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My Research Interests

Transfer learning:
e Adaptive importance weighting

Density ratio estimation:

e Versatile statistical tool,
where GAN is a special case.

Reinforcement learning:
e Sample reuse
Variational Bayes:

e Implicit regularization

Weakly supervised learning:

e Empirical risk minimization approach

Noise-robust learning:

e Going beyond robust statistics and regularization future...
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Today’'s Topic:
Mixture Proportion Estimation

Goal: Find a mixture proportion of
unknown probability distributions.

e From some data, find 64, ..., 6. such that
Pozzé’ypy Zeyzl 91,...,9020
y=1 y=1

PosP1, - - -5 Pc: Unknown probability distributions

Various applications in machine learning:
e Class-prior shift adaptation: Importance weight estimation

e Positive-unlabeled classification: Class-prior estimation
e Noisy label classification: Noise transition estimation
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Semi-Supervised Classification
with Class-Prior Shift

Given: Labeled training data and unlabeled test data:

{(w‘é",yfr) T-L'”“l R ptr(-’L‘,y) reX CRY: Input pattern

1=

{7 K e () yeY =1{1,...,c}: Class label

Goal: Train a classifier y = f(x) that works well
In the test domain.

mj}n R(f) R(f) = Epte(az,y) [E(f(it‘), y)]

¢ loss function
Challenge: Overcome the class-prior shift!

ptr(y) 7é pte(y) ptr(w|y) — pte(w|y) — p(.’L‘|y)



lllustration of Class-Prior Shift

Training Test
Pir(y=4+1)=0.9  p(y=+1)=0.5

;% - = =p(y=+1|x) - - -p(y=+1[x)
0.3 l’! “ p(y=—1|x) 0.3} Boundary p'(y:—1|x)
! \
0.2} ’ ‘ 0.2/ a
\ S
/ | Boundary S
0.1¢f “' \\ 0.1} !' I"\
4 =2 0 2 4 -4 -2 0 2 4
X X

Class-prior shift changes the optimal boundary.
Adaptation is needed!
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Empirical Risk Minimization (ERM) J

. tr o el
| Zﬁ )0 ({3, g Y T ()

Generally, ERM is consistent:

e Learned function converges to the optimal solution
when T, — OO.

However, class-prior shift makes ERM inconsistent:

1
: / br
g |37 @).08) s
e argmin [Ep(wly)ptr(y) L(f (), y)H

feF

R(f) — I[fT—:p(a:|y)pte(y) [E(f(w)v y)]
Per(Y) 7 Pre(y)



Importance-Weighted ERM (IWERM) 19

argmin

JEeF

5 2 i)y

Importance

IWERM IS consistent even under class-prior shift.

argmin
fer

o

Nty —> OO0

_>

pte yz
ptI‘ yz

argmin
fer

= argmin

fer

z;"), ;")

:Ep<az|y)ptr<z;> [pte(y) ((f (), y)] ]

ptr(?J)

:I?p(wly)pte(y) (S (), y)}”

— R(f)

How can we know the importance weight?



Class-Prior Estimation B
by the EM A|90r|thm Saerens et al. (NeCo02001)

Obtain a training class-posterior estimator pi:(y/z)
from {(af", yi")}ie "~ pu(w,y).
Estimate the training class-prior by pe:(y) o< ny,.

T4, : Number of training samples in class Y

Set pre(y|T) = Dic(y|x) and pee(y) = P (y) -
Repeat until convergence.

. Update the test class-posterior as pre(y|x) o Pitegy; Per (Y] ).
tr
1 Nte
i. Update the test class-prior as pie(y) = Zﬁte(mmge).
Nte “
1=1

Nte 1. d

Can we avoid using p..(y|x)? {2} 7~ pro()
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EM Method as Distribution Matching
under KL Divergence cu Plessis et al. (NN2014)

Let q Zgyptr ac|y 61,...,0. >0 29921

Fit ¢q(x) to pte( ) under KL divergence:

argmin KL|[pio()||q(x)] = argmin/pte(a:) log pte(w)dm

91 77777 9(: 9]_ ..... 90 q(m)
Nte
pte( ) i.i.d
~ argmln — Z 10 xte nte .d. -
01,...,0. Tte im1 q( { ™~ pte( )

Fixed-point iteration to solve the KKT condition
recovers the EM approach!

