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e Director: RIKEN AIP, Japan
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What is "RIKEN"?

Name in Japanese: IE{tZE®ZEFT

o

e Pronounced as: rikagaku kenkyusho
e Meaning: Physics and Chemistry Research Institute

Acronym in Japanese: #f (RIKEN)



What is RIKEN-AIP? 4
MEXT Advanced Intelligence Project (2016-2025):

e 130 employed researchers (36% international, 23% female)

e 200 visiting researchers, 100 domestic students

e 140 international interns (total)
Missions: et

e Develop new Al technology (ML, Opt, math)

e Accelerate scientific research (cancer, material, genomics)

e Solve socially critical problems (disaster, elderly healthcare)

e Study of ELSI in Al (ethical guidelines, personal data)

e Human resource development (researchers, engineers) .= *
Distributed offices ;::nda.
across Japan ‘, @
shiad ‘g.,
Main office in the » Kygt:rg\lagoy:okyo
heart of Tokyo Faakuﬁka

5@ rv'
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Selected Research

Developing New Al Technolog

Theory of deep learning:
e Better prediction than shallow learning
e No curse of dimensionality El|fz — £*112,] < exs + O(T~7557)
e Global optimization S1,52:55: Smoothness
Developing new methods:
e Weakly supervised learning
e Noise robust learning
e Causal inference

Gaussian
/N noise

SGD
Weakly Supervised Classification Noise Transition Correction Causal Inference
Various weakly supervised classification problems Noise transition matrix T': 7= e : H
can be solved by isk-rewriing systematcally! o ) omie  in the Presence of Hidden Cause
8 by ng o » Clean-to-noisy flipping probability. o T o i
L o Major approaches: re.s e & In causal inference, how to handle

 Loss correction by T~ to eliminate noise. hidden cause is a big challenge! T2y, e
 Classifier adjustment by T to simulate noise. -
We want to estimate T' only from noisy data: We developed the first method  [ew —#{=]
* Use human cognition as a “mask” for T'. to estimate the entire structure
Learn T'and a classifier dynamically. in the presence of hidden cause:

» Decompose T into simpler companents.
*Regularize T' to be estimable.
 Extension to input-dependent noise 7).

» Speech separation technique is
emplayed to separate hidden cause
Maoda 8 Shimiz (AISTATS2020, UAIZ021)

Accelerating Scientific Research

Medical science:
e Prostate/pancreatic cancer detection
e ALS early diagnosis
e Fetal heart screening
e Colonoscopy

Material science:
e Database creation with text mining

Data-driven science: bt Seoratinten

e Selective inference for
reliability evaluation

e Remote sensing disaster analysis
Elderly healthcare:

e Chat-robot-guided
cognitive function improvement

Education:
e Automatic essay evaluation
e Interactive essay writing support

Smoking <hould be banned! 1t causes bad
‘reath and makes your clothes stinky!

. Functional Contrast ostimate
Seed region  connectivity map with 95% C.l.

Studying AI-ELSI

Al Ethical guidelines:

e Japanese Society for Al, Ministry of Internal
Affairs and Communications, Cabinet Office

e |[EEE, G20, OECD
Personal data management:
e Individual-based accessibility control system
Al security and reliability:
e Adversarial attack/defense
e Fairness faking/guarantee

ETHICALLY :
ALIGNED DESIGN < &5
irst Edi

First Edition

personal device

=t personal app. £ T
PLR 125}
. encrypted data | ' FA_
BEGEHIENY |

=FESEO ° Cloud strage
L= AMZEEE & L 2
"J ‘r‘ = >~ (Google Drive, Drpbox)
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v

‘ PLR

PR corporate app.
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e
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Today’'s Topic:
Robust Machine Learning

Goal: Develop novel ML theories and
algorithms that enable reliable learning
from limited information.

e Label noise: human error, sensor error.

e |Insufficient information: weak supervision.
e Data bias: changing environments, privacy.
e Attack: adversarial noise, distribution shift.
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Supervised Learning with Noisy Output 8

Classification (label flipping noise)

Regression (additive noise)
x*  Class 2

— Class 1 o
i (337;, y’l/) o ¢ x X o, X
o _
a ° e © Target O © y (a:z-, y@)
5 ® ° ® function o
O < ¢ True
> boundary
o

Input @
V:loss ¢: classifier

win S (io@))
. ; Y : noisy output

Hasn't such a classic problem been solved?

e Regression: Yes, big data yields consistency.
e Classification: Specific noise reduction mechanism is
needed to achieve consistency!



