ICLR2023, Kigali, Rwanda

Slides

May 2, 2023

### Importance-Weighting Approach to Distribution Shift Adaptation

#### Masashi Sugiyama

#### RIKEN Center for Advanced Intelligence Project/ The University of Tokyo, Japan





#### **Reliable Machine Learning**

- Reliability of machine learning systems can be degraded by various factors:
  - Insufficient information: weak supervision.
  - Label noise: human error, sensor error.
  - Data bias: changing environments, privacy.
- Improving the reliability is an urgent challenge!





- 1. Weakly Supervised Learning
  - A) Positive-Unlabeled Classification
  - **B)** Various Extensions
- 2. Noisy-Label Learning
- 3. Transfer Learning
- 4. Towards More Reliable Learning



Slides-

#### Weakly Supervised Classification

4

Supervised classification from big labeled data is successful: speech, image, language, ...



However, there are many applications where big labeled data is not available:

- Medicine, disaster, robot, brain, ...
- We want to utilize "weak" supervision that can be collected easily!



- 1. Weakly Supervised Learning
  - A) Positive-Unlabeled Classification
  - **B)** Various Extensions
- 2. Noisy-Label Learning
- 3. Transfer Learning
- 4. Towards More Reliable Learning



#### **Positive-Unlabeled (PU) Classification** 6 Li+ (IJCAI2003) Given: PU samples (no N samples). $\{\boldsymbol{x}_{i}^{\mathrm{P}}\}_{i=1}^{n_{\mathrm{P}}} \stackrel{\text{i.i.d.}}{\sim} p(\boldsymbol{x}|y=+1) \quad \{\boldsymbol{x}_{j}^{\mathrm{U}}\}_{j=1}^{n_{\mathrm{U}}} \stackrel{\text{i.i.d.}}{\sim} p(\boldsymbol{x})$ Goal: Obtain a classifier minimizing the PN risk. $\min_{f} R(f) \quad R(f) = \mathbb{E}_{p(\boldsymbol{x}, y)} \left[ \ell \left( y, f(\boldsymbol{x}) \right) \right]$ $\mathbb{E}$ : expectation $\ell$ : loss $y = \{+1, -1\}$ Positive [Negative] **Example:** Ad click prediction • Clicked ad: User likes it $\rightarrow$ P Unclicked ad: User dislikes it or User likes it but doesn't have Unlabeled (mixture of time to click it $\rightarrow$ U (=P or N) positives and negatives)

### PU Unbiased Risk Estimation

du Plessis+ (NeurIPS2014, ICML2015)

Decompose the risk:

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[ \ell \left( +1, f(\boldsymbol{x}) \right) \right] + (1-\pi) \mathbb{E}_{\boldsymbol{p}(\boldsymbol{x}|\boldsymbol{y}=-1)} \left[ \ell \left( -1, f(\boldsymbol{x}) \right) \right]$$
  
Risk for P data  
Risk for N data  $R^{-}(f)$ 

 $\pi = p(y = +1)$ : Class prior (assumed known)  $\rightarrow$ du Plessis+ (MLJ2017)

#### • Without N data, $R^{-}(f)$ can not be estimated directly:

• Eliminate the expectation over N data as

$$R^{-}(f) = \mathbb{E}_{\boldsymbol{p}(\boldsymbol{x})} \left[ \ell \left( -1, f(\boldsymbol{x}) \right) \right] - \pi \mathbb{E}_{\boldsymbol{p}(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[ \ell \left( -1, f(\boldsymbol{x}) \right) \right]$$
$$p(\boldsymbol{x}) = \pi p(\boldsymbol{x}|\boldsymbol{y}=+1) + (1-\pi)p(\boldsymbol{x}|\boldsymbol{y}=-1)$$

#### Unbiased risk estimator:

$$\widehat{R}_{\rm PU}(f) = \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(+1, f(\boldsymbol{x}_i^{\rm P})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big(-1, f(\boldsymbol{x}_j^{\rm U})\Big) - \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(-1, f(\boldsymbol{x}_i^{\rm P})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big(-1, f(\boldsymbol{x}_j^{\rm U})\Big) - \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(-1, f(\boldsymbol{x}_i^{\rm P})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big(-1, f(\boldsymbol{x}_j^{\rm U})\Big) - \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(-1, f(\boldsymbol{x}_i^{\rm P})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big(-1, f(\boldsymbol{x}_j^{\rm U})\Big) - \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(-1, f(\boldsymbol{x}_i^{\rm P})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big(-1, f(\boldsymbol{x}_j^{\rm U})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big)$$

