
Mixture Proportion Estimation
in Weakly Supervised Learning
Mixture Proportion Estimation

in Weakly Supervised Learning

Masashi Sugiyama

RIKEN Center for Advanced Intelligence Project
The University of Tokyo

http://www.ms.k.u-tokyo.ac.jp/sugi/

Nov. 1, 2021LQ2021@CIKM2021



RIKEN Center for
Advanced Intelligence Project (AIP)
 10-year national project in Japan (2016-2025):
 Develop next-generation AI technology

(learning and optimization theory, etc.)
 Accelerate scientific research

(material, cancer, stem cells, genomics, etc.)
 Solve socially critical problems

(natural disaster, elderly healthcare, etc.)
 Study of ethical, legal and social issues of AI

(ethical guideline, privacy protection, etc.) 
 Human resource development

(150+ researchers, 200+ students,
150+ interns, 300+ visiting scientists,
40+ industry projects) 
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My Research Interests
 Transfer learning:
 Adaptive importance weighting
Density ratio estimation:
 Versatile statistical tool,

where GAN is a special case.
Reinforcement learning:
 Sample reuse
 Variational Bayes:
 Implicit regularization
Weakly supervised learning:
 Empirical risk minimization approach
Noise-robust learning:
 Going beyond robust statistics and regularization
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Today’s Topic:
Mixture Proportion Estimation 
Goal: Find a mixture proportion of

unknown probability distributions.
 From some data, find                   such that

 Various applications in machine learning:
 Class-prior shift adaptation: Importance weight estimation
 Positive-unlabeled classification: Class-prior estimation
 Noisy label classification: Noise transition estimation
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: Unknown probability distributions
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A) Basic solution
B) Distribution matching
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2. Positive-unlabeled classification
3. Conclusions
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Semi-Supervised Classification
with Class-Prior Shift
Given: Labeled training data and unlabeled test data:

Goal: Train a classifier                that works well
in the test domain.

Challenge: Overcome the class-prior shift!
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: loss function

: Input pattern
: Class label



Illustration of Class-Prior Shift

Class-prior shift changes the optimal boundary.
 Adaptation is needed!
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Training Test

Boundary

Boundary



Contents
1. Semi-supervised class-prior shift adaptation

A) Basic solution
B) Distribution matching
C) Summary

2. Positive-unlabeled classification
3. Conclusions

8



9Empirical Risk Minimization (ERM)

Generally, ERM is consistent:
 Learned function converges to the optimal solution 

when                    .
 However, class-prior shift makes ERM inconsistent:



10Importance-Weighted ERM (IWERM)

 IWERM is consistent even under class-prior shift.

 How can we know the importance weight?

Importance



Class-Prior Estimation
by the EM Algorithm
1. Obtain a training class-posterior estimator             

from                                         .
2. Estimate the training class-prior by                  .

3. Set                              and                       .
4. Repeat until convergence:

i. Update the test class-posterior as                                            .

ii. Update the test class-prior as                                               .

 Can we avoid using             ? 

11

Saerens et al. (NeCo2001)

: Number of training samples in class   
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EM Method as Distribution Matching
under KL Divergence
 Let                                  .

 Fit         to           under KL divergence:

 Fixed-point iteration to solve the KKT condition
recovers the EM approach!

Without estimating              , can we directly 
minimize the KL divergence?
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du Plessis et al. (NN2014)



Direct KL-Divergence Approximation
by Density Ratio Estimation
 Identity (from Fenchel’s inequality):

 Maximizer is                                 .
 Empirical approximation:

 Maximization corresponds to estimating density ratio        .
 Then we can directly estimate the test class-prior as

14

Keziou (2003), Nguyen et al. (NIPS2007), Sugiyama et al. (NIPS2007)



Distribution Matching
under the f-Divergence
We don’t have to stick to the KL divergence.
 We can use any divergence such as the f-divergence:

 Directly estimate the f-divergence from data:

 Estimate the test class-prior as

 How do we estimate the f-divergence from data?
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du Plessis et al. (NN2014)

Ali & Slivey (1966), Csiszár (1967)



Direct f-Divergence Approximation
by Density Ratio Estimation
 Identity (from Fenchel's inequality):

 Equality holds when                                  .
 Empirical approximation:

