Nov. 1, 2021

Mixture Proportion Estimation in Weakly Supervised Learning

RIKEN Center for Advanced Intelligence Project The University of Tokyo

http://www.ms.k.u-tokyo.ac.jp/sugi/

RIKEN Center for Advanced Intelligence Project (AIP)

- 10-year national project in Japan (2016-2025):
- Develop next-generation AI technology (learning and optimization theory, etc.)
- Accelerate scientific research (material, cancer, stem cells, genomics, etc.)
- Solve socially critical problems (natural disaster, elderly healthcare, etc.)
- Study of ethical, legal and social issues of Al (ethical guideline, privacy protection, etc.)
- Human resource development (150+ researchers, 200+ students, 150+ interns, 300+ visiting scientists, 40+ industry projects)

My Research Interests

Transfer learning:

- Adaptive importance weighting
- Density ratio estimation:
 - Versatile statistical tool, where GAN is a special case.
- Reinforcement learning:
 - Sample reuse
- Variational Bayes:
 - Implicit regularization
- Weakly supervised learning:
 - Empirical risk minimization approach
- Noise-robust learning:
 - Going beyond robust statistics and regularization

Sugiyama & Kawanabe, Machine Learning in Non-Stationary Environments, MIT Press, 2012

Sugiyama, Suzuki & Kanamori, Density Ratio Estimation in Machine Learning, Cambridge University Press, 2012

Sugiyama, Statistical Reinforcement Learning, Chapman and Hall/CRC, 2015

Nakajima, Watanabe & Sugiyama, Variational Bayesian Learning Theory, Cambridge University Press, 2019 Aritobal Bayesian Paratobal Bayesian Aritobal Bayesian Aritobal Bayesian

Sugiyama, Bao, Ishida, Lu, Sakai & Niu, Machine Learning from Weak Supervision, MIT Press, in Press.

Coming soon

Today's Topic: Mixture Proportion Estimation

Goal: Find a mixture proportion of unknown probability distributions.

• From some data, find $\theta_1, \ldots, \theta_c$ such that

$$p_0 = \sum_{y=1}^c \theta_y p_y \qquad \sum_{y=1}^c \theta_y = 1 \quad \theta_1, \dots, \theta_c \ge 0$$

 p_0, p_1, \ldots, p_c : Unknown probability distributions

Various applications in machine learning:

- Class-prior shift adaptation: Importance weight estimation
- Positive-unlabeled classification: Class-prior estimation
- Noisy label classification: Noise transition estimation

1. Semi-supervised class-prior shift adaptation

- A) Basic solution
- B) Distribution matching
- c) Summary
- 2. Positive-unlabeled classification
- 3. Conclusions

Semi-Supervised Classification with Class-Prior Shift

Given: Labeled training data and unlabeled test data:

 $\begin{array}{ll} \{(\boldsymbol{x}_{i}^{\mathrm{tr}},y_{i}^{\mathrm{tr}})\}_{i=1}^{n_{\mathrm{tr}}} \stackrel{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x},y) & \boldsymbol{x} \in \mathcal{X} \subset \mathbb{R}^{d} : \mathrm{Input} \ \mathrm{pattern} \\ \{\boldsymbol{x}_{j}^{\mathrm{te}}\}_{j=1}^{n_{\mathrm{te}}} \stackrel{\mathrm{i.i.d.}}{\sim} p_{\mathrm{te}}(\boldsymbol{x}) & \boldsymbol{y} \in \mathcal{Y} = \{1,\ldots,c\} : \mathrm{Class} \ \mathrm{label} \end{array}$

Goal: Train a classifier y = f(x) that works well in the test domain.

$$\min_{f} R(f) \qquad R(f) = \mathbb{E}_{p_{te}(\boldsymbol{x}, \boldsymbol{y})}[\ell(f(\boldsymbol{x}), \boldsymbol{y})]$$
$$\ell : \text{loss function}$$

Challenge: Overcome the class-prior shift!

 $p_{\mathrm{tr}}(y) \neq p_{\mathrm{te}}(y) \quad p_{\mathrm{tr}}(\boldsymbol{x}|y) = p_{\mathrm{te}}(\boldsymbol{x}|y) = p(\boldsymbol{x}|y)$

Illustration of Class-Prior Shift

Class-prior shift changes the optimal boundary.Adaptation is needed!