### Non-Negative Risk Correction

 $R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[ \ell \left( +1, f(\boldsymbol{x}) \right) \right] + (1 - \pi) \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=-1)} \left[ \ell \left( -1, f(\boldsymbol{x}) \right) \right]$ Risk for P data Risk for N data  $R^{-}(f)$ 

**Risk for N data:**  $R^{-}(f) = \mathbb{E}_{p(\boldsymbol{x})} \left[ \ell \left( -1, f(\boldsymbol{x}) \right) \right] - \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[ \ell \left( -1, f(\boldsymbol{x}) \right) \right]$ **Empirical estimate:**  $\widehat{R}_{\mathrm{PU}}^{-}(f) = \frac{1}{n_{\mathrm{U}}} \sum_{i=1}^{n_{\mathrm{U}}} \ell \left( -1, f(\boldsymbol{x}_{i}^{\mathrm{U}}) \right) - \frac{\pi}{n_{\mathrm{P}}} \sum_{i=1}^{n_{\mathrm{P}}} \ell \left( -1, f(\boldsymbol{x}_{i}^{\mathrm{P}}) \right)$ 

#### When loss is non-negative:

- True  $R^{-}(f)$  is non-negative.
- But empirical estimate can be negative!

#### Non-negative correction:

$$\widetilde{R}_{\rm PU}(f) = \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(f(\boldsymbol{x}_i^{\rm P})\Big) + \max\left\{0, \ \widehat{R}_{\rm PU}^-(f)\right\}$$





- 1. Weakly Supervised Learning
  - A) Positive-Unlabeled Classification
  - **B)** Various Extensions
- 2. Noisy-Label Learning
- 3. Transfer Learning
- 4. Towards More Reliable Learning

![](_page_8_Picture_8.jpeg)

### Various Extensions (Binary)

Similar unbiased risk estimation is possible!

#### Positive-Unlabeled (PU)

![](_page_9_Figure_3.jpeg)

Sakai+ (ICML2017, ML2018)

Similar-Dissimilar (SD)

### Various Extensions (Multiclass) <sup>11</sup>

Ishida+ (NeurIPS2017,

Labeling patterns in multi-class problems is even more painful.

Multi-class weak-labels:

 Complementary label: ICML2019), Chou+ (ICML2020)
 Specifies a class that a pattern does not belong to ("not 1").

![](_page_10_Figure_4.jpeg)

- Partial label: Specifies a subset of classes that contains the correct one ("1 or 2").
- Feng+ (ICML2020, NeurIPS2020), Lv+ (ICML2020)
- Single-class confidence: Cao+ (arXiv2021)
   One-class data with full confidence
   ("1 with 60%, 2 with 30%, and 3 with 10%")

Similar unbiased risk estimation is possible!

#### Summary: Weakly Supervised Learning <sup>12</sup>

Empirical risk minimization framework for weakly supervised learning:

Any loss, classifier, and optimizer can be used.

![](_page_11_Figure_3.jpeg)

![](_page_12_Picture_0.jpeg)

- 1. Weakly Supervised Learning
- 2. Noisy-Label Learning
  - A) Noise Transition
  - B) Algorithms
- 3. Transfer Learning
- 4. Towards More Reliable Learning

![](_page_12_Picture_8.jpeg)

![](_page_12_Picture_9.jpeg)

#### Supervised Learning with Noisy Output 14

![](_page_13_Figure_1.jpeg)

#### Hasn't such a classic problem been solved?

- Regression: Yes, noisy big data yield consistency.
- Classification: Specific noise reduction mechanism is needed to achieve consistency!

![](_page_14_Picture_0.jpeg)

- 1. Weakly Supervised Learning
- 2. Noisy-Label Learning
  - A) Noise Transition
  - B) Algorithms
- 3. Transfer Learning
- 4. Towards More Reliable Learning

![](_page_14_Picture_8.jpeg)

![](_page_14_Picture_9.jpeg)

### Modeling Input-Independent Noise <sup>16</sup>

Noise transition matrix:  $T_{y,\bar{y}} = \bar{p}(\bar{y}|y)$ 

• Probability of flipping y to  $\bar{y}$ .

