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Reliable Machine Learning

 Reliability of machine learning systems
can be degraded by various factors:
 Insufficient information: weak supervision. 
 Label noise: human error, sensor error.
 Data bias: changing environments, privacy.

 Improving the reliability is an urgent challenge!
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Weakly Supervised Classification
 Supervised classification from big labeled data 

is successful: speech, image, language, …

 However, there are many applications
where big labeled data is not available:
 Medicine, disaster, robot, brain, …

We want to utilize “weak” supervision
that can be collected easily!
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Positive-Unlabeled (PU) Classification 6

Given: PU samples (no N samples).

Goal: Obtain a classifier minimizing the PN risk.

Unlabeled (mixture of
positives and negatives)

Positive

Example: Ad click prediction
 Clicked ad: User likes it  P
 Unclicked ad: User dislikes it

or User likes it but doesn’t have
time to click it  U (=P or N)

Li+ (IJCAI2003)

: loss: expectation

[Negative]



PU Unbiased Risk Estimation
 Decompose the risk:

Without N data,            can not be estimated directly:
 Eliminate the expectation over N data as

 Unbiased risk estimator:
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: Class prior (assumed known)

du Plessis+ (NeurIPS2014, ICML2015)

Scott+ (AISTATS2009)
Ramaswamy+ (ICML2016)

du Plessis+ (MLJ2017)

Risk for P data Risk for N data



Non-Negative Risk Correction

 Risk for N data:

 Empirical estimate:

When loss is non-negative: 
 True             is non-negative.
 But empirical estimate        

can be negative!

 Non-negative correction:
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Kiryo+ (NeurIPS2017) , Lu+ (AISTATS2020)
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Various Extensions (Binary)
 Similar unbiased risk estimation is possible!
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du Plessis+ (NeurIPS2014, ICML2015, MLJ2017),
Niu+ (NeurIPS2016), Kiryo+ (NeurIPS2017), Hsieh+ (ICML2019) Bao+ (ICML2018), Shimada+ (NeCo2021),

Dan+ (ECMLPKDD2021), Cao+ (ICML2021),
Feng+ (ICML2021)

Ishida+ (NeurIPS2018), Shinoda+ (IJCAI2021)

Sakai+ (ICML2017, ML2018)

du Plessis+ (TAAI2013), Lu+ (ICLR2019, AISTATS2020),
Charoenphakdee+ (ICML2019), Lei+ (ICML2021)



Various Extensions (Multiclass)
 Labeling patterns in multi-class

problems is even more painful.

Multi-class weak-labels:
 Complementary label:

Specifies a class that a pattern
does not belong to (“not 1”).

 Partial label: Specifies a subset of classes
that contains the correct one (“1 or 2”).

 Single-class confidence:
One-class data with full confidence
(“1 with 60%, 2 with 30%, and 3 with 10%”) 

 Similar unbiased risk estimation is possible!
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Summary: Weakly Supervised Learning

Empirical risk minimization framework
for weakly supervised learning:
 Any loss, classifier, and optimizer can be used.
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Supervised Learning with Noisy Output

 Hasn’t such a classic problem been solved?
 Regression: Yes, noisy big data yield consistency.
 Classification: Specific noise reduction mechanism

is needed to achieve consistency!
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Modeling Input-Independent Noise
 Noise transition matrix:

 Probability of flipping     to    .

 Human-cognitive bias
can be encoded in     ．

 can be visualized in a simplex.
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Loss Correction with Noise Transition

 Forward correction: 
 Add noise by      .

 Backward correction:
 Remove noise by       .

 If      is given, consistency can be guaranteed!

 If      is unknown, how is it estimated?
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Patrini+ (CVPR2017)

: vectorized loss
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Basic Approach
With noiseless labels,

can be obtained naively:
 We know the vertices of the triangle.

 Can we estimate      from noisy labels?
 Generally,      is non-identifiable:

 Assume noiseless labels exist in the training set:
 Select the most confident data as noiseless ones.

19



Limitations
Over-confidence of neural networks is harmful.

 The two-step nature magnifies the estimation error:
1. Noise transition estimation:
2. Classifier training with estimated      :
 Naïve simultaneous estimation

suffers non-identifiability.

 Assumption of having noiseless labels is too strong.
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Zhang+ (ICML2021)



Volume Minimization

 Noisy training data                 
can be mapped in the triangle
formed by noise transition matrix    .

Minimizing the volume of
the triangle can give a solution:

 With noiseless labels, we can find the true    .

 Even without noiseless labels,
“sufficiently scattered” training data
allow identification of the true     !

21
Li+ (ICML2021)



Input-Dependent Noise
 Real-world noise is

often input-dependent.
 E.g., more noise

near the boundary.

 Noise transition function:

 Extremely challenging to estimate it!