- 1. Semi-supervised class-prior shift adaptation
 - A) Basic solution
 - B) Distribution matching
 - c) Summary
- 2. Positive-unlabeled classification
- 3. Conclusions

Empirical Risk Minimization (ERM)

9

$$\underset{f \in \mathcal{F}}{\operatorname{argmin}} \left[\sum_{i=1}^{n_{\operatorname{tr}}} \ell(f(\boldsymbol{x}_{i}^{\operatorname{tr}}), y_{i}^{\operatorname{tr}}) \right] \{ (\boldsymbol{x}_{i}^{\operatorname{tr}}, y_{i}^{\operatorname{tr}}) \}_{i=1}^{n_{\operatorname{tr}}} \overset{\text{i.i.d.}}{\sim} p_{\operatorname{tr}}(\boldsymbol{x}, y)$$

Generally, ERM is consistent:

- Learned function converges to the optimal solution when $n_{\rm tr} \to \infty$.

However, class-prior shift makes ERM inconsistent:

$$\underset{f \in \mathcal{F}}{\operatorname{argmin}} \begin{bmatrix} \frac{1}{n_{\operatorname{tr}}} \sum_{i=1}^{n_{\operatorname{tr}}} \ell(f(\boldsymbol{x}_{i}^{\operatorname{tr}}), y_{i}^{\operatorname{tr}}) \end{bmatrix} \xrightarrow{\neq R(f)} \\ \stackrel{n_{\operatorname{tr}} \to \infty}{\to} \underset{f \in \mathcal{F}}{\operatorname{argmin}} \begin{bmatrix} \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y})\boldsymbol{p_{\operatorname{tr}}}(\boldsymbol{y})}[\ell(f(\boldsymbol{x}), y)] \end{bmatrix} \\ R(f) = \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y})\boldsymbol{p_{\operatorname{te}}}(\boldsymbol{y})}[\ell(f(\boldsymbol{x}), y)] \\ \stackrel{n_{e}(\boldsymbol{y}) \neq n_{e}(\boldsymbol{y})}{\to} \begin{bmatrix} \ell(f(\boldsymbol{x}), y) \end{bmatrix} \end{bmatrix}$$

 $Ptr(9) \neq Pte(9)$

Importance-Weighted ERM (IWERM) ¹⁰

IWERM is consistent even under class-prior shift.

$$\operatorname{argmin}_{f \in \mathcal{F}} \left[\frac{1}{n_{\mathrm{tr}}} \sum_{i=1}^{n_{\mathrm{tr}}} \frac{p_{\mathrm{te}}(y_i^{\mathrm{tr}})}{p_{\mathrm{tr}}(y_i^{\mathrm{tr}})} \ell(f(\boldsymbol{x}_i^{\mathrm{tr}}), y_i^{\mathrm{tr}}) \right]$$
$$\stackrel{n_{\mathrm{tr}} \to \infty}{\to} \operatorname{argmin}_{f \in \mathcal{F}} \left[\mathbb{E}_{p(\boldsymbol{x}|y)p_{\mathrm{tr}}(\boldsymbol{y})} \left[\frac{p_{\mathrm{te}}(\boldsymbol{y})}{p_{\mathrm{tr}}(\boldsymbol{y})} \ell(f(\boldsymbol{x}), \boldsymbol{y}) \right] \right]$$
$$= \operatorname{argmin}_{f \in \mathcal{F}} \left[\mathbb{E}_{p(\boldsymbol{x}|y)p_{\mathrm{te}}(y)} [\ell(f(\boldsymbol{x}), y)] \right]$$
$$= R(f)$$

How can we know the importance weight?

