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Reliable Machine Learning

 Reliability of machine learning systems
can be degraded by various factors:
 Insufficient information: weak supervision. 
 Label noise: human error, sensor error.
 Data bias: changing environments, privacy.

 Improving the reliability is an urgent challenge!
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Weakly Supervised Classification
 Supervised classification from big labeled data 

is successful: speech, image, language, …

 However, there are many applications
where big labeled data is not available:
 Medicine, disaster, robot, brain, …

We want to utilize “weak” supervision
that can be collected easily!
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Positive-Unlabeled (PU) Classification 6

Given: PU samples (no N samples).

Goal: Obtain a classifier minimizing the PN risk.

Unlabeled (mixture of
positives and negatives)

Positive

Example: Ad click prediction
 Clicked ad: User likes it  P
 Unclicked ad: User dislikes it

or User likes it but doesn’t have
time to click it  U (=P or N)

Li+ (IJCAI2003)

: loss: expectation

[Negative]



PU Unbiased Risk Estimation
 Decompose the risk:

Without N data,            can not be estimated directly:
 Eliminate the expectation over N data as

 Unbiased risk estimator:
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: Class prior (assumed known)

du Plessis+ (NeurIPS2014, ICML2015)

Scott+ (AISTATS2009)
Ramaswamy+ (ICML2016)

du Plessis+ (MLJ2017)

Risk for P data Risk for N data



Non-Negative Risk Correction

 Risk for N data:

 Empirical estimate:

When loss is non-negative: 
 True             is non-negative.
 But empirical estimate        

can be negative!

 Non-negative correction:
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Kiryo+ (NeurIPS2017) , Lu+ (AISTATS2020)
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Various Extensions (Binary)
 Similar unbiased risk estimation is possible!
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Semi-supervised classification 
without manifold/clusters    

du Plessis+ (NeurIPS2014, ICML2015, MLJ2017),
Niu+ (NeurIPS2016), Kiryo+ (NeurIPS2017), Hsieh+ (ICML2019) Bao+ (ICML2018), Shimada+ (NeCo2021),

Dan+ (ECMLPKDD2021), Cao+ (ICML2021),
Feng+ (ICML2021)

Ishida+ (NeurIPS2018), Shinoda+ (IJCAI2021)

Sakai+ (ICML2017, ML2018)

du Plessis+ (TAAI2013), Lu+ (ICLR2019, AISTATS2020),
Charoenphakdee+ (ICML2019), Lei+ (ICML2021)



Various Extensions (Multiclass)
 Labeling patterns in multi-class

problems is even more painful.

Multi-class weak-labels:
 Complementary label:

Specifies a class that a pattern
does not belong to (“not 1”).

 Partial label: Specifies a subset of classes
that contains the correct one (“1 or 2”).

 Single-class confidence:
One-class data with full confidence
(“1 with 60%, 2 with 30%, and 3 with 10%”) 

 Similar unbiased risk estimation is possible!
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Summary: Weakly Supervised Learning

Empirical risk minimization framework
for weakly supervised learning:
 Any loss, classifier, and optimizer can be used.
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Supervised Learning with Noisy Output

 Hasn’t such a classic problem been solved?
 Regression: Yes, noisy big data yield consistency.
 Classification: Specific noise reduction mechanism

is needed to achieve consistency!
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Modeling Input-Independent Noise
 Noise transition matrix:

 Probability of flipping     to    .

 Human-cognitive bias
can be encoded in     ．

 can be visualized in a simplex.
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Han+ (NeurIPS2018)



Loss Correction with Noise Transition

 Forward correction: 
 Add noise by      .

 Backward correction:
 Remove noise by       .

 If      is given, consistency can be guaranteed!

 If      is unknown, how is it estimated?
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Patrini+ (CVPR2017)

: vectorized loss
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Basic Approach
With noiseless labels,

can be obtained naively:
 We know the vertices of the triangle.

 Can we estimate      from noisy labels?
 Generally,      is non-identifiable:

 Assume noiseless labels exist in the training set:
 Select the most confident data as noiseless ones.

19



Limitations
Over-confidence of neural networks is harmful.

 The two-step nature magnifies the estimation error:
1. Noise transition estimation:
2. Classifier training with estimated      :
 Naïve simultaneous estimation

suffers non-identifiability.

 Assumption of having noiseless labels is too strong.
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Zhang+ (ICML2021)



Volume Minimization

 Noisy training data                 
can be mapped in the triangle
formed by noise transition matrix    .

Minimizing the volume of
the triangle can give a solution:

 With noiseless labels, we can find the true    .

 Even without noiseless labels,
“sufficiently scattered” training data
allow identification of the true     !

21
Li+ (ICML2021)



Input-Dependent Noise
 Real-world noise is

often input-dependent.
 E.g., more noise

near the boundary.

 Noise transition function:

 Extremely challenging to estimate it!