Without estimating . (y|ax), can we directly
minimize the KL divergence?



Direct KL-Divergence Approximation
by Density Ratio Estimation

Keziou (2003), Nguyen et al. (NIPS2007), Sugiyama et al. (NIPS2007)
|dentity (from Fenchel’s inequality):

KLipuo@)o(@)] =sup { ~ [ pu(e)s(@de + [ a(e)logs(e)de | +1

S

* Maximizeris s(x) = q(@)/Ppre(x). q(x) = iﬁyptr(:cly)
Empirical approximation: —

KL[pee () lg(x)] = max {nl fsw;e) DY 1ogs(wfzf>} 1

j=1 y=1""Y iy;=y
e Maximization corresponds to estimating density ratio s(x).
Then we can directly estimate the test class-prior as

argmin KL[pie (@) g()] ~ argmin KL [pee (@) q(@)

......



Distribution Matching 15
under thefDivergence du Plessis et al. (NN2014)

We don’t have to stick to the KL divergence.

e \We can use any divergence such as the f-divergence:
For convex f such that f(l) =0, Ali & Slivey (1966), CS|szar(1967)

Divylne(@)late)] = [ te)f (A2 ) do at@) = 3 ttely

Directly estimate the f-divergence from data.

Divy[pee(@)llg(@)] {@t ) "X p (@ ) {0

Estimate the test class-prior as

i.i.d.
~ pte(m)

argmin Div; pee()][q(x)] ~ argmin Div s pee()]|q()]
1aeeey C 1oeeey C

How do we estimate the f~-divergence from data?



Direct /~-Divergence Approximation  °
by Density Ratio Estimation

Keziou (2003), Nguyen et al. (NIPS2007), Sugiyama et al. (AISM2012)

ldentity (from Fenchel's inequality):
Div[pie()[lg(z)]

— —inf {/pte(cc) (9f (s(@))s(x) — f(s(=)) )da /q(az)@f(s(ac))dcc}
e Equality holds when s(x) = q(x)/pte() .

Empirical approximation:

Div s [pre () lg(@)]

nte @

o 255 (o7 )taf) - 160 ) - 2 5 et

j=1 1Y =Y
e Minimization corresponds to
denSIty ratlo matChIng Sugiyama, Suzuki & Kanamori,

Density Ratio Estimation

under the Bregman divergence. in Machine Learning

(Cambridge University Press, 2012)




Various Choices of Function f 17

For convex f such that f(1) =0,
Divslpre(@)la(@)] = [ pe(e)s (7)) da

pte(w)

Kullback-Leibler (KL) divergence: f(t) = —logt

e Popular choice, but sensitive to outliers.
f(t)

e Optimization is convex if s(x) is a linear model.
Pearson (PE) divergence: f(t) = (t — 1)?/2 \

e Robust to outliers. \V/
e Optimization is analytic if s(x) is a linear model. S |
Power divergence: f(t) = (t* = 1)t/a for a:> 0 N

e Generalization of KL (o« — 0) and PE (oo = 1).
e More robust fora > 1, but optimization becomes non-convex.
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Summary: Semi-Supervised 19
Classification with Class-Prior Shift

Importance-weighted empirical risk minimization.
e Estimation of the test class-prior pte () is needed.

EM is seminal, but requires p:.(y|x).

e EM is KL-div minimization with fix-point iteration.

e Can we directly minimize KL-div without py,(y|a)?
KL-div approximation with density ratio estimation.
e Can we use another divergence?