 Minimization corresponds to
density ratio matching
under the Bregman divergence.
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Keziou (2003), Nguyen et al. (NIPS2007), Sugiyama et al. (AISM2012)

Sugiyama, Suzuki & Kanamori,
Density Ratio Estimation

in Machine Learning  
(Cambridge University Press, 2012)



Various Choices of Function f

 Kullback-Leibler (KL) divergence:
 Popular choice, but sensitive to outliers.
 Optimization is convex if         is a linear model. 
 Pearson (PE) divergence:
 Robust to outliers.
 Optimization is analytic if         is a linear model.
 Power divergence:
 Generalization of KL (           ) and PE (         ).
 More robust for          , but optimization becomes non-convex.
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Summary: Semi-Supervised
Classification with Class-Prior Shift
 Importance-weighted empirical risk minimization.
 Estimation of the test class-prior             is needed.
 EM is seminal, but requires              .
 EM is KL-div minimization with fix-point iteration.
 Can we directly minimize KL-div without                ?
 KL-div approximation with density ratio estimation.
 Can we use another divergence?
 Various divergences/distances can be used.
 f-div approximation by density ratio estimation.
 L2-distance approximation by density difference estimation.
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Sugiyama et al. (NIPS2012, NeCo2013)
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Positive-Unlabeled (PU) Classification 21

Given: Positive and unlabeled samples

 No negative data
Goal: Obtain a positive-negative

(PN) classifier

Unlabeled (mixture of
positives and negatives)

Positive

 Example: Ad-click prediction
 Clicked ad: User likes it  P
 Unclicked ad: User dislikes it

or User likes it but doesn’t have
time to click it  U (=P or N)

: Input pattern

: Class label
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PN Risk Decomposition
Risk of classifier    :

 Since we do not have N data in the PU setting,
the risk cannot be directly estimated.
 How can we overcome this problem?
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Risk for P data Risk for N data

: Class-prior probability
(for the moment, assume it is known)

: loss function



PU Risk Estimation

 U-density is a mixture of P- and N-densities:

 This allows us to eliminate the N-density as
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du Plessis et al. (ICML2015)



PU Empirical Risk Minimization

 Replacing expectations by sample averages
gives an empirical risk:

Optimal convergence rate is attained:

 But, in practice,                       is unknown!
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: # of P, U samples

Niu et al. (NIPS2016)



Class-Prior Estimation
with Non-Traditional Classification
 Consider PU label              :
 If     is P (or U),           (or           ).

 Train a “non-traditional” classifier from PU data.
 Usual supervised classification from                               

(Assume P is labeled from U when          .)

Obtain     with

 Can we avoid training a non-traditional classifier?
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Elkan & Noto (KDD2008)

: Set of validation P data

cf. Original paper solves
PU classification by
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Non-Traditional Classification
as Partial Distribution Matching

 PN classification: (Full) distribution matching

 PU classification: Partial distribution matching

 Class-prior estimation by non-traditional classification
can be interpreted as partial matching
with Pearson divergence.
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du Plessis & Sugiyama (IEICE2014)



Behaviors of Partial Matching

 If two classes have no overlap,
naïve partial matching works.
 Just fitting                       is sufficient. 

 If two classes are overlapped,
partial matching generally
over-estimates the true class-prior.
 Tails of                      affect the solution.
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Non-Identifiability of the Class-Prior

When                    and                   are overlapped,
they may share some common component.
 Its proportion can be arbitrarily changed.
 Indeed, any

can be a valid solution.

We need a reasonable assumption
to obtain a meaningful solution!
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Blanchard et al. (JMLR2010)

Non-estimable
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Class-Prior Estimation
under Anchor Point Assumption
 Assume there exists an anchor point in            :
 For some                          ,

and                                 .

Density ratio estimation gives

 Simple and nice!
 But the anchor point assumption may be too strong.
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Sugiyama et al. (MIT Press, in press)
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Partial Matching
with Differentiable f-Divergence

When        is differentiable,
is necessary for                           .  

 if and only if
 Two classes are non-overlapped,
 and                  (e.g., Pearson div).
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du Plessis et al.
(ACML2015, MLJ2017)

Suppose has the minimum at            .



With Non-Differentiable f-Divergence

When        is non-differentiable at         , 
is necessary for                           .  

 even when two classes are overlapped, if

 is penalized as                                       ,

 and the irreducibility assumption holds:
 is not a component of                          .
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: subdifferential

Blanchard et al. (JMLR2010)

Suppose has the minimum at            .



