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What is “RIKEN”?

Name in Japanese:     理化学研究所

 Pronounced as:
 Meaning:

Acronym in Japanese: 理研 (RIKEN)
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Physics and Chemistry Research Institute
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What is RIKEN-AIP?
MEXT Advanced Intelligence Project (2016-2025):
 130 employed researchers (36% international, 23% female)
 200 visiting researchers, 100 domestic students
 140 international interns (total)
Missions:
 Develop new AI technology (ML, Opt, math)
 Accelerate scientific research (cancer, material, genomics)
 Solve socially critical problems (disaster, elderly healthcare)
 Study of ELSI in AI (ethical guidelines, personal data)
 Human resource development (researchers, engineers)
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Today’s Topic:
Robust Machine Learning

Goal: Develop novel ML theories and 
algorithms that enable reliable learning 
from limited information.
 Label noise: human error, sensor error.
 Insufficient information: weak supervision.
 Data bias: changing environments, privacy.
 Attack: adversarial noise, distribution shift.
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Supervised Learning with Noisy Output

 Hasn’t such a classic problem been solved?
 Regression: Yes, big data yields consistency.
 Classification: Specific noise reduction mechanism is 

needed to achieve consistency!
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Classical Approaches
 Unsupervised outlier removal:
 Substantially more difficult than classification.

 Robust loss:
 Works well for regression,

but limited effectiveness
for classification.

 Regularization:
 Effective in suppressing overfitting,

but too smooth for strong noise.

 Need new approaches!
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Formulation
Clean training data:
Noisy training data:

Probabilistic classifier in simplex:
 Each element approximates

the class-posterior probability.

Loss: 
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Modeling Class-Conditional Noise
Noise transition matrix:
 Probability of flipping     to    .

We may encode human-cognitive bias:

Visualization as a simplex:
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Loss Correction
Forward correction: Add noise by     


Backward correction: Remove noise by        


 If     is given, consistency can be guaranteed!
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Identifiability of Noise Transition
 In practice, we need to estimate    

from noisy training data                     .

However,      is non-identifiable in general:
 can be decomposed as                   ,

where             are some transition matrices.
 Then

Let’s use anchor points (100%-certain samples):
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Estimation of Noise Transition
with Anchor Points
Given anchor points                                    ,

can be naïvely estimated as

 is a probabilistic classifier learned
from noisy training data                        .

Even if anchor points are unknown,
as long as they exist in noisy training data,
we may find them as                                       .
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Further Improvements

We typically use deep learning to obtain         :
 Then it is often over-confident and unreliable.

Estimated     is revised during classifier training:

 Instead of explicitly finding anchor points,
latent labels are utilized:
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Challenge

Current approaches are in two-step:
1. Estimate transition matrix    .
2. Use estimated      to train a classifier          .

Step 1 is done without regard to Step 2:
 Estimation error of      in Step 1

can be magnified in Step 2. 

We want to estimate     and         
simultaneously in one-step.
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Naïve Solution
Naively, we may learn the noise transition and 

classifier at the same time as 

However, the solution is not unique:
 With any invertible transition matrix     ,

any                                              are solutions.

We need a certain constraint to obtain
the right solution:
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Total Variation Regularization

Noise transition                       is contraction
in total variation distance:

 Cleaner class-posteriors have
larger total variation distances!

Let’s use this knowledge as a regularizer:

 Under the anchor point assumption,
the empirical solution has statistical consistency.
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Challenges

To overcome the non-identifiability of     :
 Anchor points are explicitly used.

This condition has been relaxed to:
 Only the existence of anchor points is assumed.

Can we further relax this assumption?
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Non-identifiability of T
 can be visualized as a simplex,

containing all training data.
Generally, such a simplex is not unique.
Anchor points are vertices of the true simplex.
 Explicitly using anchor points naively recovers     .
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Non-identifiability of T (cont.)
Only the existence of anchor points still guarantees 

the identifiability of     .
 Even without anchor points, “sufficiently scattered” 

training data can guarantee the consistency
(with the algorithm in the next page).

24



Volume Minimization

Under the “sufficiently scattered” assumption, 
minimizing the volume of the transition matrix 
guarantees consistency!
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Beyond Class-Conditional Noise
 Instance-independence

in class-conditional noise
is restrictive.

 Instance-dependent noise:
 Extremely challenging problem!

Various heuristic solutions:
 Parts-based estimation
 Use of additional confidence scores
 Manifold regularization
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Co-teaching
Memorization of neural nets:
 Stochastic gradient descent fits clean data faster.
 However, naïve early stopping does not work well.

 “Co-teaching” between two neural nets:
 Teach small-loss data each other.

 Teach only disagreed data.

 Gradient ascent for large-loss data.