Classical Approaches )

Unsupervised outlier removal: x g
e Substantially more difficult than classification.
Robust loss: X
e Works well for regression, s & EE=
but limited effectiveness \\ hinge | /
for classification. Huber Ramp 2
Classificationmargin | \__/
Regularization: " Residual

o) * Regularized

e Effective in suppressing overfitting, [ |
but too smooth for strong noise. L Non-regularizec

Need new approaches! b TR0

[2- reg u |a rizati on https://en.wikipedia.org./wizi/Overfitting
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Formulation 11

Clean training data: {(z,, y:)}", "5 p(, y)

Noisy training data: {(z:, 71", "% p(z, 7)

x € RY :Input instance
y € {1,...,c} :Clean class label
y € {1,...,c}:Noisy class label

Probabilistic classifier in simplex: h(z) e A“!

e Each element approximates  class1 . x Class2
the class-posterior probability. — ,° | , ax
o X
hy(x) ~ p(y|x) 0 o \_x

Loss: l(y,h(x)) € R o, \Boundary

o



Modeling Class-Conditional Noise 4

. oy . = 0
Noise transition matrix: T}, ; = p(y|y) y 0!0_8 -
e Probability of flipping y to v . 05(05] 0

We may encode human-cognitive bias: Yy

B EEEEEEEE TR i

("8 B SESE = “ESEEEEN | SHEEEEE

AN  H EEEE EEEEEE BN EEEEEEN

wHEE B EEEN NN

5> HEN EEEE EEE I

~HEN B EEEN EEE & | _
1R B "R = e lﬁ Han, Yao, Niu, Zhou, Tsang,
=== = =..l I.I._ Zhang & Sugiyama (NeurlPS2018)
(a) Column-diagonal (c) Block-diagonal

Visualization as a simplex:  znang, Niu & Sugiyama (icML2021)

Clean Symmetric Pairwise General

(L:O)T

(0,1,0) I(o,o, 1"




. oss Correction 13

Patrini, Rozza, Menon, Nock & Qu (CVPR2017)

Forward correction: Add noise by T
o £7(h(z)) = &(T h(z)) C;(h(x))="L"(y,h(z))

Classifier-consistency

argmin By (a5 (07 (y, h(x))] = argmin By s, ) (y, h(z))]

Backward correction: Remove noise by T+
o L7 (h(x)) =T 'L(h(x))

Classifier-consistency

arginin Esz5 L (v, h(x))] = al“glllniﬂ Ep(z.) (Y, h(x))]

Risk-consistency

Ve, Epgla) ™ (v, h(2))] = Epgyja) [€(y, h(z))]

If T" Is given, consistency can be guaranteed!



ldentifiability of Noise Transition '

In practice, we need to estimate T
from noisy training data {(x;, y;) } '

However, 1" is non-identifiable in general:

e T'can be decomposedas T'=UYV,
where U,V are some transition matrices.

e Then p, = Tpr Ty y p(y|y)
— V' (U p,) Paly = p(y|x)
-pw-y — p(y "B)

Let’'s use anchor points (100%-certain samples):
{z? | p(y|z?) = 1}2:1



Estimation of Noise Transition 15

with Anchor Points

Given anchor points {z? | p(y|z?) = 1}y 1,
Uy = (y\y) can be naively estimated as

Zp p(y' ") = p(gla) ~ hy(a)

o h(x ) is a probablllstlc classifier learned

from noisy training data {(@;, ;) }i—; .

Even if anchor points are unknown,
as long as they exist in noisy training data,
we may find them as =¥ + x; s.t. h,(x;) ~ 1.



Further Improvements 16

¥ < x; s.t. hy(x;) ~ 1

We typically use deep learning to obtain h(x):
e Then it is often over—confldent and unreliable.

Dat Empirical distribution Estimated distribut

Zhang, Niu & Sugiyama
(ICML2021)

Estimated T is revised during classifier training:
Xia, Liu, Wang, Han, Gong, Niu & Sugiyama (NeurlPS2019)

g(x) = B(¥|X)

g(X) = P(Y|X )

Xewljos

T|(F 4 a7) g(0) = P(YIX) :-‘

(T 5 AT)

Instead of expllc:ltly flndlng anchor points,
latent labels are utilized: y; = argmax,, hy (z;)

Yao, Liu, Han, Gong, Deng, Niu, Sugiyama & Tao (NeurlPS2020)
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Challenge

Current approaches are in two-step:
1. Estimate transition matrix 1I".

