batch-wise manner.

 For each mini-batch                                               , 
importance weights are estimated by
kernel mean matching for loss values:
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Huang+ (NeurIPS2006)

: step size

Fang+ (NeurIPS2020)



Current Challenges
 For joint shift adaptation,

requiring labeled test data is too strong.
 Can we use weakly supervised learning?

 Importance weighting requires
the test domain to be included
in the training domain.
 Can we properly handle

out-of-training-domain test data?

 Can we handle continuous joint shift?
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