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Reliable Machine Learning

Reliability of machine learning systems
can be degraded by various factors:

e Insufficient information: weak supervision.
e Label noise: human error, sensor error.

e Data bias: changing environments, privacy.

Improving the reliability is an urgent challenge!
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Weakly Supervised Classification 4

Supervised classification from big labeled data
Is successful: speech, image, language, ...

Class 1 Class 2

Positive Negative

o X
X
o © X
OO x X
o x

o
o X x
Boundary Boundary

However, there are many applications
where big labeled data is not available:

e Medicine, disaster, robot, brain, ...

We want to utilize "weak™ supervision
that can be collected easily!
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Positive-Unlabeled (PU) Classification ©

Li+ (IJCAI2003)

Given: PU samples (no N samples)
(@}, "W plaly = +1) {2} X pla)

Goal: Obtain a classifier minimizing the PN risk.

min R(f) R(f) = Eya |¢(v. /(@))]
[ : expectaton £ :loss Yy = {+1,—1}

Positive [Negative]
OO0 O 0
Example: Ad click prediction o °,718 o o
e Clicked ad: User likes it > P u°§D Jle -
e Unclicked ad: User dislikes it ool B g
or User likes it but doesn’t have » .
time to click it 2> U (=P or N) Unlabeled (mixture of
positives and negatives)




PU Unbiased Risk Estimation /

du Plessis+ (NeurlPS2014, ICML2015)

Decompose the risk:
R(P) = Eptalysn) [£( + 1 F(@)) | + (0= o[£~ 1. £ (@)

~ Y Y _
Risk for P data Risk for N data R~ (f)

_ Scott+ (AISTATS2009)
= p(y = +1) : Class prior (assumed known) >  Ramaswamy+ (ICML2016)
du Plessis+ (MLJ2017)

Without N data, R~ (f) can not be estimated directly:
e Eliminate the expectation over N data as

R™(f) =By [ = 1.5@)) | = 7Byapm i) [ = 1. (@) )]
ple) = mp(aly = +1) + (1 - m)p(aly = —1)

Unbiased risk estimator:

np np

ﬁPU(f):%Z (+1f )+—Z€( )—% f(—l,f(wf))

= 7=1 =1



Non-Negative Risk Correction 8

Kiryo+ (NeurlPS2017) , Lu+ (AISTATS2020)

R(f) = Byaly—s [0 +1.F(@))] + (1= mByal,—) [¢( ~ 1. f(@))]

Y Y

Risk for P data Risk for N data R~ (f)
Risk for N data: & (/) =B, [¢(( - 1. f(@))] RS (-1, 7@)]
Empirical estimate: &yy(/) = %Z (—1 f@))= %ie(—l,f(w}?))

05

When loss is non-negative: Plain PU (test)
e True R (f) is non-negative. K\ PN (test)

e But empirical estimate
can be negative!

o
N

o
N

= - a
e b a  nn mi rpeegSeie

Risk w.r.t. zero-one loss
o

S
2

Non-negative correction: U e, PanPU (i

’I'LP -0.3 ~i™ s A ”"""'“’r\fr;-.‘,iv 1
D W P A_ 1 1 1 1 1 1 1 1 1 .'\
RPU (f) — Z E (f(w?: )) _|— Hax {O’ RPU (f) } -0-40 20 40 60 80 100 120 140 160 180 200

np 1=1 Stochastic gradient iterations
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Various Extensions (Binary) 10

Similar unbiased risk estimation is possible!

Positive-Unlabeled (PU) Similar-Dissimilar (SD)
0o (= 0
Jo olo g o Unlabeled-Unlabeled (UU)
o
o (o (m ] (m] (W) O n) nD (m] -
o 0O o O (m] O8O o
u Plessis+ (Neur! o a .
Niu+ (l\?eulr:;::’82016()’,\1Kir;llzfil(\)llﬁ'rllgslglaa%,Sﬁgléﬁo(:gl)\hL2O19) oo o (m] DiiT(ngtﬁi?@iz%??;agi;“fﬁ?ﬁﬁfggé1)')
Click dicti o Feng+ (ICML2021) '
ick prediction o » .
D o % o Sensitive prediction
olo O Opnp
(m] i ° I:ll:ll:I
y . (m] .y .
Positive-confidence (Pconf) nono o Positive-Negative-
05% 79% o[ o gy Uniabeled (PNU)
. . O
OO Different populations D © x %o
020% (o OOD O xn xm
OOO 5% _ | - 0©0 0| o xo_
Ishida+ (NeurlPS2018), Shinoda+ (IJCAI2021) Seml'supeersed CIaSS|f|Cat|0n o 0O O Ox
without manifold/clusters > © 5080 *o

Purchase prediction

Sakai+ (ICML2017, ML2018)




Various Extensions (Multiclass) 11

Labeling patterns in multi-class
problems is even more painful.

