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Transfer Learning

e Training data {( Er,y@ )}n; LR Ptr(w,y) |

Goal:

e Train a predictor y = f(x)
that works well in the test domain
(with some additional data from the test domain).

mfin R(f) R(f)=E, (xynll(f(x),y)]

¢ : loss function
Challenge:

e Overcome changing distributions!
ptr(ma y) # pte(wa y)
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NIPS Workshop on Learning when Test and Training Inputs Have

Different Distributions, Whistler 2006

Workshop

Learning when test and training inputs have different distributions

Joaquin Quifionero Candela - Masashi Sugiyama - Anton Schwaighofer - Neil D Lawrence

Learning when Training and Test Inputs Have Different

Distributions
Saturday December 9, 2006

Org: Joaquin Quifionero-Candela, Anton Schwaighofer, Neil Lawrence & Masashi Sugiyama

Morning session: 7:30am—10:30am

Sat Dec 09 05:00 PM — 05:00 PM (JST) @ Nordic 7:30am  Opening, The organizers
7:40am  When Training and Test Distributions are Different: Characterising Learning
) X ) . Transfer, Amos Storkey, University of Edinburgh
Event URL: http://ida first.fraunhofer.de/projects/different06/ »
. . . .. 8:10am  Can Adaptive Regularization Help?,
Many machine learning algorithms assume that the training and the test data are drawn from the same Maithias Hein, Max Planck Instituie for Biological Cybernetics
distribution. Indeed many of the proofs of statistical consistency, etc., rely on this assumption. However, in S:d0am  coffee break
practice we are very often faced with the situation where the training and the test data both follow the same $:50am  Learning Classifiers in Distribution and Cost-sensitive Environments,
conditional distribution, p(y|x), but the input distributions, p(x), differ. For example, principles of experimental Nitesh Chawla, University of Notre Dame
design dictate that training data is acquired in a specific manner that bears little resemblance to the way the 9:20am  Optimality of Bayesian Transduction - Implications for Input Non-stationarity,
. . . . . . Lars Kai Hansen, Technical University of Denmark
test inputs may later be generated. The aim of this workshop will be to try and shed light on the kind of _
. ) L. . ) . . L. . . .. 9:50pm  Estimating the Joint AUC of Labelled and Unlabelled Data,
situations where explicitly addressing the difference in the input distributions is beneficial, and on what the Thamas Gérter, Gemma Garriga, Thorsien Knopp, Peter Fiach and Stefan Wrobel
most sensible ways of doing this are. 10:10am A Domain Adaptation Formal Framework Addressing the Training/Test
Distribution Gap,
=~ . Shai Ben-David, University of Waterloo and John Blitzer, University of Pennsylvania
Quifonero-Candela, Sugiyama, _ .
3| Afternoon session: 3:30pm—6:30pm

R—

DATASET SHIFT IN
MACHINE LEARNING

3:30pm

Schwaighofe & Lawrence (Eds.),
Dataset Shift in Machine Learning,
MIT Press, 2009.

JOMRBIN QUIRONERD-CANDELA, WASASHI SUGITAMA,
ANTON SCHWAIGHDFER, AND NEIL 0. LAWRENCE

4:00pm
4:20pm

4:50pm

Sugiyama & Kawanabe,
Machine Learning

in Non-Stationary Environments,
MIT Press, 2012

S:00pm

5:20pm

S:40pm

Projection and Projectability,
David Corfield, Max Planck Institure for Biological Cybernerics

Using features of probability distributions to achieve covariate shift,
Arthur Gretton, MPI for Biol. Cyb. and Alex Smola, National ICT Australia

Active Learning, Model Selection and Covariate Shift,
Masashi Sugivama, Tokyo Institute of Technology

coffee break

Visualizing Pairwise Similarity via Semidefinite Programming,
Amir Globerson, MIT, and Sam Roweis, University of Toronto

A Divergence Prior for Adaptive Learning,
Xiao Li and Jeff Bilmes, University of Washington

discussion, everyone




Various Scenarios 4
: lnput Y : Output

Full-distribution shift: Per (X, Y) # Pre(T,y)

Covariate shift: Pir(T) 7 Pre()
Class-prior shift: Per(y) # Pre(y)
Output noise: Per(y|x) # pre(ylx)
Class-conditional shift:  pu(|y) # pre(x|y)
% Training Positive”\ Class 2
. 0al 5 Class 1| x*
’ x % 0,4
0.2} ',' '1‘ o° o %
0.1t ' “\ _ ° x
' ] Negative
o
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Regression under Covariate Shift °©