2. Use estimated T' to train a classifier h(x).

Step 1 Is done without regard to Step 2.

e Estimation error of T'in Step 1
can be magnified in Step 2.

We want to estimate T and h(x)
simultaneously in one-step.

18



Naive Solution 19

Naively, we may learn the noise transition and
classifier at the same time as

1[1}12 {‘15(50,@) [f(gv UTh(.’IJ))]

However, the solution is not unique:

e With any invertible transition matrix Q,
any (U h) (Q~ 'T Q pw)are solutions.

Ty =0Wy) [Pzly =p(y|x)

We need a certain constraint to obtain
the right solution: (U, h) = (T, p.,)



Total Variation Regularization 20

Zhang, Niu & Sugiyama (ICML2021)

Noise transition p, — U ' p_, is contraction
In total variation distance:

T T
HU Py — U pa:’Hl < pr _paz’Hl

Pzly = p(y|)
e Cleaner class-posteriors have

larger total variation distances!

Let's use this knowledge as a regularizer:
min | By 5)[£(, U' h(x))] = AEy (@) pa) | P () — (fB')Hl}
e Under the anchor point assumption, A>0
the empirical solution has statistical consistency.




Contents

Noisy-Label Learning

A) Technical background

B) Single-step approach

c) Beyond anchor points

D) Further challenges

Weakly Supervised Learning
Transfer Learning

Summary

21



Challenges

z? [ plylz?) = 1},

To overcome the non-identifiability of T':
e Anchor points are explicitly used.

This condition has been relaxed to:
e Only the existence of anchor points is assumed.

Can we further relax this assumption?

22



Non-identifiability of T
T' can be visualized as a simplex,
containing all training data.
Generally, such a simplex is not unique.

Anchor points are vertices of the true simplex.
e Explicitly using anchor points naively recovers T'.

23



Non-identifiability of 7 (cont.) 24

Only the existence of anchor points still guarantees
the identifiability of T'.

Even without anchor points, “sufficiently scattered”
training data can guarantee the consistency
(with the algorithm in the next page).




Volume Minimization 29
Li, Liu, Han, Niu & Sugiyama (ICML2021)
Under the “sufficiently scattered” assumption,
minimizing the volume of the transition matrix
guarantees consistency!

min | Epe 5 [((7, U h(@))] + Mogdet(U)| X\ > 0
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Beyond Class-Conditional Noise 4’

Class-conditional Instance-dependent

Instance-independence
INn class-conditional noise
IS restrictive.

Instance-dependent noise: Ty,g(x) = p(Fly, )

e Extremely challenging problem!

Various heuristic solutions: Xia, Liu, Han, Wang,
_ _ Gong, Liu, Niu, Tao

e Parts-based estimation & Sugiyama (NeurlPS2020)

Berthon, Han,Niu, Liu

e Use of additional confidence scores & sugiyama (1cmL2021)

. - : Cheng, Liu, Ning, Wang, Han, Niu,
e Manifold regularization Gao & Sugiyama (CVPR2022)



Co-teaching 28

Memorization of neural nets: Zﬁ;ﬁ‘; otal &'@'ﬂggg]g

e Stochastic gradient descent fits clean data faster.  ,° tx_*,

. : © "o
e However, naive early stopping does not work well. o < *

“Co-teaching” between two neural nets: o

e [each small-loss data each other.
Han, Yao, Yu, Niu, Xu, Hu, Tsang & Sugiyama (NeurlPS2018)

r
|
|
|
e Teach only disagreed data. () |
O
\

Yu, Han, Yao, Niu, Tsang & Sugiyama (ICML2019)

e Gradient ascent for large-loss data.
Han, Niu, Yu, Yao, Xu, Tsang & Sugiyama (ICML2020)

No theory but very robust in experiments:
e Works well even if 50% random label flipping!

rrrrr



Summary: Noisy-Label Learning 2%°

Classification requires explicit treatment of label noise:
e L oss correction by noise transition is promising.

Tyy = p(yly)

However, noise transition Is
generally non-identifiable.

e Recent development allows its consistent
estimation under mild assumptions.

Real-world noise is often instance-dependent:
e Heuristic solutions have been developed. .

——————

Super-robustness by co-teaching: b O
e Heuristic solutions have been developed. o.o

______



Contents

Noisy-Label Learning
Weakly Supervised Learning
Transfer Learning

Summary

30



Weakly Supervised Learning 31

Fully supervised data is expensive to collect.