Irreducibility and Anchor Points
 Irreducibility:
 is not a component of                       .

 Anchor points:
 For some                          ,

and                               .

 Irreducibility holds if and only if
at least one anchor point exists:
 Density ratio based method uses the anchor point explicitly.
 Partial matching only assumes its existence implicitly.
 Therefore, the required assumption is weaker!
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Liu & Tao (IEEE-TPAMI2015)

Blanchard et al. (JMLR2010)



Practical Choice of f :
Penalized L1-Distance

 Regularized least-squares density ratio estimation
gives a divergence approximator analytically as

 Model of density ratio                   :
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: Basis function
: Parameter

: Regularization
parameter

du Plessis et al. (ACML2015, MLJ2017)



Implementation and Analysis

 Algorithm: Find a minimizer w.r.t. .
 Computationally very efficient!

Optimal convergence rate is achieved!

However, there is no way to assess 
irreducibility in practice.
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Class-Prior Estimation
without Irreducibility

Without irreducibility, any

can be a valid solution, due to common components.
 Partial matching actually gives its maximum value.

Can we mitigate the positive bias
in the absence of irreducibility? 
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Regrouping

 Idea: Regroup a small positive-dominant region
to be fully positive.

 By this regrouping,
 is slightly increased,
 but irreducibility is satisfied!

How can we find a positive-dominant region?
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Yao et al. (arXiv2020)

positive-dominant



Implementation

 Consider PU label              :
 If     is P (or U),           (or           ).

 Train a “non-traditional” classifier :
 Usual supervised classification from                               .

 Select some unlabeled samples
that have the highest positive-confidence:

 Copy them and give positive labels.

 Solve the converted class-prior estimation problem.

42



Contents
1. Semi-supervised class-prior shift adaptation
2. Positive-unlabeled classification

A) Basic solution
B) Identifiability
C) Density ratio estimation with anchor points
D) Partial distribution matching with irreducibility
E) Regrouping without irreducibility
F) Summary

3. Conclusions

43



Summary: PU Classification
 There is a nice empirical risk minimization method,

given class-prior                       can be estimated.

 However, the class-prior is not identifiable in general.

 Simple density ratio estimation solution:
 Use anchor points (i.e., 100% positive), which may be strong.

Computationally efficient penL1-div partial matching.
 Without irreducibility (P-density is not part of N-density),

its solution is positively biased.
 Existence of anchor points is sufficient, but not assessable.

Regrouping:
 By preprocessing of data, the positive bias can be reduced.
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Summary:
Mixture Proportion Estimation
Many applications in machine learning:
 Class-prior shift adaptation: Importance weight
 Identifiability allows naïve distribution matching to solve.

 Positive-unlabeled (PU) classification: Class-prior
Non-identifiability posed significant challenges.

 Noisy label classification: Noise transition

Multiple non-identifiability is even more challenging!
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Observed Non-observed

: Clean class label

: Noisy class label



Challenge:
Overcoming Non-Identifiability
 Identifiability conditions have been investigated:
 Irreducibility, anchor set, anchor points…

 However, these identifiability conditions
may not be satisfied in practice.

 Even without identifiability, it is promising to
 Reduce estimation bias by regrouping

(in PU classification).
 Use a weaker “sufficiently scattered” assumption

(in noisy-label classification).
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Liu & Tao (IEEE-TPAMI2015)Blanchard et al. (JMLR2010)

Yao et al. (arXiv2020)

Li et al. (ICML2021)



Challenge: Towards
Better Machine Learning (ML)
 The estimated proportion is later used in ML tasks.
 Current approach is two-step:
 Estimate the mixture proportion.
 Use the estimated proportion

to solve the target ML problem.
 1st step is preformed without regards to 2nd step.
 Combining them into one-step is more promising:

 Alternate optimization.
 Joint upper-bound optimization.
 Dynamic stochastic optimization.
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Kato et al. (arXiv2018)

Zhang et al. (ACML2020, LNCS2021)
Xia et al. (NeurIPS2019)

Fang et al. (NeurIPS2020)
Zhang et al. (ICML2021)



Grateful to Great Collaborators!

and many interns
over the world!
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