Class-Prior Estimation by the EM Algorithm

Saerens et al. (NeCo2001)

 $\{\boldsymbol{x}_{i}^{\mathrm{te}}\}_{i=1}^{n_{\mathrm{te}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{te}}(\boldsymbol{x})$

- 1. Obtain a training class-posterior estimator $\hat{p}_{tr}(y|x)$ from $\{(x_i^{tr}, y_i^{tr})\}_{i=1}^{n_{tr}} \stackrel{i.i.d.}{\sim} p_{tr}(x, y)$.
- 2. Estimate the training class-prior by $\hat{p}_{tr}(y) \propto n_y$.

 n_y : Number of training samples in class y

- 3. Set $\hat{p}_{te}(y|\boldsymbol{x}) = \hat{p}_{tr}(y|\boldsymbol{x})$ and $\hat{p}_{te}(y) = \hat{p}_{tr}(y)$.
- 4. Repeat until convergence:
 - i. Update the test class-posterior as $\hat{p}_{
 m te}(y|m{x}) \propto rac{\hat{p}_{
 m te}(y)}{\hat{p}_{
 m tr}(y)}\hat{p}_{
 m tr}(y|m{x})$.

ii. Update the test class-prior as $\hat{p}_{\mathrm{te}}(y) = rac{1}{n_{\mathrm{te}}} \sum_{j=1}^{n_{\mathrm{te}}} \hat{p}_{\mathrm{te}}(y | \pmb{x}_j^{\mathrm{te}})$.

Can we avoid using $\hat{p}_{tr}(y|\boldsymbol{x})$?

1. Semi-supervised class-prior shift adaptation

- A) Basic solution
- **B)** Distribution matching
- c) Summary
- 2. Positive-unlabeled classification
- 3. Conclusions

EM Method as Distribution Matching ¹³ under KL Divergence ¹³ du Plessis et al. (NN2014)

Let
$$q(\boldsymbol{x}) = \sum_{y=1}^{\circ} \theta_y p_{tr}(\boldsymbol{x}|y)$$
. $\theta_1, \dots, \theta_c \ge 0$

$$\sum_{y=1}^{c} \theta_y = 1$$

Fit $q(\boldsymbol{x})$ to $p_{te}(\boldsymbol{x})$ under KL divergence:

$$\underset{\theta_{1},...,\theta_{c}}{\operatorname{argmin}} \operatorname{KL}[p_{\operatorname{te}}(\boldsymbol{x}) \| q(\boldsymbol{x})] = \underset{\theta_{1},...,\theta_{c}}{\operatorname{argmin}} \int p_{\operatorname{te}}(\boldsymbol{x}) \log \frac{p_{\operatorname{te}}(\boldsymbol{x})}{q(\boldsymbol{x})} \mathrm{d}\boldsymbol{x}$$

$$\approx \underset{\theta_{1},...,\theta_{c}}{\operatorname{argmin}} \frac{1}{n_{\operatorname{te}}} \sum_{j=1}^{n_{\operatorname{te}}} \log \frac{p_{\operatorname{te}}(\boldsymbol{x}_{j}^{\operatorname{te}})}{q(\boldsymbol{x}_{j}^{\operatorname{te}})} \left\{ \boldsymbol{x}_{j}^{\operatorname{te}} \right\}_{j=1}^{n_{\operatorname{te}}} \stackrel{\text{i.i.d.}}{\sim} p_{\operatorname{te}}(\boldsymbol{x})$$

- Fixed-point iteration to solve the KKT condition recovers the EM approach!
- Without estimating $\hat{p}_{tr}(y|\boldsymbol{x})$, can we directly minimize the KL divergence?

Direct KL-Divergence Approximation ¹⁴ by Density Ratio Estimation

Keziou (2003), Nguyen et al. (NIPS2007), Sugiyama et al. (NIPS2007)
 Identity (from Fenchel's inequality):

$$\mathrm{KL}[p_{\mathrm{te}}(\boldsymbol{x}) \| q(\boldsymbol{x})] = \sup_{s} \left\{ -\int p_{\mathrm{te}}(\boldsymbol{x}) s(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} + \int q(\boldsymbol{x}) \log s(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \right\} + 1$$

 $q(oldsymbol{x}) = \sum heta_y p_{ ext{tr}}(oldsymbol{x}|y)$

• Maximizer is $s({m x}) = q({m x})/p_{
m te}({m x})$.