 Heuristics: 
 Parts-based estimation.
 Use of additional confidence scores.
 Manifold regularization.
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Xia+ (NeurIPS2020)

Cheng+ (CVPR2022)

Input-independent input-dependent

Berthon+ (ICML2021)



Summary: Noisy-Label Learning

 Explicit treatment of label noise is necessary:
 Loss correction by noise transition is promising.

 However, noise transition is
generally non-identifiable:
 Recent development allows

consistent estimation
under mild assumptions.

 Real-world noise is often input-dependent:
 Heuristic solutions have been developed.
 Further theoretical development is needed.

23



Contents

1. Weakly Supervised Learning
2. Noisy-Label Learning
3. Transfer Learning

A) Importance Weighting
B) Continuous Distribution Shift 

4. Towards More Reliable Learning

24

Slides



Learning under Distribution Shift
Given: 

 Training data 

Goal: 
 Learn predictor                  minimizing the test risk

(with some additional data from the test domain).

 Challenge: 
 Overcome changing distributions!

Non-stationary of the environments.
Sample selection bias due to privacy concerns.
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Types of Distribution Shift

 Joint shift:
 Covariate shift:
 Class-prior shift:
 Output noise:
 Class-conditional shift:
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 Training and test input distributions are different,

but the output-given-input distribution is unchanged:

Given:
 Labeled training data:
 Unlabeled test data:

28Covariate Shift

Training

Test

Target
function

Shimodaira (JSPI2000)

Function
& data

Input
densities



Importance-Weighted Training

 How do we estimate the importance?
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Direct Importance Estimation
Given: training and test input data

 Kernel mean matching:
 Match the means of               and            in RKHS     .

 Least-squares importance fitting (LSIF):
 Fit a model          to           by least squares:

 They do not estimate                    , but          directly!
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Huang+ (NeurIPS2006)

: kernel 

Kanamori+ (NeurIPS2008)



Joint Importance-Predictor Estimation
 The classical approaches are two steps:

1. Importance weight estimation (e.g., LSIF):

2. Importance-weighted predictor training:

 For                                     , the test risk
can be bounded as

 Joint upper-bound minimization:

31
Zhang+

(ACML2020,
SNCS2021)
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Continuous Class-Prior Shift
 Class-priors          change arbitrarily over time, but 

class-conditional is unchanged:

Given:
 (Large) labeled training data:
 (Small) unlabeled test data:

We use online convex optimization:
 convex loss    (e.g., logistic),
 linear model                                       .
 is estimated by black box shift estimation.
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Choice of Step Size 

 If the speed of distribution shift is
 slow,    should be small to keep the previous classifier.
 fast,     should be large to quickly update the classifier.

 How do we choose    in practice?
 Ensemble learning!

 For                           , we run      learners:

 Final output is the weighted average (cf. Hedge):
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Zhao+ (NeurIPS2020)

Freund+ (JCSS1997)



Theoretical Analysis

 Shift intensity:

When      is known:
 Online learning with step size

achieves the optimal dynamic regret:

 Even when      is unknown:
 Our method still achieves the optimal dynamic regret!

Number of learners:

Step size: 
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Risk of the best model at each iterationRisk of our model



Continuous Covariate Shift

 Input density          change arbitrarily over time, but 
output-given-input is unchanged:

Given:
 (Large) labeled training data:
 (Small) unlabeled test data:

We use online density ratio estimation:

Stay tuned!
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Zhang+ (arXiv2023)
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Beyond Importance Weighting?
 Limitation of importance weighting:

 The training domain must cover the test domain.

What if the test domain sticks out
from the training domain?
 Feature matching

 However, considering covariate shift is still essential.
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Ben-David+ (NeurIPS2006), Ganin+ (ICML2015)



Joint Shift
Many distribution shift works focus on

a particular shift type (e.g., covariate shift):

 However, identification of the shift type is challenging.

 Label noise is also a type of distribution shift:

 Nice theory for input-independent noise.
 But input-dependent noise is hard.

 Let’s consider joint shift:

39

: Noisy class label

Noise transition

Input-
Independent

input-
Dependent



Mini-Batch-Wise Loss Matching
Given:

 (Large) labeled training data:
 (Small) labeled test data:

We try to learn the importance weight
dynamically in the mini-batch-wise manner.

 For each mini-batch                                               , 
importance weights are estimated by
kernel mean matching for loss values:
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Huang+ (NeurIPS2006)

: step size

Fang+ (NeurIPS2020)



Future Challenges
 For joint shift, requiring labeled test data is too strong.

 Can we perform
joint shift adaptation
from weak supervision?

 Can we extend it to
continuous joint shift?

 Can we extend it to
a limited-memory setting?

 In real-world application, updating the system online
is dangerous because new data can be malicious:
 Updating the system periodically (daily, etc.) is practical.
 But we want the system to reflect the latest data.
 Can we systematically use a buffer for temporary update?
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