Various divergences/distances can be used.
e /-div approximation by density ratio estimation.

e L >-distance approximation by density difference estimation.
Sugiyama et al. (NIPS2012, NeC02013)
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Positive-Unlabeled (PU) Classification

Given: Positive and unlabeled samples
(zP1e " p(zly = +1) 2 e X ¢ RY: Input pattern
{x}}7%, L (@) y €Y ={+1,—1}: Class label
e No negative data
Goal: Obtain a positive-negative

(PN) classifier Positive
0o O
Example: Ad-click prediction o °.719 o i 0
e Clicked ad: User likes it > P o9 Ol o @O
e Unclicked ad: User dislikes it o H |:|o|:| O g
or User likes it but doesn’t have Unlabeled (mixture of
time to click it > U (=P or N) positives and negatives)
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PN Risk Decomposition 23

Risk of classifier J
R(f) = Ep(a.y) [f(yf(w))} ¢ : loss function
B 7TIEp(wlzuerl) [E (f(ac))} + (1 — 7T)Ep(wlyz—l) [f( — f(a:))]

. J . J
Y

Y
Risk for P data Risk for N data

m = p(y = +1): Class-prior probability
(for the moment, assume it is known)

Since we do not have N data in the PU setting,
the risk cannot be directly estimated.

e How can we overcome this problem?



PU Risk Estimation 24

du Plessis et al. (ICML2015)
R(f) = mEpapy=i1 | £(F(@)) ]| + (1 = MEpapy=1) | £ = f(@))]
U-density is a mixture of P- and N-densities:
p(x) = mp(x|y = +1) + (1 — m)p(z|ly = —1)
This allows us to eliminate the N-density as

R(f) = T (z)y=+1) [€ (f(w))}
+Ep(a) [5( = f(ic))] — Ty (z|y=+1) {E( — f(w))]




PU Empirical Risk Minimization 29
R(f) = Bpaly=t1) |£(F(@)) | +Epa [¢( = f@))]| = "Epoiy=sn) [¢( — F(=))]

Replacing expectations by sample averages
gives an empirical risk:

np np

Roo(5) = T3 e(r@) + =D swt) - % > (- fD)

=1 nu 71=1 1=1
{2l )i = plaly = +1) {2} " p(a)
Optimal convergence rate is attained: Niu et al. (NIPS2016)
~ 27 1
R —R(f")<C
(Fru) = R < 00) =+ == )

fp U = argmin, ﬁPU( f) with probability 1 — 0

f* = argmin; R(f) np,ny :# of P, Usamples

But, in practice, = = p(y = +1) Is unknown!



Class-Prior Estimation 26
with Non-Traditional Classification

Elkan & Noto (KDD2008)
Consider PU label s € {0,1}: » p(s=1)
mT =
o lfxisP(orU), s=1(or s=0). p(s =1y = +1)

Train a “non-traditional” classifier p(s|x) from PU data.

e Usual supervised classification from {x} }7'F,, {=;}"Y,
(Assume P is labeled from U when s = 1)

Obtain & with P - Set of vaIidation P data
R np
s=1) = _ __ _
P ) e p— p(s =1y = +1) |77\ Eepp s =1|x)

Can we avoid training a non-traditional classifier?

cf. Original paper solves .,  p(s=1|x)
PU classification by by =+tljz) = p(s =1y = +1)
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Non-Traditional Classification 28
as Partial Distribution Matching
p(x) = mp(xly = +1) + (1 — m)p(zly = —1)
PN classification: (Full) distribution matching

et Divlp(z)||q¢(z)] q(x) = Op(x|ly = +1)
| +(1 = 0)p(zly = —1)

PU classification: Partial distribution matching

min Divip(@)lld' (@)] ' (z) = Op(aly = +1
’ du Plessis & Sugiyama (IEICE2014)

e Class-prior estimation by non-traditional classification
can be interpreted as partial matching

with Pearson divergence. / 2
E/p(aj‘) (q (m) — 1) dx
2 p(x)




Behaviors of Partial Matching 29

puik Divy[p(z)|ld (z)] d'(z) = Op(z|y = +1)

p(zly = +1) plzly = —
If two classes have no overlap,
naive partial matching works. /\ /\
e Just fitting p(x|y = +1) is sufficient.