Empirical approximation:

$$\widehat{\mathrm{KL}}[p_{\mathrm{te}}(\boldsymbol{x}) \| q(\boldsymbol{x})] = \max_{s} \left\{ -\frac{1}{n_{\mathrm{te}}} \sum_{j=1}^{n_{\mathrm{te}}} s(\boldsymbol{x}_{j}^{\mathrm{te}}) + \sum_{y=1}^{c} \frac{\theta_{y}}{n_{y}} \sum_{i:y_{i}=y} \log s(\boldsymbol{x}_{i}^{\mathrm{tr}}) \right\} + 1$$

• Maximization corresponds to estimating density ratio s(x). • Then we can directly estimate the test class-prior as $\operatorname{argmin}_{\theta_1,\ldots,\theta_c} \operatorname{KL}[p_{\operatorname{te}}(x) \| q(x)] \approx \operatorname{argmin}_{\theta_1,\ldots,\theta_c} \widehat{\operatorname{KL}}[p_{\operatorname{te}}(x) \| q(x)]$

Distribution Matching under the *f*-Divergence

du Plessis et al. (NN2014)

We don't have to stick to the KL divergence.

• We can use any divergence such as the *f*-divergence: For convex f such that f(1) = 0, Ali & Slivey (1966), Csiszár (1967)

Directly estimate the *f*-divergence from data:

 $\widehat{\mathrm{Div}}_{f}[p_{\mathrm{te}}(\boldsymbol{x}) \| q(\boldsymbol{x})] \quad \{\boldsymbol{x}_{i}^{\mathrm{tr}}\}_{i=1}^{n_{\mathrm{tr}}} \stackrel{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x}) \; \{\boldsymbol{x}_{j}^{\mathrm{te}}\}_{j=1}^{n_{\mathrm{te}}} \stackrel{\mathrm{i.i.d.}}{\sim} p_{\mathrm{te}}(\boldsymbol{x})$

 $\operatorname{Div}_{f}[p_{\operatorname{te}}(\boldsymbol{x}) \| q(\boldsymbol{x})] = \int p_{\operatorname{te}}(\boldsymbol{x}) f\left(\frac{q(\boldsymbol{x})}{p_{\operatorname{te}}(\boldsymbol{x})}\right) d\boldsymbol{x} \quad q(\boldsymbol{x}) = \sum_{u=1}^{\circ} \theta_{y} p_{\operatorname{tr}}(\boldsymbol{x}|y)$

Estimate the test class-prior as

 $\operatorname{argmin}_{\theta_1,\ldots,\theta_c} \operatorname{Div}_f[p_{\operatorname{te}}(\boldsymbol{x}) \| q(\boldsymbol{x})] \approx \operatorname{argmin}_{\theta_1,\ldots,\theta_c} \widehat{\operatorname{Div}}_f[p_{\operatorname{te}}(\boldsymbol{x}) \| q(\boldsymbol{x})]$

How do we estimate the *f*-divergence from data?

Direct *f*-Divergence Approximation by Density Ratio Estimation

Keziou (2003), Nguyen et al. (NIPS2007), Sugiyama et al. (AISM2012)

Identity (from Fenchel's inequality): $Div_f[p_{te}(x)||q(x)]$

$$= -\inf_{s} \left\{ \int p_{\text{te}}(\boldsymbol{x}) \Big(\partial f\big(s(\boldsymbol{x})\big) s(\boldsymbol{x}) - f\big(s(\boldsymbol{x})\big) \Big) \mathrm{d}\boldsymbol{x} - \int q(\boldsymbol{x}) \partial f\big(s(\boldsymbol{x})\big) \mathrm{d}\boldsymbol{x} \right\}$$

• Equality holds when $s({m x}) = q({m x})/p_{
m te}({m x})$.

Empirical approximation:

 $\begin{aligned} \operatorname{Div}_{f}[p_{\operatorname{te}}(\boldsymbol{x}) \| q(\boldsymbol{x})] \\ &= -\min_{s} \frac{1}{n_{\operatorname{te}}} \sum_{j=1}^{n_{\operatorname{te}}} \left(\partial f(s(\boldsymbol{x}_{j}^{\operatorname{te}})) s(\boldsymbol{x}_{j}^{\operatorname{te}}) - f(s(\boldsymbol{x}_{j}^{\operatorname{te}})) \right) - \sum_{y=1}^{c} \frac{\theta_{y}}{n_{y}} \sum_{i:y_{i}=y} f'(s(\boldsymbol{x}_{i}^{\operatorname{tr}})) \end{aligned}$

 Minimization corresponds to density ratio matching under the Bregman divergence.