Multi-class weak-labels: ... neuips2017
e Complementary label: Chous (1OML2020)
Specifies a class that a pattern Boundary

does not belong to ("not 17).

e Partial label: Specifies a subset of classes Feng+ (ICML2020,
NeurlPS2020),

that contains the correct one (“1 or 27). Lv+ (ICML2020)

e Single-class confidence: cao+ (arxiv2021)
One-class data with full confidence
(“1 with 60%, 2 with 30%, and 3 with 10%")

Similar unbiased risk estimation is possible!



Summary: Weakly Supervised Learning 12

Empirical risk minimization framework
for weakly supervised learning:

e Any loss, classifier, and optimizer can be used.

Supervised

Machine Learning
from Weak Supervision

P N, U, S, D, Pconf,

Semi- Nconf, Sconf, Dconf,... *g
supervised Comp, Partial, SCconf,... o
Different weak information 8’
: can be systematically [S, At S o,
Unsupervised combined! § _

Sugiyama, Bao, Ishida,
e . . Lu, Sakai & Niu,
Classification accuracy High MIT Press, 2022.
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Supervised Learning with Noisy Output 14

Output Y

Regression (additive noise) Classification (label flipping noise)
| T Class1 o x ¥  Class 2
(w’ia yz) o © . X x
o ® 2% Target o x
' ° ® function . °
Te ° (33?37 yz) True
> boundary
Input & o
T
¢ loss . _—
' T ' . probabillistic
7 i Y : noisy output ~ classitier

Hasn't such a classic problem been solved?
e Regression: Yes, noisy big data yield consistency.

e Classification: Specific noise reduction mechanism
IS needed to achieve consistency!
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Modeling Input-Independent Noise 16

Y
Noise transition matrix: 1}, 5 = p(y|y) L IE
e Probability of flipping ¥ to ¥. T = g; gg 0(.)1 Y

Human-cognitive bias
can be encoded in 1.

Han+ (NeurlPS2018)

1" can be visualized in a simplex.

Clean Symmetric Pairwise General

(on)T (8,.1,.1)7




Loss Correction with Noise Transition 17

Patrini+ (CVPR2017)

Forward correction: £(T 'g(z))  ¢: vectorized loss
e Add noise by 1" . l,(g(x)) = L(y,g(x))

Backward correction: T~ '#(g(x))
e Remove noise by T !

If 'I' is given, consistency can be guaranteed!

If I" is unknown, how is it estimated?
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Basic Approach 19

With noiseless labels,
I' can be obtained naively:
e \We know the vertices of the triangle.

Can we estimate 1’ from noisy labels?
e Generally, 1" is non-identifiable:

TTP = T; (TlTP) =TT,

Assume noiseless labels exist in the training set:
e Select the most confident data as noiseless ones.

r’ — x; st gy(x;) =1 g= arg;ninzf(@i,g(w@))
1=1



Limitations 20

Over-confidence of neural networks is harmful.

Data Empirical distribution Estimated distribution Histogram of entropy Zhang + (lC M L202 1 )
P
overc ce E22  Empirical 1

"', ¥ U ACN
v i'. ‘( -’}%‘o.
' -' T ‘n .“ .
v oy e BT i
e L AR
.' - L A R .
,1--1:'“- L ’
.I‘ -.=l.

The two-step nature magnlfles the estlmatlon error:
1. Noise transition estimation: T R mng 7, T g(:))

2. Classifier training with estimated T’ : i—1
e Naive simultaneous estimation — T
19 T 7
suffers non-identifiability. T'g — “ 9(@:))

Assumption of having noiseless labels is too strong.



21

Li+ (ICML2021)

Volume Minimization

Noisy training data {(xi, ¥:) }ie: B,y = Blyfs)
can be mapped in the triangle
formed by noise transition matrix T..

Minimizing the volume of
the triangle can give a solution:

n

min » 45, T g(x;)) + Alog det(T")
195 A >0

e With noiseless labels, we can find the true T'.

e Even without noiseless labels,
“sufficiently scattered” training data
allow identification of the true 1'!




Input-Dependent Noise 22

Rea I -WO rI d no | se |S Input-independent input-dependent
often input-dependent. » 0% ° ¢ o °

e £.9., more noise AT
near the boundary.

Noise transition function:
Ty,g(.’L‘) — p(g‘ya .’L‘)

e Extremely challenging to estimate it!

Heuristics:

e Parts-based estimation. Xia+ (NeurlPS2020)
e Use of additional confidence scores. Berthon+ (ICML2021)
e Manifold regularization. Cheng+ (CVPR2022)



Summary: Noisy-Label Learning 23

Explicit treatment of label noise is necessary:

e L oss correction by noise transition is promising.