 Heuristics: 
 Parts-based estimation.
 Use of additional confidence scores.
 Manifold regularization.
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Xia+ (NeurIPS2020)

Cheng+ (CVPR2022)

Input-independent input-dependent

Berthon+ (ICML2021)



Summary: Noisy-Label Learning

 Explicit treatment of label noise is necessary:
 Loss correction by noise transition is promising.

 However, noise transition is
generally non-identifiable:
 Recent development allows

consistent estimation
under mild assumptions.

 Real-world noise is often input-dependent:
 Heuristic solutions have been developed.
 Further theoretical development is needed.
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Learning under Distribution Shift
Given: 

 Training data 

Goal: 
 Learn predictor                  minimizing the test risk

(with some additional data from the test domain).

 Challenge: 
 Overcome changing distributions!

Non-stationary of the environments.
Sample selection bias due to privacy concerns.
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Types of Distribution Shift

 Joint shift:
 Covariate shift:
 Class-prior shift:
 Output noise:
 Class-conditional shift:

26

Training

Test

Positive

Negative

Class 1
Class 2

Class 3

: Input : Output



Contents

1. Weakly Supervised Learning
2. Noisy-Label Learning
3. Transfer Learning

A) Importance Weighting
B) Continuous Distribution Shift 

4. Towards More Reliable Learning

27

Slides



 Training and test input distributions are different,

but the output-given-input distribution is unchanged:

Given:
 Labeled training data:
 Unlabeled test data:

28Covariate Shift
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Importance-Weighted Training

 How do we estimate the importance?
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Direct Importance Estimation
Given: training and test input data

 Kernel mean matching:
 Match the means of               and            in RKHS     .

 Least-squares importance fitting (LSIF):
 Fit a model          to           by least squares:

 They do not estimate                    , but          directly!
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Huang+ (NeurIPS2006)

: kernel 

Kanamori+ (NeurIPS2008)



Joint Importance-Predictor Estimation
 The classical approaches are two steps:

1. Importance weight estimation (e.g., LSIF):

2. Importance-weighted predictor training:

 For                                     , the test risk
can be bounded as

 Joint upper-bound minimization:

31
Zhang+

(ACML2020,
SNCS2021)
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Continuous Class-Prior Shift
 Class-priors          change arbitrarily over time, but 

class-conditional is unchanged:

Given:
 (Large) labeled training data:
 (Small) unlabeled test data:

We use online convex optimization:
 convex loss    (e.g., logistic),
 linear model                                       .
 is estimated by black box shift estimation.
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: step size
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Choice of Step Size 

 If the speed of distribution shift is
 slow,    should be small to keep the previous classifier.
 fast,     should be large to quickly update the classifier.

 How do we choose    in practice?
 Ensemble learning!

 For                           , we run      learners:

 Final output is the weighted average (cf. Hedge):

34

Zhao+ (NeurIPS2020)

Freund+ (JCSS1997)



Theoretical Analysis

 Shift intensity:

When      is known:
 Online learning with step size

achieves the optimal dynamic regret:

 Even when      is unknown:
 Our method still achieves the optimal dynamic regret!

Number of learners:

Step size: 

35

Risk of the best model at each iterationRisk of our model



Continuous Covariate Shift

 Input density          change arbitrarily over time, but 
output-given-input is unchanged:

Given:
 (Large) labeled training data:
 (Small) unlabeled test data:

We use online density ratio estimation:

Stay tuned!
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Zhang+ (arXiv2023)
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Beyond Importance Weighting?
 Limitation of importance weighting:

 The training domain must cover the test domain.

What if the test domain sticks out
from the training domain?
 Feature matching

 However, considering covariate shift is still essential.

38

Ben-David+ (NeurIPS2006), Ganin+ (ICML2015)



Joint Shift
Many distribution shift works focus on

a particular shift type (e.g., covariate shift):

 However, identification of the shift type is challenging.

 Label noise is also a type of distribution shift:

 Nice theory for input-independent noise.
 But input-dependent noise is hard.

 Let’s consider joint shift:
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Mini-Batch-Wise Loss Matching
Given:

 (Large) labeled training data:
 (Small) labeled test data:

We try to learn the importance weight
dynamically in the mini-batch-wise manner.

 For each mini-batch                                               , 
importance weights are estimated by
kernel mean matching for loss values:
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Huang+ (NeurIPS2006)

: step size

Fang+ (NeurIPS2020)



Future Challenges
 For joint shift, requiring labeled test data is too strong.

 Can we perform
joint shift adaptation
from weak supervision?

 Can we extend it to
continuous joint shift?

 Can we extend it to
a limited-memory setting?

 In real-world application, updating the system online
is dangerous because new data can be malicious:
 Updating the system periodically (daily, etc.) is practical.
 But we want the system to reflect the latest data.
 Can we systematically use a buffer for temporary update?
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