Sugiyama, Suzuki & Kanamori, Density Ratio Estimation in Machine Learning (Cambridge University Press, 2012)

16

Various Choices of Function *f*

For convex
$$f$$
 such that $f(1) = 0$,
 $\operatorname{Div}_{f}[p_{\operatorname{te}}(\boldsymbol{x}) || q(\boldsymbol{x})] = \int p_{\operatorname{te}}(\boldsymbol{x}) f\left(\frac{q(\boldsymbol{x})}{p_{\operatorname{te}}(\boldsymbol{x})}\right) \mathrm{d}\boldsymbol{x}$

- **Kullback-Leibler (KL) divergence**: $f(t) = -\log t$
 - Popular choice, but sensitive to outliers.
 - Optimization is convex if s(x) is a linear model.
- Pearson (PE) divergence: $f(t) = (t-1)^2/2$
 - Robust to outliers.
 - Optimization is analytic if s(x) is a linear model.
- **Power divergence:** $f(t) = (t^{\alpha} 1)t/\alpha$ for $\alpha > 0$
 - Generalization of KL ($\alpha \rightarrow 0$) and PE ($\alpha = 1$).
 - More robust for $\alpha > 1$, but optimization becomes non-convex.

1. Semi-supervised class-prior shift adaptation

- A) Basic solution
- B) Distribution matching
- c) Summary
- 2. Positive-unlabeled classification
- 3. Conclusions

Summary: Semi-Supervised Classification with Class-Prior Shift

- Importance-weighted empirical risk minimization.
 - Estimation of the test class-prior $p_{te}(y)$ is needed.
- **EM** is seminal, but requires $\hat{p}_{tr}(y|\boldsymbol{x})$.
 - EM is KL-div minimization with fix-point iteration.
 - Can we directly minimize KL-div without $\hat{p}_{\mathrm{tr}}(y|\boldsymbol{x})$?
- KL-div approximation with density ratio estimation.
 - Can we use another divergence?
- Various divergences/distances can be used.
 - *f*-div approximation by density ratio estimation.
 - L2-distance approximation by density difference estimation.

Sugiyama et al. (NIPS2012, NeCo2013)

- 1. Semi-supervised class-prior shift adaptation
- 2. Positive-unlabeled classification
 - A) Basic solution
 - B) Identifiability
 - c) Density ratio estimation with anchor points
 - D) Partial distribution matching with irreducibility
 - E) Regrouping without irreducibility
 - F) Summary
- 3. Conclusions

Positive-Unlabeled (PU) Classification²¹

Given: Positive and unlabeled samples

- No negative data
- Goal: Obtain a positive-negative (PN) classifier

Positive

Example: Ad-click prediction

- Clicked ad: User likes it \rightarrow P
- Unclicked ad: User dislikes it or User likes it but doesn't have time to click it → U (=P or N)

 Image: Constraint of the second state of the second sta

- 1. Semi-supervised class-prior shift adaptation
- 2. Positive-unlabeled classification
 - A) Basic solution
 - B) Identifiability
 - c) Density ratio estimation with anchor points
 - D) Partial distribution matching with irreducibility
 - E) Regrouping without irreducibility
 - F) Summary
- 3. Conclusions

PN Risk Decomposition

Risk of classifier f: $R(f) = \mathbb{E}_{p(\boldsymbol{x},y)} \left[\ell \left(yf(\boldsymbol{x}) \right) \right] \quad \ell : \text{loss function}$ $= \pi \mathbb{E}_{p(\boldsymbol{x}|y=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right] + (1-\pi) \mathbb{E}_{p(\boldsymbol{x}|y=-1)} \left[\ell \left(-f(\boldsymbol{x}) \right) \right]$ Risk for P data $\frac{\pi = p(y = +1) : \text{Class-prior probability}}{(\text{for the moment, assume it is known})}$

Since we do not have N data in the PU setting, the risk cannot be directly estimated.

• How can we overcome this problem?