Weakly supervised data Positive. Negalive
can be collected easily: 0 % | x x*
o

e Ex.) Click prediction inonline ads: o ° | x«
It is easy to automatically collect Positive
B Clicked ads (positive), ho | 7 ¢
B Unclicked ads (unlabeled). \

Learning only from P and U data °g=@!® a
iS pOSSi ble! du Plessis et al. (NIPS2014, ICML2015, MLJ2017),

Niu et al. (NIPS2016), Kiryo et al. (NIPS2017), Hsieh et al. (ICML2019)

e Regard U data as noisy N data and correct the loss.
e Statistically consistent. 0, (1 / \/ﬁ)



Solution (Sketch) 32

Given: Positive and unlabeled data ™" 5ot ot s,

(@b, W opaly = +1) {=)}Y, N p(@)
Decomposmon of the classification rlsk.

R(f) = Ko, 0) [ (yf( )H ¢ :loss gla:sspp(r?or:(a;;izn:ed known)
= TEp(2|y=11) [E (f(w))] + (1 = m)Ep(a)y=—1) [f( - f(w))]

Risk for positive data Risk for negative data
Eliminate the expectation over negative data as

Epa | £( = @) | = 7By i) [¢( — F@))

p(x) = mp(xly = +1) + (1 — m)p(x|ly = —1)
Unbiased risk estimation:

Rey (f Zﬁ( P))+%§:€(—f(w?)) -3 f@h)



Theoretical Properties (Sketch) 32

Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)
np ny

Reu(f) = =3 e(f@)) + =3t~ s(a)) - S sah)

=1 =1l =1

Optimal parametric convergence rate:

R(feu) — R(f*) < C( )(jf,% | \/1TU):OP<\/”'1’TP I \/jTU)

f PU = argming RPU( f) with probability 1 — ¢
f* - argmmf R(f) R(f) — Ep(ar:,y) [f (yf(a’:))]

Risk correction further improves the performance
Kiryo, Niu, du Plessis & Sugiyama (NIPS2017)

Reu(f) = = 3 ¢(f(@F) ) +max {oa Y t(~s(a!)) - iﬁ(—f(wf))}



Semi-Supervised Classification 34
(Positive-Negative-Unlabeled Classification)

Sakai, du Plessis, Niu & Sugiyama (ICML2017)

Let's decompose PNU into PU, PN, and NU:

e Each is solvable. Positive  Negative
e Let's combine them! PNU 72°_ D':'x Xg
. . O O )(D x X0
Without cluster assumptions, Do;’” S| 9 %0,
PN classifiers are trainable! o_ool ™ xg
Unlabeled
Op(l/\ﬁnp—l—l/\/inN—l—l/\/inU) anee
PUDZOD DD 0 PN oo )(x NUDD i DDX XD
o O o o0 Y4 % X o x 0
OOU Ol o I:Il:l oO xx 0O ol g xuu
DODUOU o o X x DEDD OX xg



Various Extensions 35

Learning from weakly supervised data is
possible in many different forms!

Positive-Unlabeled

du Plessis et al. (NIPS2014, ICML2015, MLJ2017)
Niu et al. (NIPS2016),, Kiryo et al. (NIPS2017)
Hsieh et al. (ICML2019)

Positive-confidence
70% o

95% O o) °
0 20%
OO of 5%°

Ishida et al. (NeurlPS2018)
Shinoda et al. (IJCAI2021)

Semi-Supervised

Unlabeled-Unlabeled .80 | 8 %,
g O o o °°° 0 o,
2 o oo ©
© oo o o_ool B xg
oo a o
oo o |
o Sakai et al. ICML2017, ML2018)
o oo
ofo 0O Op
o o %o Similar-Dissimilar
gool® o

a
Bao et al. (ICML2018)
Shimada et al. (NeC02021)
Dan et al. (ECMLPKDD2021)
Cao et al. (ICML2021)
Feng et al. (ICML2021)

du Plessis et al.,(TAAI2013)

Lu et al. (ICLR2019, AISTATS2020)
Charoenphakdee et al. (ICML2019)
Lei et al. (ICML2021)

0,(1/vn)



Multiclass Methods 36

Labeling patterns in multi-class Class 2
problems is extremely painful.