## Human-cognitive bias can be encoded in T.

Han+ (NeurIPS2018)

![](_page_15_Figure_5.jpeg)

![](_page_15_Figure_6.jpeg)

![](_page_15_Figure_7.jpeg)

 $\boldsymbol{y}$ 

0

8.0

0.5

0.1

0.5

0

0.1

0

y

**T** can be visualized in a simplex.

![](_page_15_Figure_9.jpeg)

#### Loss Correction with Noise Transition 17

Patrini+ (CVPR2017)

- Add noise by  $T^{\top}$ .  $\ell(T^{\top}g(x))$   $\ell$ : vectorized loss  $\ell_y(g(x)) = \ell(y, g(x))$
- Backward correction:  $T^{-1}\ell(g(x))$ • Remove noise by  $T^{-1}$ .
- If *T* is given, consistency can be guaranteed!
- If T is unknown, how is it estimated?

![](_page_17_Picture_0.jpeg)

- 1. Weakly Supervised Learning
- 2. Noisy-Label Learning
  - A) Noise Transition
  - B) Algorithms
- 3. Transfer Learning
- 4. Towards More Reliable Learning

![](_page_17_Picture_8.jpeg)

![](_page_17_Picture_9.jpeg)

### **Basic Approach**

- With noiseless labels, T can be obtained naively:
  - We know the vertices of the triangle.

![](_page_18_Picture_3.jpeg)

Can we estimate T from noisy labels?

• Generally, T is non-identifiable:

$$oldsymbol{T}^{ op}oldsymbol{p} = oldsymbol{T}_2^{ op}(oldsymbol{T}_1^{ op}oldsymbol{p}) \quad oldsymbol{T} = oldsymbol{T}_1oldsymbol{T}_2$$

Assume noiseless labels exist in the training set:

• Select the most confident data as noiseless ones.

$$oldsymbol{x}^y \leftarrow oldsymbol{x}_i ext{ s.t. } \widehat{g}_y(oldsymbol{x}_i) pprox 1 \hspace{0.2cm} \widehat{g} = \mathop{\mathrm{argmin}}_{oldsymbol{g}} \sum_{i=1}^n \ell(ar{y}_i, oldsymbol{g}(oldsymbol{x}_i))$$

### Limitations

#### Over-confidence of neural networks is harmful.

![](_page_19_Figure_2.jpeg)

The two-step nature magnifies the estimation error:

- 1. Noise transition estimation:  $\widehat{T}$
- 2. Classifier training with estimated  $\widehat{T}$  :
- Naïve simultaneous estimation suffers non-identifiability.

$$\min_{oldsymbol{g}} \sum_{i=1}^n \ell(ar{y}_i, \widehat{oldsymbol{T}}^ op oldsymbol{g}(oldsymbol{x}_i))$$

$$\min_{oldsymbol{T}',oldsymbol{g}} \sum_{i=1}^n \ell(ar{y}_i,oldsymbol{T'^ op}oldsymbol{g}(oldsymbol{x}_i))$$

Assumption of having noiseless labels is too strong.

### **Volume Minimization**

 $, \bar{y}_i)\}_{i=1}^n$   $[\bar{p}_{x_i}]_y = \bar{p}(y)$ 

Noisy training data  $\{(x_i, \bar{y}_i)\}_{i=1}^n$ can be mapped in the triangle formed by noise transition matrix T.

Minimizing the volume of the triangle can give a solution:

n

$$\min_{\mathbf{T}',\mathbf{g}} \sum_{i=1}^{\mathcal{L}} \ell(\bar{y}_i, \mathbf{T}'^{\top} \mathbf{g}(\mathbf{x}_i)) + \lambda \log \det(\mathbf{T}') \\ \lambda > 0$$

- With noiseless labels, we can find the true T.
- Even without noiseless labels, "sufficiently scattered" training data allow identification of the true T!

![](_page_20_Figure_7.jpeg)

Li+ (ICML2021)

![](_page_20_Figure_8.jpeg)

![](_page_20_Figure_9.jpeg)

### **Input-Dependent Noise**

#### Real-world noise is often input-dependent.

• E.g., more noise near the boundary.

![](_page_21_Figure_3.jpeg)

Noise transition function:

$$T_{y,\bar{y}}(\boldsymbol{x}) = \bar{p}(\bar{y}|y,\boldsymbol{x})$$

• Extremely challenging to estimate it!

#### Heuristics:

- Parts-based estimation.
- Use of additional confidence scores.
- Manifold regularization.

Xia+ (NeurIPS2020)

- Berthon+ (ICML2021)
- Cheng+ (CVPR2022)

### Summary: Noisy-Label Learning <sup>23</sup>

Explicit treatment of label noise is necessary:

- Loss correction by noise transition is promising.
- However, noise transition is generally non-identifiable:
  - Recent development allows consistent estimation under mild assumptions.