PU Risk Estimation

du Plessis et al. (ICML2015)

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right] + (1-\pi) \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=-1)} \left[\ell \left(-f(\boldsymbol{x}) \right) \right]$$

U-density is a mixture of P- and N-densities:

$$p(x) = \pi p(x|y = +1) + (1 - \pi)p(x|y = -1)$$

This allows us to eliminate the N-density as

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right]$$
$$+ \mathbb{E}_{p(\boldsymbol{x})} \left[\ell \left(-f(\boldsymbol{x}) \right) \right] - \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(-f(\boldsymbol{x}) \right) \right]$$

PU Empirical Risk Minimization

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|y=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right] + \mathbb{E}_{p(\boldsymbol{x})} \left[\ell \left(-f(\boldsymbol{x}) \right) \right] - \pi \mathbb{E}_{p(\boldsymbol{x}|y=+1)} \left[\ell \left(-f(\boldsymbol{x}) \right) \right]$$

Replacing expectations by sample averages gives an empirical risk:

$$\widehat{R}_{\rm PU}(f) = \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(f(\boldsymbol{x}_i^{\rm P})\Big) + \frac{1}{n_{\rm U}} \sum_{j=1}^{n_{\rm U}} \ell\Big(-f(\boldsymbol{x}_j^{\rm U})\Big) - \frac{\pi}{n_{\rm P}} \sum_{i=1}^{n_{\rm P}} \ell\Big(-f(\boldsymbol{x}_i^{\rm P})\Big)$$

$$\{\boldsymbol{x}_{i}^{\mathrm{P}}\}_{i=1}^{n_{\mathrm{P}}} \stackrel{\text{i.i.d.}}{\sim} p(\boldsymbol{x}|y=+1) \quad \{\boldsymbol{x}_{i}^{\mathrm{U}}\}_{i=1}^{n_{\mathrm{U}}} \stackrel{\text{i.i.d.}}{\sim} p(\boldsymbol{x})$$

Optimal convergence rate is attained: Niu et al. (NIPS2016)

$$R(\widehat{f}_{\rm PU}) - R(f^*) \le C(\delta) \left(\frac{2\pi}{\sqrt{n_{\rm P}}} + \frac{1}{\sqrt{n_{\rm U}}}\right)$$

with probability $1 - \delta$

$$f_{\rm PU} = \operatorname{argmin}_{f} R_{\rm PU}(f)$$
$$f^* = \operatorname{argmin}_{f} R(f)$$

 $n_{
m P}, n_{
m U}\;$: # of P, U samples

25

But, in practice, $\pi = p(y = +1)$ is unknown!

Class-Prior Estimation with Non-Traditional Classification

Consider PU label $s \in \{0, 1\}$:

• If x is P (or U), s = 1 (or s = 0).

Elkan & Noto (KDD2008)

- $\pi = \frac{p(s=1)}{p(s=1|y=+1)}$ Train a "non-traditional" classifier $\hat{p}(s|\mathbf{x})$ from PU data.
 - Usual supervised classification from $\{x_i^{\rm P}\}_{i=1}^{n_{\rm P}}, \{x_i^{\rm U}\}_{i=1}^{n_{\rm U}}$ (Assume P is labeled from U when s = 1.)

Obtain $\hat{\pi}$ with \mathcal{P} : Set of validation P data

$$\hat{p}(s=1) = \frac{n_{\rm P}}{n_{\rm P} + n_{\rm U}} \quad \hat{p}(s=1|y=+1) = \frac{1}{|\mathcal{P}|} \sum_{x \in \mathcal{P}} \hat{p}(s=1|x)$$

Can we avoid training a non-traditional classifier?

cf. Original paper solves PU classification by

$$\hat{p}(y = +1|\mathbf{x}) = \frac{\hat{p}(s = 1|\mathbf{x})}{\hat{p}(s = 1|y = +1)}$$

- 1. Semi-supervised class-prior shift adaptation
- 2. Positive-unlabeled classification
 - A) Basic solution
 - B) Identifiability
 - c) Density ratio estimation with anchor points
 - D) Partial distribution matching with irreducibility
 - E) Regrouping without irreducibility
 - F) Summary
- 3. Conclusions

Non-Traditional Classification as Partial Distribution Matching $p(\mathbf{x}) = \pi p(\mathbf{x}|y = +1) + (1 - \pi)p(\mathbf{x}|y = -1)$

PN classification: (Full) distribution matching

 $\min_{\theta \in [0,1]} \operatorname{Div}[p(\boldsymbol{x}) || q(\boldsymbol{x})] \qquad q(\boldsymbol{x}) = \theta p(\boldsymbol{x} | y = +1) \\ + (1 - \theta) p(\boldsymbol{x} | y = -1)$