Multi-class weak-labels:
e Complementary labels:

Specify a class that a pattern ishida et al. Boundary
" 1 (NIPS2017, ICML2019)
does not belong to ( not 1 ) Chou et al. (ICML2020)
e Partial labels: Specify a subset of classes Feng et al.
: « ” (ICML2020, NeurlPS2020)
that contains the correct one (“1 or 27). Lv et al. (ICML2020)

e Single-class confidence: caoetal (arxiv2021)
One-class data with full confidence
(“1 with 60%, 2 with 30%, and 3 with 10%°7)

Similar loss correction is possible! O, (1/\/5)



Summary: Weakly Supervised Learning 37

We developed an empirical risk minimization
framework for weakly supervised learning:

e Any loss, classifier, and optimizer can be used.
e Statistical consistency with optimal convergence.

Sugiyama, Bao, Ishida,
Lu, Sakai & Niu,
Machine Learning from
Weak Supervision:
An Empirical Risk
Minimization Approach.

Supervised

P N, U, S, D, Pconf,

Semi- Nconf, Sconf, Dconf.... g MIT Press, August 2022.
supervised Comp, Partial, SCconf... O
Different weak information g’ :;:‘\;‘vee::as';;';gwsion
. can be systematically [ gy
Unsupervised combined! e i oD
NJ vd

Classification accuracy

High

Masashi Sugiyama, Han Bao,
Takashi Ishida, Nan Lu, Tomoya Sakai,
and Gang Niu
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Transfer Learning 39

e Training data {( Er,y@ )}n; LR Ptr(w,y) |

Goal:

e Train a predictor y = f(x)
that works well in the test domain
(with some additional data from the test domain).

mfin R(f) R(f)=E, (xynll(f(x),y)]

¢ : loss function
Challenge:

e Overcome changing distributions!
ptr(ma y) # pte(wa y)
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~ NIPS Workshop 2006 - Whistler

NIPS Workshop on Learning when Test and Training Inputs Have
Different Distributions, Whistler 2006

Learning when Training and Test Inputs Have Different

Distributions
Workshop Saturday December 9, 2006

Org: Joaquin Quifionero-Candela, Anton Schwaighofer, Neil Lawrence & Masashi Sugiyama

Learning when test and training inputs have different distributions

Joaquin Quifionero Candela - Masashi Sugiyama - Anton Schwaighofer - Neil D Lawrence
Morning session: 7:30am—10:30am

Sat Dec 09 05:00 PM —- 05:00 PM (JST) @ Nordic 7:30am  Opening, The organizers

7:40am  When Training and Test Distributions are Different: Characterising Learning
Transfer, Amos Storkey, University of Edinburgh

Event URL: http://ida first.fraunhofer.de/projects/different06/ »
&:10am  Can Adaptive Regularization Help?,

Many machine learning algorithms assume that the training and the test data are drawn from the same Maithias Hein, Max Planck Institute for Biological Cybernetics
distribution. Indeed many of the proofs of statistical consistency, etc., rely on this assumption. However, in S:d0am  coffee break
practice we are very often faced with the situation where the training and the test data both follow the same S$-50am  Learning Classifiers in Distribution and Cost-sensitive Environments,
conditional distribution, p(y|x), but the input distributions, p(x), differ. For example, principles of experimental Nitesh Chawla, University of Notre Dame
design dictate that training data is acquired in a specific manner that bears little resemblance to the way the 9:20am  Optimality of Bayesian Transduction - Implications for Input Non-stationarity,
. . . . . . Lars Kai Hansen, Technical University of Denmark
test inputs may later be generated. The aim of this workshop will be to try and shed light on the kind of _
. . .. . . . . .. X . .. 9:50pm  Estimating the Joint AUC of Labelled and Unlabelled Data,
situations where explicitly addressing the difference in the input distributions is beneficial, and on what the Thomas Garer, Gemma Garriga, Thorsten Knopp, Peter Flach and Stefan Wrobel
most sensible ways of doing this are. 10:10am A Domain Adaptation Formal Framework Addressing the Training/Test

Distribution Gap,
Shai Ben-David, University of Waterloo and John Blitzer, University of Pennsylvania

Afternoon session: 3:30pm—6:30pm

—  DATASET SHIFT IN

MACHINE LEARNING 3:30pm  Projection and Projectability,
David Corfield, Max Planck Institure for Biological Cybernerics

B JOARUIN QUINONERD-CANDELA, MASASHI SUGITAMA, T s s . o . . . .
ANTON SCHWAIGHOFER, AND NEIL 0. LAWRENCE . 4:00pm  Using features of probability distributions to achieve covariate shift,