![](_page_22_Figure_5.jpeg)

![](_page_22_Figure_6.jpeg)

Real-world noise is often input-dependent:

- Heuristic solutions have been developed.
- Further theoretical development is needed.

![](_page_22_Figure_10.jpeg)

![](_page_23_Picture_0.jpeg)

- 1. Weakly Supervised Learning
- 2. Noisy-Label Learning
- 3. Transfer Learning
  - A) Importance Weighting
  - B) Continuous Distribution Shift
- 4. Towards More Reliable Learning

![](_page_23_Picture_8.jpeg)

### Learning under Distribution Shift <sup>25</sup>

#### Given:

- Training data  $\{(m{x}_i^{ ext{tr}},y_i^{ ext{tr}})\}_{i=1}^{n_{ ext{tr}}} \overset{ ext{i.i.d.}}{\sim} p_{ ext{tr}}(m{x},m{y})$
- x : Input y : Output

#### Goal:

• Learn predictor y = f(x) minimizing the test risk (with some additional data from the test domain).

$$\min_{f} R(f) \qquad R(f) = \mathbb{E}_{p_{te}(\boldsymbol{x}, y)}[\ell(f(\boldsymbol{x}), y)] \quad \ell : \mathsf{loss}$$

#### Challenge:

• Overcome changing distributions!

$$p_{\mathrm{tr}}(\boldsymbol{x}, y) \neq p_{\mathrm{te}}(\boldsymbol{x}, y)$$

Non-stationary of the environments.

Sample selection bias due to privacy concerns.

![](_page_24_Figure_12.jpeg)

#### Types of Distribution Shift

26

Class 3

*y* : Output  $oldsymbol{x}$  : Input  $p_{\rm tr}(\boldsymbol{x}, y) \neq p_{\rm te}(\boldsymbol{x}, y)$ Joint shift:  $p_{ ext{tr}}(oldsymbol{x}) 
eq p_{ ext{te}}(oldsymbol{x})$ Covariate shift:  $p_{\mathrm{tr}}(y) \neq p_{\mathrm{te}}(y)$ Class-prior shift:  $p_{\mathrm{tr}}(y|\boldsymbol{x}) \neq p_{\mathrm{te}}(y|\boldsymbol{x})$ Output noise:  $p_{\mathrm{tr}}(\boldsymbol{x}|y) \neq p_{\mathrm{te}}(\boldsymbol{x}|y)$ Class-conditional shift:  $p(y|\boldsymbol{x})$ Positive Training Class 2 Class 1 0.3 0.5 0.2 Test 0.1 **Negative** -0.5

 $\overset{\scriptscriptstyle 0}{x}$ 

5

y

0

2

 $\boldsymbol{x}$ 

3

-5

![](_page_26_Picture_0.jpeg)

- 1. Weakly Supervised Learning
- 2. Noisy-Label Learning
- 3. Transfer Learning
  - A) Importance Weighting
  - B) Continuous Distribution Shift
- 4. Towards More Reliable Learning

![](_page_26_Picture_8.jpeg)

![](_page_26_Picture_9.jpeg)

### **Covariate Shift**

Shimodaira (JSPI2000)

#### Training and test input distributions are different, $p_{tr}(x) \neq p_{te}(x)$ but the output-given-input distribution is unchanged:

$$p_{\mathrm{tr}}(y|\boldsymbol{x}) = p_{\mathrm{te}}(y|\boldsymbol{x}) = p(y|\boldsymbol{x})$$

![](_page_27_Figure_5.jpeg)

Given:

- Labeled training data:
- Unlabeled test data:

$$\frac{(\boldsymbol{x}_{i}^{\mathrm{tr}}, y_{i}^{\mathrm{tr}})}{\{\boldsymbol{x}_{j}^{\mathrm{te}}\}_{j=1}^{n_{\mathrm{tr}}}} \stackrel{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x}, y)}{p_{\mathrm{te}}(\boldsymbol{x})}$$

#### Importance-Weighted Training 29

![](_page_28_Figure_1.jpeg)

How do we estimate the importance?