Covariate shift: shimodaira Jspi2000)
e Training and test input distributions are different:

Ptr (ZL’) # Pte (.’L‘)

e But the output-given-input distribution remains unchanged:
Per(y|) = pre(ylx) = p(y|)

Input densities Function & data
1.6+ (\ | ° 0.
1.4+
1.2} pte(w)
0.5¢
Test
0_
Target
%'8g . function
0.5¢ Py

0 1 2 3



Emplncal Risk Minimization (ERM) 7

argmin Zf ) (¥, )}

feF

Generally, ERM is consistent:

e Learned function converges 05
to the optimal solution
when 1, — 00 . ol

-0.5¢

However, covariate shift
makes ERM inconsistent:

argmin | — O(f ("), yi") " argmin | By e o [(f(x),y)
fer | nu ; _ g | Erior 1>r[ l

# R(f)
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Importance-Weighted ERM (IWERM) 9

Ntr

. pte(mgr) tr
argmin E —U(f(x;
fer |i= P (27
——
Importance

), y;")

IWERM is consistent even under covariate shift:

: 1 ~ Dee(Y;") t t
argmin | — —l(f(x;"),y;"
gmin | - ;pw(yy) (f(x),y )_
Nir—>00 . pte(w) ]] I
—argmin (K, 12)p.. (2 ((f(ax), 05
Jigef [ p(ylz)per () [ptr(iv) (f(z),y)
= argmin [Ey(, o). ) (), )]
ferF _J osl
= R(f)

f(x) =ax+0

1t

0,

How can we know the importance weight?



Importance Weight Estimation 10

Vapnik's principle: Vapnik (Wiley, 1998)'
When solving a problem of interest, Sﬁ;rﬁgﬁii%agl
eory
one should not solve a more general problem

as an intermediate step —

Knowing ratio

&€ | 05

ptr(w)

Knowing densities

Pte ("L') » Ptr (33)

Estimating the density ratio is substantially -
easier than estimating both the densities!

Various direct density-ratio Sugiyama, Susuki & Kanamor

Density Ratio Estimation

estimators were developed. in Machine Leaming

(Cambridge University Press, 2012)




Least-Squares Importance Fitting 1
( LS I F) Kanamori, Hido & Sugiyama (JMLR2009)

Given training and test input data:

{aryre M p(e) @ R pre(w)

Directly fit a model r to r*(x)
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Bias-Variance Trade-Off

Importance-weighted empirical risk minimizer

. pte r
argmin 3 x, ), y,L Y
ferF ; Pt r t )

has no bias, but has large variance.
The ordinary empirical risk minimizer

ntr

argmin Z 0(f (x5

Jfer

has small variance (statlstlcally efficient),
but has large bias.

How can we control the bias-variance trade-off?

13



Flattened Importance Weighting 14

Shimodaira (JSP12000)

) .

Large bias, small variance (Intermediate) Small bias, large variance

Flattening factor v may be chosen by
e Importance-weighted Akaike information criterion (&pisoo0,

e Importance-weighted cross-validation gﬁ;{gﬁg’“ﬁ;gggs;



Relative Importance Weighting 19

Even with direct methods, reliably estimating
the importance weight is hard: () = Die(T)
o7 (:13) could be highly fluctuated. N Pir ()

Then, flattening unreliable importance estimator 7 ()
by power factor 7 is also unreliable.

Nitr

min Z r(ay) e f(2f), ysT)

! =1

Let’s use relative importance weight:

Yamada, Suzuki, Kanamori, Hachiya & Sugiyama (NIPS2011, NeC02013)

. pte(w)
) = @+ (- Bpe(@ 0P

e Directly estimable for each 3 by relative LSIF.
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From Two-Step Adaptation
to One-Step Adaptation

The classical approaches are two steps:
1.  Weight estimation (e.g., LSIF):

r = arg?{nin Eptr(w) (r(x) — "“*(37))2]

2.  Weighted predictor training (e.g., IWERM):

AN

f — argJIcnin Eptr(m,y) [?(az)ﬁ(f(zc), y)]

Can we integrate these two steps”?