If two classes are overlapped,
partial matching generally
over-estimates the true class-prior.

e Tails of p(x|y = —1)affect the solution.

p(xly = —1)
p(xly = +1)




Non-ldentifiability of the Class-Prior  *°

Blanchard et al. (JMLR2010)

p(@) = mp(ely = +1) + (1 - Ip(ely = ~1)

P nP i.i.d. . Y
{‘UU} " p(zly = +1) Non-estimable
{x; }:Y Lk p(x)

When p(xz|y = +1) and p(x|y = —1) are overlapped,
they may share some common component.

e Its proportion can be arbitrarily changed.

e Indeed, any 0 € {Elp’(ac), p(x) = Op(xly = +1) + (1 — Q)p’(cc)}

can be a valid solution.
plzly = —1)

p(xly = +1)

We need a reasonable assumption
to obtain a meaningful solution!
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Class-Prior Estimation 52
under Anchor Point Assumption

Sugiyama et al. (MIT Press, in press)

Assume there exists an anchor point in {z; }7%;:

e Forsome k € {1,...,np},
p(x}ly=+1)>0and p(z,|y=—1)=0.
p(zly = +1) p(zly = —1)

» o p(x;)
p@lly = +1) m

Density ratio estimation gives e

(P ﬁwwp(w|y=+1) k
(@) i) =

{

Simple and nice!
e But the anchor point assumption may be too strong.
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Partial Matching 34
with Differentiable /-Divergence  .ee....

ACML2015, MLJ2017)

div(6) = Div,[p(e) ¢ (@) = [ ple)s (q'(m)) da

p(x)
¢ (x) = Op(x|y = +1) Suppose f(t)has the minimumat ¢ > 1.

When f(t) is differentiable,

div/(7) =0 IS necessary for © = argmin div(6).
6€[0,1]

div' () = [ 7 (py = +1|z))p(ely = +1)de

plzly = +1) p(zly = —1)

div'(r) = 0 if and only if
e Two classes are non-overlapped,
e and f'(1) =0 (e.g., Pearson div).
> T




With Non-Differentiable /~-Divergence °°
div(6) = Divy (@) @) = [ p@)f (25} de

p(x)
Suppose f(t)has the minimumat ¢t > 1.

When f(t) is non-differentiable at t =1,

0 € adiv(w) Is necessary for = = argmin div(0).
0e€(0,1]

0 : subdifferential  jdiv(r) = /af(p(y = +1|z))p(x|ly = +1)dz

0 € adiv(m) even when two classes are overlapped, if

e f(t)is penalized as f(t) < {‘;Et) g i 3

e and the irreducibility assumption holds:  Bianchard et al. (JMLR2010)
m p(x|y = +1) is not a component of p(x|y = —1).



Irreducibility and Anchor Points 5

Irred UC|b|I|ty Blanchard et al. (JMLR2010)
e p(x|y = +1) is not a component of p(z|y = —1).

m=suwp{r’ | (@), p(@) = 7'p(aly = +1) + (1 - =) (2) }

Anchor points: L & Tao (EEE-TPAMI2015) p(@ly = +1) plaly = —1)

e Forsome k € {]-7 < 7nP}7
p(zh|y = +1) > 0 and p(z; |y = —1) = 0.

Irreducibility holds if and only if
at least one anchor point exists:

e Density ratio based method uses the anchor point explicitly.
e Partial matching only assumes its existence implicitly.

Therefore, the required assumption is weaker!




Practical Choice of f: >
Penal ized L 1 -DiStance du Plessis et al. (ACML2015, MLJ2017)

ey = 1
venin@ = [ @7 (L ae fuy=4tt E=D
p(x) e (t>1)

Regularized least-squares density ratio estimation
gives a divergence approximator analytically as

o ———

RS A > 0 : Regularization
PeﬂL1(9>=;Zmax(o,ﬁb)@b—eﬂ >0:Reg

parameter

N R Py {xb ) R p(ly = +1)
= n Z% -~ ; wu(z;) {a:U}”U )
e Model of density ratio ¢'(x)/p(x):

B
eu(x) = 0: Basis function
— Zabgob(ac) F 1 ( )
ap > 0: Parameter



Implementation and Analysis 58

o ———

B
penlq(6) = % Z max (0, 8y) 8y — 0 + 1

Algorithm: Find a minimizer w.r.t. 4 € [0, 1].
e Computationally very efficient!