### Direct Importance Estimation

**2**0

#### Given: training and test input data

$$\{oldsymbol{x}_i^{ ext{tr}}\}_{i=1}^{n_{ ext{tr}}} \stackrel{ ext{i.i.d.}}{\sim} p_{ ext{tr}}(oldsymbol{x}) \qquad \{oldsymbol{x}_j^{ ext{te}}\}_{j=1}^{n_{ ext{te}}} \stackrel{ ext{i.i.d.}}{\sim} p_{ ext{te}}(oldsymbol{x})$$

Kernel mean matching: Huang+ (NeurIPS2006)

 $\bullet$  Match the means of  $\ r({\bm x}) p_{\rm tr}({\bm x})$  and  $p_{\rm te}({\bm x})$  in RKHS  ${\cal H}$  .

$$\min_{r \in \mathcal{H}} \left\| \int K(\boldsymbol{x}, \cdot) p_{\text{te}}(\boldsymbol{x}) d\boldsymbol{x} - \int K(\boldsymbol{x}, \cdot) r(\boldsymbol{x}) p_{\text{tr}}(\boldsymbol{x}) d\boldsymbol{x} \right\|_{\mathcal{H}}^{2} \qquad K(\boldsymbol{x}, \cdot) : \text{kernel}$$

• Fit a model r(x) to  $\frac{p_{te}(x)}{p_{tr}(x)}$  by least squares:

$$\begin{aligned} \operatorname*{argmin}_{r} \left[ \int \left( r(\boldsymbol{x}) - \frac{p_{\mathrm{te}}(\boldsymbol{x})}{p_{\mathrm{tr}}(\boldsymbol{x})} \right)^{2} p_{\mathrm{tr}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \right] \\ = \operatorname*{argmin}_{r} \left[ \int r(\boldsymbol{x})^{2} p_{\mathrm{tr}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} - 2 \int r(\boldsymbol{x}) p_{\mathrm{te}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \right] \end{aligned}$$

They do not estimate  $p_{tr}(x), p_{te}(x)$ , but  $\frac{p_{te}(x)}{p_{tr}(x)}$  directly!

#### Joint Importance-Predictor Estimation <sup>31</sup>

Zhang+

(ACML2020, SNCS2021)

- The classical approaches are two steps:
  - 1. Importance weight estimation (e.g., LSIF):

$$\widehat{r} = \operatorname*{argmin}_{r} J_1(r) \qquad J_1(r) = \mathbb{E}_{p_{\mathrm{tr}}(\boldsymbol{x})} \left[ (r(\boldsymbol{x}) - \frac{p_{\mathrm{te}}(\boldsymbol{x})}{p_{\mathrm{tr}}(\boldsymbol{x})})^2 \right]$$

2. Importance-weighted predictor training:  $\widehat{f} = \operatorname*{argmin}_{f} J_2(f, \widehat{r}) \quad J_2(f, r) = \mathbb{E}_{p_{\mathrm{tr}}(\boldsymbol{x}, y)} \left[ r(\boldsymbol{x}) \ell(f(\boldsymbol{x}), y) \right]$ 

For  $\ell_{te} \leq 1, \ell_{tr} \geq \ell_{te}, r \geq 0$ , the test risk  $R_{\ell}(f) = \mathbb{E}_{p_{te}(\boldsymbol{x},y)}[\ell(f(\boldsymbol{x}),y)]$  can be bounded as  $\frac{1}{2}R_{\ell_{te}}(f)^2 \leq J_{\ell_{tr}}(f,r)$   $J_{\ell}(f,r) = J_1(r) + J_2(f,r)$ 

Joint upper-bound minimization:  $\widehat{f} = \underset{f}{\operatorname{argmin}} \min_{r \ge 0} \widehat{J}_{\ell_{tr}}(f, r)$ 

![](_page_31_Picture_0.jpeg)

- 1. Weakly Supervised Learning
- 2. Noisy-Label Learning
- 3. Transfer Learning
  - A) Importance Weighting
  - B) Continuous Distribution Shift
- 4. Towards More Reliable Learning

![](_page_31_Picture_8.jpeg)

Slides-

### Continuous Class-Prior Shift

Bai+ (NeurIPS2022)

 $\{\boldsymbol{x}_{i}^{(t)}\}_{i=1}^{n_{t}} \overset{\text{i.i.d.}}{\sim} p_{t}(\boldsymbol{x})$ 

 $t = 1, \ldots, T$ 

33

Class-priors  $p_t(y)$  change arbitrarily over time, but class-conditional is unchanged:  $p_{tr}(x|y) = p_t(x|y)$ 