17
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Joint Upper-Bound Minimization 19

Zhang et al. (ACML2020, SNCS2021)

Suppose we are given

R

e Labeled training data:{(x;", y;") } =%, LRS Per (2, Y)
e Unlabeled test data: {g;;e ?t:el LLd. Die ()

Goal: We want to minimize the test risk.
Ro(f) =Ep,. (20 l(f(x),y)] ¢ . evaluation loss

We use two losses /(< 1),/ (> ¢). ¢ surrogate loss

For example: N
;o | Tukey loss
e/ :0/1, £ :hinge or softmax ’°
cross-entropy (classification) o4
e / : Tukey, ¢': squared (regression) ol




Risk Upper-Bounding (cont.) 20

Zhang et al. (ACML2020, SNCS2021)
For /< 1.0/ >¢r>0,
the test risk is upper-bounded as

sRo(f)? < Ju(r, f)
Ro(f) = Ep,. (@) l(f(x),y)]
)

Jor (1, ) = (Bpee (e (@) (f (), y)])? < IWERM
By, (@) [(r(x) — 7 (@))?] < LSIF

In terms of this upper-bound minimization,
2-step (LSIF followed by IWERM) is not optimal:

Let’'s directly minimize the upper bound w.r.t. », f !



Theoretical Analysis 21

Under some mild conditions, the test risk of
the empirical solution f = argmin min Jy (r, f)
is upper-bounded as fer 7

Re(f) < V2min Ry (f) + Op(ng* +ni /™)

fEF
1 g - 1 Nty 2 Nt
Jo(r f):(nt (@) (f (), ot )) +(n G Zr<w3>+0)
T =1 =1 ve J=1
i b dsied.
{(x",y") o~ pu(x,y) {5’3;6 ?:1 o Pte ()

RE’(f) — Epte(m,y) [f’(f(af;)’ y)]



Contents

Introduction

Classical results

A) Importance weighting

B) Adaptive importance weighting
Recent results

A) Joint upper-bound minimization

B) Dynamic importance weighting
Future prospects

22



Dynamic Importance Weighting 23

Fang et al. (NeurlPS2020)

Deep learning adopts stochastic optimization:
f+ f— nVﬁ(f) n > 0: Learning rate

Let’s learn \/\/

e Importance weight r
e predictor f

dynamically in the mini-batch-wise manner.



Mini-Batch-Wise Loss Matching 244

Suppose we are given

tr e
e (Large) labeled training data: {(x; ay@ DE T~ pee(, y)
Tge Lelds
o (Small) labeled testdata:  {(z3°, 5;°)}7e, "~ pee(, y)
For each mini-batch {(Z;", 7;") }i, { (&5, 75°) } sy
importance weights are estimated by
kernel mean matching for loss values:
Huang, et al. (NeurlPS2007)
1 Ntr Nte
_ Z’rzg(f( r —tr ~ —te
e

No covariate shift assumption is needed!
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Conclusions

In transfer learning with importance weighting,
simultaneously performing importance estimation

and predictor training is promising.
What should we do if training and test distributions
look very different?

e Mechanism transfer!
Teshima, Sato & Sugiyama (ICML2020)

Independent q1 q2 »++ ({Tar
components . . ’ ’
“Mechanism” f zf} a@

yp oY o oo Ao
Observed | e ‘ oo ‘ $o | °
data ¥ ¥ ¥ ¥




Future Prospects: 2f
Domain Matching

Domain matching would be another popular
approach for transfer learning in deep learning:

Ben-David, Blitzer, Crammer & Pereira (NIPS2006)
Ganin & Lempitsky (ICML2015)

: b o
feature extractor Gs(-; 0y

DLH
E> 00y

forwardprop  backprop (and produced derivatives

Can we combine domain matching and
iImportance weighting for better performance?



Future Prospects: 28
Classification with Noisy Labels

Output shift:  pu(y|T) # pre(y|x) & : Input pattern
e Noise transition connects two distributions: Y : Class label

pe(FlT) = p(Uly)pe(y|) Y : Noisy class label
Yy

Back/forward loss correction yields consistency.

Patrini, Rozza, Menon, Nock & Qu (CVPR2017)

Estimation of noise transition only from
noisy training data is the current challenge.

Xia et al. (NeurlPS2019), Yao et al. (NeurlPS2020), Xia et al. (NeurlPS2020),
Zhang et al. (ICML2021), Li et al. (ICML2021), Berthon et al. (ICML2021)

Can we use transfer learning techniques
to better solve noisy label classification?