Arthur Gretton, MPI for Biol. Cyb. and Alex Smola, National ICT Australia

4:20pm  Active Learning, Model Selection and Covariate Shift,

Quifionero-Candela, Sugiyama, Masashi Sugiyama. Tokyo Insitie of Technology
Schwaighofer & Lawrence (Eds.), e
Dataset Shift in Machine Learning, i Glaheson MIT and Sam Rowes Unversiy of Toente
MIT Press, 2009. o L s, Univeriy o Washisgon

S:d0pm  discussion, everyone




Various Scenarios 41
: lnput Y : Output

Full-distribution shift: Per (X, Y) # Pre(T,y)

Covariate shift: Pir(T) 7 Pre()
Class-prior shift: Per(y) # Pre(y)
Output noise: Per(y|x) # pre(ylx)
Class-conditional shift:  pu(|y) # pre(x|y)
% Training Positive”\ Class 2
. 0al 5 Class 1| x*
’ x % 0,4
0.2} ',' '1‘ o° o %
0.1t ' “\ _ ° x
' ] Negative
o




Classical Approach 42

for Transfer Learning

Two-step adaptation:
1. Importance weight estimation:

~ . Pte\L, Y
0 = arggm Eptr(m,y) {D (w(w,y), ptré:n y%)]

2. Weighted predictor training:
Sugiyama & Kawanabe,
Machine Learning

f=argminBy, o [0@. U@ )]

MIT Press, 2012

AN

However, estimation error in Step 1
IS not taken into account in Step 2.

e \We want to integrate these two steps!



Joint Weight-Predictor Optimization 43

Covariate shift: Only input distributions change.
ptr(m) ?é pte(m) ptr(y!zc) — pte(y]a:) Shimodaira (JSPI2000)

Suppose we are given

e Labeled training data: {(=!", y")}m, "X

— ~ ptr(way)
e Unlabeled test data: {zleyre K pe ()

Minimize a risk upper bound jointly ..., 22
w.r.t. weight w and predictor f: Ji.(f,w) > Re, (f)°

AN

f =argminmin Jp, (f,w)  Re(f) = Ep, (@ l(f(2),y)]

>0
d - Ete S 1 gtr 2 Ete
Jg : Empirical approximation of Jy

e [heoretical guarantee:
Re, (F) < V2min By, (f) + Op(ng " + i)



Dynamic Importance Weighting **

General changing distributions: pu(x,y) # pie(2, y)
Suppose we are given

e Labeled training data: {(z, )}, "5 pu(@, )
e Labeled test data: {(25°, ;) e K e, y)
For each mini-batch {(z!", ")}, {(&te, 7i°) 1,
importance weights are estimated by s

matching losses by kernel mean matching:

Huang et al. (NeurlPS2007)

- me(f( z),5i) = — > (&), 75°)

Extremely simple, but highly powerful!



Summary: Transfer Learning  4°

In transfer learning with importance weighting,
simultaneously estimation of importance and

predictor is promising.
What should we do if training and test
distributions look very different?

e Mechanism transfer! Teshima, Sato & Sugiyama (ICML2020)
Independent d1 q2 q3 -+ {Tar
components
“Mechanism” fal = | f= f =
| | | |
Observed T y[ yl S0 ’
data | v | g e

Bai, Zhang, Zhao,
Sugiyama & Zhou

New work: Continuous distribution change. ~"{Zl5s5055)
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More Challenges in
Reliable Machine Learning

Reliability for expectable situations:

e Model the corruption process explicitly
and correct the solution.
B How to handle modeling error?

Reliability for unexpected situations:

e Consider worst-case robustness (“min-max”).
B How to make it less conservative?

e Include human support (“rejection”).
B How to handle real-time applications?
Exploring somewhere in the middle
would be practically more useful:

e Use partial knowledge of the corruption process.
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Learning

Method
Decomposing ML research into

conceptually orthogonal topics:
e Model

e Learning method

e Regularizer

e Optimizer

Noise-robust
Adversarial
Transfer
Reinforcement
Weakly supervised
Semi-supervised
Unsupervised
Supervised

Linear  Additive Kernel Deep

Theory <) Application



Further Investigations Needed 42

Classical convex learning methods \/
allow us to analyze the global solution.

Since optimization in deep learning is complex,
stochastic gradient descent is used.

Thanks to the “gradual learning” nature,

we can utilized intermediate learning results:

e Strengthening supervision for weakly supervised learning.

e Dynamic importance weighting for transfer learning.

e Dynamic noise transition estimation for noise-robust learning.
e Co-teaching for noise-robust learning.