#### Given:

- (Large) labeled training data:  $\{(x_i^{tr}, y_i^{tr})\}_{i=1}^{n_{tr}} \stackrel{\text{i.i.d.}}{\sim} p_{tr}(x, y)$
- (Small) unlabeled test data:
- We use online convex optimization: Hazan (2016)
  - convex loss  $\ell$  (e.g., logistic),
  - linear model  $f(\boldsymbol{x}) = \boldsymbol{w}^{\top} \boldsymbol{x}, \ \ \boldsymbol{w} \in \mathcal{W}$  .
  - $p_{t-1}(y)$  is estimated by black box shift estimation. (ICML2018)

$$\boldsymbol{w}_{t} = \Pi_{\mathcal{W}} \left[ \boldsymbol{w}_{t-1} - \eta \nabla \widehat{R}_{t-1}(\boldsymbol{w}_{t-1}) \right] \qquad \Pi_{\mathcal{W}} : \text{projection}$$
$$\widehat{R}_{t-1}(f) = \frac{1}{n_{\text{tr}}} \sum_{i=1}^{n_{\text{tr}}} \frac{\widehat{p}_{t-1}(y_{i}^{\text{tr}})}{\widehat{p}_{\text{tr}}(y_{i}^{\text{tr}})} \ell(f(\boldsymbol{x}_{i}^{\text{tr}}), y_{i}^{\text{tr}}) \qquad \eta > 0 : \text{step size}$$

Choice of Step Size  $\eta$ 

$$\boldsymbol{w}_t = \Pi_{\mathcal{W}} \left[ \boldsymbol{w}_{t-1} - \boldsymbol{\eta} \nabla \widehat{R}_{t-1} (\boldsymbol{w}_{t-1}) \right]$$

- If the speed of distribution shift is
  - slow,  $\eta$  should be small to keep the previous classifier.
  - fast,  $\eta$  should be large to quickly update the classifier.
- How do we choose  $\eta$  in practice?
  - Ensemble learning! Zhao+ (NeurIPS2020)
- For  $0 < \eta_1 < \cdots < \eta_M$ , we run *M* learners:

$$\boldsymbol{w}_{t}^{(m)} = \Pi_{\mathcal{W}} \left[ \boldsymbol{w}_{t-1}^{(m)} - \eta_{m} \nabla \widehat{R}_{t-1}(\boldsymbol{w}_{t-1}^{(m)}) \right]$$

Final output is the weighted average (cf. Hedge):

 $\boldsymbol{w}_{t} = \sum_{m=1}^{M} p_{t}^{(m)} \boldsymbol{w}_{t}^{(m)} \qquad p_{t}^{(m)} \propto \exp\left(-\varepsilon \sum_{s=1}^{t-1} \widehat{R}_{s}(\boldsymbol{w}_{s}^{(m)})\right) \quad \varepsilon = \Theta\left(\sqrt{\frac{\ln M}{T}}\right)$ 

#### **Theoretical Analysis**

35

Shift intensity: 
$$V_T = \sum_{t=2}^T \sum_{y=1}^c |p_t(y) - p_{t-1}(y)| \ge \Theta(T^{-\frac{1}{2}})$$

• When  $V_T$  is known:

• Online learning with step size  $\eta = \Theta(V_T^{\frac{1}{3}}T^{-\frac{1}{3}})$  achieves the optimal dynamic regret:

$$\mathbb{E}\left[\sum_{t=1}^{T} R_t(\boldsymbol{w}_t) - \sum_{t=1}^{T} \min_{\boldsymbol{w} \in \mathcal{W}} R_t(\boldsymbol{w})\right] = \mathcal{O}(V_T^{\frac{1}{3}}T^{\frac{2}{3}})$$
  
Risk of our model Risk of the best model at each iteration

Even when  $V_T$  is unknown:

Our method still achieves the optimal dynamic regret!
 ■ Number of learners: M = 1 + [<sup>1</sup>/<sub>2</sub>log<sub>2</sub>(1 + 2T)]
 ■ Step size: η<sub>m</sub> = 2<sup>m-1</sup>Z/√T, m = 1,..., M

### Continuous Covariate Shift

Zhang+ (arXiv2023)

 $t = 1, \ldots, T$ 

36

Input density  $p_t(x)$  change arbitrarily over time, but output-given-input is unchanged:  $p_{tr}(y|x) = p_t(y|x)$ 

#### Given:

- (Large) labeled training data:  $\{(\boldsymbol{x}_i^{\mathrm{tr}}, y_i^{\mathrm{tr}})\}_{i=1}^{n_{\mathrm{tr}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x}, y)$
- (Small) unlabeled test data:

#### We use online density ratio estimation:

![](_page_35_Figure_7.jpeg)

Stay tuned!