. e 1T, - = ply
However, noise transition is v.g = PIY)
generally non-identifiable:

e Recent development allows

consistent estimation
under mild assumptions.

Real-world noise is often input-dependent:
e Heuristic solutions have been developed.
e Further theoretical development is needed.
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Learning under Distribution Shift 2°

Given: | 2 Input
e Training data b i Et T, |

g data {(z;",y;") }i P (2, y) Y - Output
Goal:

e Learn predictor y = f(a) minimizing the test risk
(with some additional data from the test domain).

ming R(f)  R(f) = Ep, () [€(f(x),y)] £:loss

Challenge:

e Overcome changing distributions!

Ptr (SE‘, y) # pte(wv y)

B Non-stationary of the environments.
M Sample selection bias due to privacy concerns.




*e ¢ Training

: LI ) ¢ " 4
o 0.2| S o
.0 o €L® ..: : "“ ° o x
1
° I .
TeSt 01t I y (o %
ey, | ] \| Negative
e ® ¢ ,’ i,

Types of Distribution Shift 26

Z:Input Y : Output

Joint shift: Pte (T, Y) 7 Pre(T,y)
Covariate shift: ptr(T) # pre(T)
Class-prior shift: Per(y) # Pre(y)
Output noise: Per(y|x) # pre(ylT)
Class-conditional shift:  per(@|y) # pre(x|y)

p(y|m) Pos[tive Class 2

14l 54 Class 1 | %

X

xO
b 4 o ox

o




Contents

Weakly Supervised Learning
Noisy-Label Learning

Transfer Learning
A) Importance Weighting
B) Continuous Distribution Shift

Towards More Reliable Learning

27




Covariate Shift 28

Shimodaira (JSPI2000)

Training and test input distributions are different,

Pr(T) # Dre(T)
but the output-given-input distribution is unchanged:

per (Y1) = pre(y|x) = p(y|x)

1.6¢
1.4
1.2r

1
0.8
0.6
04
0.2
0

Given:

e Labeled training data: {(z

Input
densities {\

- Pu()

AN

0 1 2 3

e Unlabeled test data:

-0.5¢}

tr
7 )

Function

-, Training % dat
ata

i.1.d.
yi )~ pu(®,y)

{w;e ;7,231 1}\J pte(.’}l})



Importance-Weighted Training 29

. | L . pte .’L‘ -
aremin 0(f r argmin ﬁ 2 yz
ar Z f Z; (i) (@), )_
tr ii.d. " \
{(i", ") b~ p(, ) Importance
Ordinary training Weighted training
NS is not consistent 1 e ® is consistent

0.5} 05!

05! -0.5¢

How do we estimate the importance?



Direct Importance Estimation 30
Given: training and test input data

{CBtr s 1 1de. ptr(él’:) {mte nte

Kernel mean matCh|ng Huang+ (NeurlPS2006)
e Match the means of r(x)pi.(x) and pte(a:) in RKHS H .

2
/K pte dw—/K w)ptr

Least-squares importance fitting (LSIF): «anamori+ (Neurips2008)

e Fit a model r(x) to zzgg by least squares:

argmin [ / (T(w) _ %)2 ptr(;r;)dw]

E— [ / r(2)2pe (@) dz — 2 / T(a:)pte(az)d:c]

T

i.d.
- ’I\J Pte (CL‘)

min
reH

K(x,-): kernel

H

They do not estimate pi(a), pie(a), but 22} directly!



Joint Importance-Predictor Estimation 31

Zhang+

The classical approaches are two steps: (AOL2020
1. Importance weight estimation (e.g., LSIF):

r = argmin Jl (7“) Jl( ) Ept () ( (CL‘) pte(m))2]

r ptr(w)

2. Importance-weighted predictor training:

f:m%mmbqfviwﬁ> Ey..(z.y) [r(®)0(f(z),y)]

For Vi < 1,0 > Ve, > 0, the test risk
Ro(f) = Ep,. (@ f(f(x),y)] can be bounded as

$Re (f)? < e (fir)  Je(for) = Ji(r) + Ja(fo7)

N

Joint upper-bound minimization: f = argmin min Jo (f,7)
f' T
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Continuous Class-Prior Shift 33

Bai+ (NeurlPS2022)

Class-priors p:(y) change arbitrarily over time, but
class-conditional is unchanged: pi.(z]y) = p:(x|y)

. t=1,....T
Given:
o tr T\ Nir i.1.d.
e (Large) labeled training data: {(x;, ¥ ) ity ~ pul(x,y)
n, ii.d.
e (Small) unlabeled test data: {2}, TR py ()

We use online convex optimization: Hazan (2016)

e convex loss 7 (e.g., logistic),

e linear model f(x)=w'z, weW.

e p;—1(y) is estimated by black box shift estimation. cuisos)

w; = Iy [wt—l — nVﬁt_1(wt_1)] I1,, : projection
R, — 2D (), ytt n > 0 : step size
t 1(f) Tt - ptr(y,};r) (f( ) Yy )




Choice of Step Size 7 34

w; = 1y ['wt—l — nVEt—l('wt—l)}

If the speed of distribution shift is
e slow, 7 should be small to keep the previous classifier.
e fast, n should be large to quickly update the classifier.