PU classification: Partial distribution matching

 $\min_{\theta \in [0,1]} \operatorname{Div}[p(\boldsymbol{x}) \| q'(\boldsymbol{x})] \quad q'(\boldsymbol{x}) = \theta p(\boldsymbol{x} | y = +1)$

du Plessis & Sugiyama (IEICE2014)

• Class-prior estimation by non-traditional classification can be interpreted as partial matching with Pearson divergence. $\frac{1}{1-c} = \frac{1}{c} \frac{1}{$

$$\frac{1}{2}\int p(\boldsymbol{x})\left(\frac{q'(\boldsymbol{x})}{p(\boldsymbol{x})}-1\right)^2\mathrm{d}\boldsymbol{x}$$

Behaviors of Partial Matching

 $\min_{\theta \in [0,1]} \operatorname{Div}_f[p(\boldsymbol{x}) \| q'(\boldsymbol{x})] \quad q'(\boldsymbol{x}) = \theta p(\boldsymbol{x} | y = +1)$

If two classes have no overlap, naïve partial matching works.

• Just fitting $p(\boldsymbol{x}|\boldsymbol{y}=+1)$ is sufficient.

- If two classes are overlapped, partial matching generally over-estimates the true class-prior.
 - Tails of $p(\boldsymbol{x}|\boldsymbol{y}=-1)$ affect the solution.

 $p(\boldsymbol{x}|\boldsymbol{y}=-1)$

Non-Identifiability of the Class-Prior ³⁰

Blanchard et al. (JMLR2010)

 $p(\boldsymbol{x}|y=+1)$

 \boldsymbol{x}

$$p(\boldsymbol{x}) = \pi p(\boldsymbol{x}|\boldsymbol{y} = +1) + (1 - \pi)p(\boldsymbol{x}|\boldsymbol{y} = -1)$$

$$\{\boldsymbol{x}_{i}^{\mathrm{P}}\}_{i=1}^{n_{\mathrm{P}}} \stackrel{\text{i.i.d.}}{\sim} p(\boldsymbol{x}|\boldsymbol{y} = +1)$$

$$\{\boldsymbol{x}_{j}^{\mathrm{U}}\}_{j=1}^{n_{\mathrm{U}}} \stackrel{\text{i.i.d.}}{\sim} p(\boldsymbol{x})$$
Non-estimable

When p(x|y = +1) and p(x|y = -1) are overlapped, they may share some common component.

- Its proportion can be arbitrarily changed.
- Indeed, any $\theta \in \left\{ \exists p'(x), \ p(x) = \theta p(x|y = +1) + (1 \theta)p'(x) \right\}$ can be a valid solution. p(x|y = -1)

We need a reasonable assumption to obtain a meaningful solution!

- 1. Semi-supervised class-prior shift adaptation
- 2. Positive-unlabeled classification
 - A) Basic solution
 - B) Identifiability
 - c) Density ratio estimation with anchor points
 - D) Partial distribution matching with irreducibility
 - E) Regrouping without irreducibility
 - F) Summary
- 3. Conclusions

Class-Prior Estimation under Anchor Point Assumption

Sugiyama et al. (MIT Press, in press)

Assume there exists an anchor point in $\{x_i^{P}\}_{i=1}^{n_{P}}$:

Simple and nice!

• But the anchor point assumption may be too strong.

- 1. Semi-supervised class-prior shift adaptation
- 2. Positive-unlabeled classification
 - A) Basic solution
 - B) Identifiability
 - c) Density ratio estimation with anchor points
 - D) Partial distribution matching with irreducibility
 - E) Regrouping without irreducibility
 - F) Summary
- 3. Conclusions

Partial Matching with Differentiable *f*-Divergence

du Plessis et al. (ACML2015, MLJ2017)

$$\operatorname{div}(\theta) = \operatorname{Div}_{f}[p(\boldsymbol{x}) \| q'(\boldsymbol{x})] = \int p(\boldsymbol{x}) f\left(\frac{q'(\boldsymbol{x})}{p(\boldsymbol{x})}\right) d\boldsymbol{x}$$

 $q'({m x})= heta p({m x}|y=+1)$ Suppose f(t) has the minimum at $t\geq 1$.