 $\{\boldsymbol{x}_{i}^{(t)}\}_{i=1}^{n_{t}} \overset{\text{i.i.d.}}{\sim} p_{t}(\boldsymbol{x})$ 

![](_page_36_Picture_0.jpeg)

- 1. Weakly Supervised Learning
- 2. Noisy-Label Learning
- 3. Transfer Learning
- 4. Towards More Reliable Learning

![](_page_36_Picture_6.jpeg)

### Beyond Importance Weighting? <sup>38</sup>

#### Limitation of importance weighting:

- The training domain must cover the test domain.
- What if the test domain sticks out from the training domain?
  - Feature matching

![](_page_37_Figure_5.jpeg)

Ben-David+ (NeurIPS2006), Ganin+ (ICML2015)

• However, considering covariate shift is still essential.

![](_page_37_Figure_8.jpeg)

 $p_{\mathrm{te}}$ 

 $p_{\mathrm{tr}}$ 

### Joint Shift

#### Many distribution shift works focus on a particular shift type (e.g., covariate shift):

 $p_{\mathrm{tr}}(\boldsymbol{x}) \neq p_{\mathrm{te}}(\boldsymbol{x}) \qquad p_{\mathrm{tr}}(y|\boldsymbol{x}) = p_{\mathrm{te}}(y|\boldsymbol{x})$ 

• However, identification of the shift type is challenging.

Label noise is also a type of distribution shift:

$$p_{\rm tr}(\bar{y}|\boldsymbol{x}) = \sum_{y} p(\bar{y}|y, \boldsymbol{x}) p_{\rm te}(y|\boldsymbol{x})$$
Noise transition

 $\overline{\mathcal{Y}}$  : Noisy class label

- Nice theory for input-independent noise.
- But input-dependent noise is hard.

Let's consider joint shift:

 $p_{\mathrm{tr}}(\boldsymbol{x},y) \neq p_{\mathrm{te}}(\boldsymbol{x},y)$ 

![](_page_38_Figure_11.jpeg)

### Mini-Batch-Wise Loss Matching <sup>40</sup>

#### Given:

Fang+ (NeurIPS2020)

- (Large) labeled training data:
- (Small) labeled test data:

$$\{ (\boldsymbol{x}_{i}^{\text{tr}}, y_{i}^{\text{tr}}) \}_{i=1}^{n_{\text{tr}}} \stackrel{\text{i.i.d.}}{\sim} p_{\text{tr}}(\boldsymbol{x}, y) \\ \{ (\boldsymbol{x}_{j}^{\text{te}}, y_{j}^{\text{te}}) \}_{j=1}^{n_{\text{te}}} \stackrel{\text{i.i.d.}}{\sim} p_{\text{te}}(\boldsymbol{x}, y)$$

We try to learn the importance weight dynamically in the mini-batch-wise manner.

$$f \leftarrow f - \eta \nabla \widehat{R}(f)$$
  $\eta > 0$  : step size

For each mini-batch  $\{(\tilde{x}_i^{tr}, \tilde{y}_i^{tr})\}_{i=1}^{\tilde{n}_{tr}}, \{(\tilde{x}_j^{te}, \tilde{y}_j^{te})\}_{j=1}^{\tilde{n}_{te}},$ importance weights are estimated by kernel mean matching for loss values:

$$\frac{1}{\tilde{n}_{\mathrm{tr}}} \sum_{i=1}^{\tilde{n}_{\mathrm{tr}}} \boldsymbol{r_i} \ell(f(\tilde{\boldsymbol{x}}_i^{\mathrm{tr}}), \tilde{y}_i^{\mathrm{tr}}) \approx \frac{1}{\tilde{n}_{\mathrm{te}}} \sum_{j=1}^{\tilde{n}_{\mathrm{te}}} \ell(f(\tilde{\boldsymbol{x}}_j^{\mathrm{te}}), \tilde{y}_j^{\mathrm{te}})$$

![](_page_39_Picture_10.jpeg)

### **Future Challenges**

#### For joint shift, requiring labeled test data is too strong.

- Can we perform joint shift adaptation from weak supervision?
- Can we extend it to continuous joint shift?
- Can we extend it to a limited-memory setting?

![](_page_40_Figure_5.jpeg)

- In real-world application, updating the system online is dangerous because new data can be malicious:
  - Updating the system periodically (daily, etc.) is practical.
  - But we want the system to reflect the latest data.
  - Can we systematically use a **buffer** for temporary update?