 No theory but very robust in experiments:
 Works well even if 50% random label flipping!
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Arpit et al. (ICML2017)
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Summary: Noisy-Label Learning
 Classification requires explicit treatment of label noise:

 Loss correction by noise transition is promising.

 However, noise transition is
generally non-identifiable.
 Recent development allows its consistent

estimation under mild assumptions.

 Real-world noise is often instance-dependent:
 Heuristic solutions have been developed.

 Super-robustness by co-teaching:
 Heuristic solutions have been developed.
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Weakly Supervised Learning
Fully supervised data is expensive to collect.
Weakly supervised data

can be collected easily:
 Ex.) Click prediction in online ads:

It is easy to automatically collect
 Clicked ads (positive),
 Unclicked ads (unlabeled).

Learning only from P and U data
is possible!
 Regard U data as noisy N data and correct the loss.
 Statistically consistent.
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Solution (Sketch)
Given: Positive and unlabeled data

 Decomposition of the classification risk:

 Eliminate the expectation over negative data as

 Unbiased risk estimation:
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Theoretical Properties (Sketch)

Optimal parametric convergence rate:

 Risk correction further improves the performance
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Kiryo, Niu, du Plessis & Sugiyama (NIPS2017)



Semi-Supervised Classification
(Positive-Negative-Unlabeled Classification)
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Let’s decompose PNU into PU, PN, and NU:
 Each is solvable.
 Let’s combine them!

Without cluster assumptions,
PN classifiers are trainable!

PU NUPN

Sakai, du Plessis, Niu & Sugiyama (ICML2017)

Positive Negative

Unlabeled

PNU



Various Extensions
Learning from weakly supervised data is 

possible in many different forms! 
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Multiclass Methods
 Labeling patterns in multi-class

problems is extremely painful.

Multi-class weak-labels:
 Complementary labels:

Specify a class that a pattern
does not belong to (“not 1”).

 Partial labels: Specify a subset of classes
that contains the correct one (“1 or 2”).

 Single-class confidence:
One-class data with full confidence
(“1 with 60%, 2 with 30%, and 3 with 10%”) 

 Similar loss correction is possible!
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Summary: Weakly Supervised Learning
We developed an empirical risk minimization 

framework for weakly supervised learning:
 Any loss, classifier, and optimizer can be used.
 Statistical consistency with optimal convergence.
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Transfer Learning
Given: 

 Training data 

Goal: 
 Train a predictor                   

that works well in the test domain
(with some additional data from the test domain).

 Challenge: 
 Overcome changing distributions!
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Various Scenarios

 Full-distribution shift:
 Covariate shift:
 Class-prior shift:
 Output noise:
 Class-conditional shift:
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Classical Approach
for Transfer Learning

Two-step adaptation:
1. Importance weight estimation:

2. Weighted predictor training:

However, estimation error in Step 1
is not taken into account in Step 2.
 We want to integrate these two steps!
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43Joint Weight-Predictor Optimization
Covariate shift: Only input distributions change.

Suppose we are given
 Labeled training data:
 Unlabeled test data:

Minimize a risk upper bound jointly 
w.r.t. weight    and predictor   :

 Theoretical guarantee:

Shimodaira (JSPI2000)

Zhang et al.
(ACML2020, SNCS2021)

: Empirical approximation of 



Dynamic Importance Weighting
General changing distributions:
Suppose we are given
 Labeled training data:
 Labeled test data:

For each mini-batch                                     , 
importance weights are estimated by
matching losses by kernel mean matching:

Extremely simple, but highly powerful!
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Summary: Transfer Learning
 In transfer learning with importance weighting, 

simultaneously estimation of importance and 
predictor is promising.

What should we do if training and test 
distributions look very different?
 Mechanism transfer!

 New work: Continuous distribution change.
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More Challenges in
Reliable Machine Learning

 Reliability for expectable situations:
 Model the corruption process explicitly

and correct the solution.
 How to handle modeling error?

 Reliability for unexpected situations:
 Consider worst-case robustness (“min-max”).
 How to make it less conservative?

 Include human support (“rejection”).
 How to handle real-time applications?

 Exploring somewhere in the middle
would be practically more useful:
 Use partial knowledge of the corruption process.
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Axes of ML Research

 Decomposing ML research into 
conceptually orthogonal topics:
 Model
 Learning method
 Regularizer
 Optimizer
 …
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Further Investigations Needed
 Classical convex learning methods

allow us to analyze the global solution.
 Since optimization in deep learning is complex, 

stochastic gradient descent is used. 

 Thanks to the “gradual learning” nature,
we can utilized intermediate learning results:
 Strengthening supervision for weakly supervised learning.
 Dynamic importance weighting for transfer learning.
 Dynamic noise transition estimation for noise-robust learning.
 Co-teaching for noise-robust learning.
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