Optimal convergence rate is achieved!
penLy () — penly(m) = Op(1/y/np +1/y/nv)

— 1 ot (el
T = argmin penLl(Q) Bb_%z __Z‘P {:Uizl ‘i';j‘p((z|)ii/—+l)
OSQS]_ =1 3 Ji=1 P
penLl(H):f (x)f (i(w))d
fy=417t @D p(®) = mp(ely = +1) + (1 — m)p(zly = -1
S lee (t>1) ¢(2) =Op(zly = +1)

However, there is no way to assess
irreducibllity in practice.
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Class-Prior Estimation 40
without Irreducibllity

p(x) =mp(xly = +1) + (1 — m)p(z|y = —1)

Without irreducibility, any
0 € {3p/ (@), ple) = Op(aly = +1) + (1 - O)p'(2) |

can be a valid solution, due to common components.
e Partial matching actually gives its maximum value.

p(xly = —1)
Can we mitigate the positive bias p(zly =+1)

in the absence of irreducibility?




Reg ro u pi n g Yao et al. (arXiv2020) +

p(x) = mp(xly = +1) + (1 — m)p(z|y = —1)

ldea: Regroup a small positive-dominant region
to be fully positive.

p(xly = —1)

By this regrouping,
e 7 IS slightly increased,
e but irreducibility is satisfied! ~’

positive-dominant

How can we find a positive-dominant region?



Implementation 42

Consider PU label s € {0, 1}:
o lfrisP(orU), s=1(or s=0).

Train a “non-traditional” classifier p(s|x):
e Usual supervised classification from {x; }i51, {x; }7Y,.

Select some unlabeled samples
that have the highest positive-confidence: p(s = 1|z7)

Copy them and give positive labels.

Solve the converted class-prior estimation problem.
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Summary: PU Classification 4

There is a nice empirical risk minimization method,
given class-prior = = p(y = +1) can be estimated.

However, the class-prior is not identifiable in general.

Simple density ratio estimation solution:
e Use anchor points (i.e., 100% positive), which may be strong.

Computationally efficient penlLi-div partial matching.

e Without irreducibility (P-density is not part of N-density),
its solution is positively biased.

e Existence of anchor points is sufficient, but not assessable.

Regrouping:

e By preprocessing of data, the positive bias can be reduced.
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Summary: 40

Mixture Proportion Estimation

Many applications in machine learning:

e Class-prior shift adaptation: Importance weight Pte(Y)
B [dentifiability allows naive distribution matching to solve.

e Positive-unlabeled (PU) classification: Class-prior P(¥)
B Non-identifiability posed significant challenges.

e Noisy label classification: Noise transition p(%|y)

p(ylz) = zy p(yly)p(y|x) vy :Clean class label

—— —— —— _
Observed Non-observed 7 1 Noisy class label

B Multiple non-identifiability is even more challenging!



Challenge:
Overcoming Non-ldentifiability

|dentifiability conditions have been investigated:

e |rreducibility, anchor set, anchor points...
Blanchard et al. (JMLR2010) Liu & Tao (IEEE-TPAMI2015)

However, these identifiability conditions
may not be satisfied in practice.

Even without identifiability, it is promising to

e Reduce estimation bias by regrouping Yao et al. (arXiv2020)
(in PU classification).

e Use a weaker “sufficiently scattered” assumption
(in noisy-label classification). Li etal. (ICML2021)

47



Challenge: Towards
Better Machine Learning (ML)

The estimated proportion is later used in ML tasks.

Current approach is two-step:
e Estimate the mixture proportion. 7 = argmin MPE(r)

e Use the estimated proportion f: argmin ML( f, )
to solve the target ML problem. ! ’

1st step is preformed without regards to 2"9 step.
Combining them into one-step is more promising:

A

f = argmin min ML&MPE( f, 7)
f‘ T
e Alternate optimization. Kato et al. (arXiv2018

)
e Joint upper-bound optimization. zhangetal. (ACML2020, LNCS2021)
. . .. ] Xia et al. (NeurlPS2019)

e Dynamic stochastic optimization. Fang et al. (NeurlPS2020)
Zhang et al. (ICML2021)
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