How do we choose 7 in practice?
e Ensemble learning!  zhao+ (NeurlPs2020)

For 0 <m <---<nm,werun M learners:
wi™ =Ty |w]") = 0V (w]™))]

Final output is the weighted average (cf. Hedge):

Freund+ (JCSS1997)

M
_ m), (m) = In M
Wy = Z Dy "Wy pgm) X exp (—EZRS(wgm))) e=0 ( nT )
m=1

s=1




Theoretical Analysis 35

T =
Shift intensity: Vo= Y [p(y) — pe-1(y)] > 0T %)

t=2 y=1

When V- Is known:

e Online learning with step size n = O(V? T_%)
achieves the optimal dynamic regret:

- i}
1 9
1) R (w min Ry ( = O(V2Ts3
Z_: t(w) Zwew £ (V£ Ts)
Risk of our model Risk of the best model at each iteration

Even when V; IS unknown:

e Our method still achieves the optimal dynamic regret!
B Number of learners: M = 1+ [3log, (1 4 27")]

W Step size: 1, = Qm_lZ/\/T, m=1,...,M



Continuous Covariate Shift 36

Zhang+ (arXiv2023)

Input density p:(x) change arbitrarily over time, but
output-given-input is unchanged: pu(y|x) = p:(y|x)

_ t=1,...,T
Given:
_ tr ntr i1.1.d.
e (Large) labeled training data: 1(; Y)Y N pa(E, y)
e (Small) unlabeled test data: {zt:f;t)}i:l RS pe(a)

We use online density ratio estimation:

Il IL élr'g 1L
I ft(x,y)
L g

A
ad

r 2 2 D
® ® ® ®3

Stay tuned!
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Beyond Importance Weighting? 38

Limitation of importance weighting:
e The training domain must cover the test domain. pte("”y) < o0

ptr Z,

What if the test domain sticks out
from the training domain? J&
e Feature matching S

Ben-David+ (NeurIP82006), Ganin+ (ICML2015)

e However, considering covariate shift is still essential.



Joint Shift 39

Many distribution shift works focus on
a particular shift type (e.g., covariate shift):

ptr(w) 7é pte(w) ptr(y’m) — pte(y|$)
e However, identification of the shift type is challenging.

Label noise is also a type of distribution shift:
per(y|x) = Zp(@\y, 2 )pie(y|x) Y :Noisy class label

Y H_I

Noise transition
e Nice theory for input-independent noise.

e But input-dependent noise is hard. L pependert

Let’'s consider joint shift:
ptr(:na y) 7& pte(ma y)




Mini-Batch-Wise Loss Matching 49

G iven : Fang+ (NeurlPS2020)
e (Large) labeled training data: {(z}", y;")}= N per (T, Y)
o (Small) labeled test data:  {(a'¢,yi*)} e, "R pio(a, y)

We try to learn the importance weight
dynamically in the mini-batch-wise manner.
I+ f—nVﬁ(f) n > 0 : step size

For each mini-batch {(&, 7;") }iey, {(&5°, §5°) o2,
importance weights are estimated by
kernel mean matching for loss values:

Huang+ (NeurlPS2006)

1 Nty nte

i
= O(F (&), 55 ~ 0(f(E), 5°) P (&, J;")
’ﬁ,tr Z Ty (f( nt Z T~ p= ~te)

’L:]. ptr( 7, 7yz




Future Challenges 41

For joint shift, requiring labeled test data is too strong.

. C a n We p e rfo rm Weakly Supervised Classification (Binary) Weakly Supervised Classification (Multiclass)
joint shift adaptation

Labeling patterns in multi-class
problems is extremely painful.

eeeeeeeeeeeeeeeeeeeeee

from weak supervision? R e
e Can we extend it to R
continuous joint shift? Training Test 1 Test 2 Test T
_ pu(zy)  pi@,y) p2(w,y) o pr(z,y)
e Can we extend it to e -, e
a limited-memory setting?  “ow.: .7 »» » N

In real-world application, updating the system online
IS dangerous because new data can be malicious:

e Updating the system periodically (daily, etc.) is practical.
e But we want the system to reflect the latest data.

e Can we systematically use a buffer for temporary update?
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