![](_page_41_Picture_0.jpeg)

![](_page_41_Picture_1.jpeg)

| Team leader             | Research scientist        |
|-------------------------|---------------------------|
| Masashi Sugiyama        | Gang Niu                  |
| Postdoctoral researcher | Postdoctoral researcher   |
| Jingfeng Zhang          | Jiaqi Lyu                 |
|                         |                           |
| Postdoctoral researcher | Senior visiting scientist |
| Shuo Chen               | Shinichi Nakajima         |
| Visiting scientist      | Visiting scientist        |
| Futoshi Futami          | Florian Yger              |
| racosmilatami           |                           |
| Visiting scientist      | Visiting scientist        |
| Takashi Ishida          | Miao Xu                   |
| Visiting scientist      | Visiting scientist        |
| Takavuki Osa            | BoHan                     |
|                         | bornan                    |
| Visiting scientist      | Visiting scientist        |
| Takahiro Mimori         | Feng Liu                  |
| Visiting scientist      | Visiting scientist        |
| Loi Fong                | Tongliang Liv             |
| Leireilg                | rongitalig Liu            |
| Part-time worker I      | Part-time worker I        |
| Masahiro Fujisawa       | Yifan Zhang               |
|                         |                           |

#### and many great interns!

# Grateful to Collaborators!

- Professor
  - Masashi Sugiyama (Complexity, Computer, Information, RIKEN)
- Associate Professor
  - Naoto Yokoya (Complexity, Computer, Information, RIKEN)
- Lecturer
  - Takashi Ishida (Complexity, Computer, Information)
- Project Lecturer

   <u>Nobutaka Ito</u> (Complexity)
- Professor (to <u>Sato Lab</u> from April 202
   <u>Issei Sato</u> (Computer, Informati
- Project Assistant Professor
   Chao-Kai Chiang (Complexity)
- Project Researcher (Postdoctoral Rese
   <u>Dongxian Wu</u> (Complexity)
- Project Specialist
  - Yuko Kawashima (Complexity)
  - Soma Yokoi (Complexity)
  - Fumi Sato (Complexity)

![](_page_41_Picture_19.jpeg)

- Doctoral Student
  - Shinji Nakadai (Computer)
  - Ryuichi Kiryo (Computer)
  - <u>Jongyeong Lee</u> (Computer)
  - Tianyi Zhang (Complexity)
  - <u>Yivan Zhang</u> (Computer)
  - Riou Charles (Computer)
  - Valliappa Chockalingam (Comput
  - Tongtong Fang (Complexity)
  - Boyo Chen (Complexity)
  - Xiaoyu Dong (Complexity)
  - Yujie Zhang (Complexity)
  - <u>Xinqiang Cai</u> (Complexity)
  - Jian Song (Complexity)
  - Wanshui Gan (Complexity)
  - Yuting Tang (Complexity)
  - Shintaro Nakamura (Complexity)
  - Or Raveh (Complexity)
  - Johannes Ackermann (Computer
  - <u>Wei Wang</u> (Complexity)
  - Hongruixuan Chen (Complexity)
  - Huanjian Zhou (Complexity)
  - $\circ~$  Zhiyuan Zhan (Complexity)
  - Zhihao Liu (Complexity)

![](_page_41_Picture_44.jpeg)

![](_page_41_Picture_45.jpeg)

- Master Student
  - Hyunggyu Park (Complexity)<u>\* Sato lab.</u>
  - Jiahuan Li (Computer)
  - Kun Yang (Complexity)
  - Xiaomou Hou (Complexity)
  - Anan Methasate (Computer)
  - Cemal Erat (Computer)
  - Kento Yamamoto (Computer)
  - Kazuki Ota (Computer)
  - Iu Yahiro (Computer)
  - Hikaru Fujita (Computer)
  - Yu Yao (Complexity)
  - Yoshifumi Nakano (Complexity)
  - Soichiro Nishimori (Complexity)
  - Ryota Ushio (Complexity)
  - Tiankui Xian (Complexity)
  - Thanawat Lodkaew (Computer)
  - Masahiro Negishi (Computer)
  - Yuto Nozaki (Computer)
  - Kanta Shimizu (Computer)
  - Zhongle Zhu (Computer)
  - Fang Liu (Computer)
  - Ming Li (Complexity)
  - Luheng Wang (Complexity)
  - Liuzhuozheng Li (Complexity)
  - Research Student
    - Meike Tütken (Computer)
    - Serhii Khomenko (Information Science)
    - Artem Lubkivskyi (Information Science)