When f(t) is differentiable, $\operatorname{div}'(\pi) = 0$ is necessary for $\pi = \underset{\theta \in [0,1]}{\operatorname{argmin}} \operatorname{div}(\theta)$. $\operatorname{div}'(\pi) = \int f'(p(y = +1|x))p(x|y = +1)\mathrm{d}x$

div'(π) = 0 if and only if

- Two classes are non-overlapped,
- and f'(1) = 0 (e.g., Pearson div).

$$p(\boldsymbol{x}|\boldsymbol{y} = +1) \quad p(\boldsymbol{x}|\boldsymbol{y} = -1)$$

With Non-Differentiable *f*-Divergence ³⁵

$$\operatorname{div}(\theta) = \operatorname{Div}_{f}[p(\boldsymbol{x}) \| q'(\boldsymbol{x})] = \int p(\boldsymbol{x}) f\left(\frac{q'(\boldsymbol{x})}{p(\boldsymbol{x})}\right) \mathrm{d}\boldsymbol{x}$$

Suppose f(t) has the minimum at $t \ge 1$.

When f(t) is non-differentiable at t = 1, $0 \in \partial \operatorname{div}(\pi)$ is necessary for $\pi = \underset{\theta \in [0,1]}{\operatorname{argmin}} \operatorname{div}(\theta)$.

 ∂ : subdifferential $\partial \operatorname{div}(\pi) = \int \partial f(p(y=+1|x))p(x|y=+1)\mathrm{d}x$

• f(t) is penalized as $f(t) \leftarrow \begin{cases} f(t) & (t \le 1) \\ \infty & (t > 1) \end{cases}$,

• and the irreducibility assumption holds: Blanchard et al. (JMLR2010) • p(x|y = +1) is not a component of p(x|y = -1).

Irreducibility and Anchor Points

Irreducibility: Blanchard et al. (JMLR2010)

• $p(\boldsymbol{x}|\boldsymbol{y}=+1)$ is not a component of $p(\boldsymbol{x}|\boldsymbol{y}=-1)$.

 $\pi = \sup \left\{ \pi' \mid \exists p'(\boldsymbol{x}), \ p(\boldsymbol{x}) = \pi' p(\boldsymbol{x}|y = +1) + (1 - \pi')p'(\boldsymbol{x}) \right\}$

Anchor points: Liu & Tao (IEEE-TPAMI2015)

- For some $k \in \{1, ..., n_{P}\},\ p(\boldsymbol{x}_{k}^{P}|y=+1) > 0 \text{ and } p(\boldsymbol{x}_{k}^{P}|y=-1) = 0.$
- Irreducibility holds if and only if at least one anchor point exists:

- Density ratio based method uses the anchor point explicitly.
- Partial matching only assumes its existence implicitly.
- Therefore, the required assumption is weaker!

Practical Choice of *f* : Penalized L1-Distance

du Plessis et al. (ACML2015, MLJ2017)

pen
$$L_1(\theta) = \int p(\boldsymbol{x}) f\left(\frac{q'(\boldsymbol{x})}{p(\boldsymbol{x})}\right) \mathrm{d}\boldsymbol{x}$$

$$f(t) = \begin{cases} 1-t & (t \le 1) \\ \infty & (t > 1) \end{cases}$$

Regularized least-squares density ratio estimation gives a divergence approximator analytically as

$$\widehat{\text{pen}L_{1}}(\theta) = \frac{1}{\lambda} \sum_{b=1}^{B} \max(0, \beta_{b})\beta_{b} - \theta + 1 \qquad \begin{array}{l} \lambda > 0 : \text{Regularization} \\ \text{parameter} \end{array}$$
$$\beta_{b} = \frac{\theta}{n_{\text{P}}} \sum_{i=1}^{n_{\text{P}}} \varphi_{b}(\boldsymbol{x}_{i}^{\text{P}}) - \frac{1}{n_{\text{U}}} \sum_{j=1}^{n_{\text{U}}} \varphi_{b}(\boldsymbol{x}_{j}^{\text{P}}) \qquad \begin{cases} \boldsymbol{x}_{j}^{\text{P}} \}_{i=1}^{n_{\text{P}}} \stackrel{\text{i.i.d.}}{\sim} p(\boldsymbol{x}|\boldsymbol{y} = +1) \\ \{\boldsymbol{x}_{j}^{\text{U}} \}_{j=1}^{n_{\text{U}}} \stackrel{\text{i.i.d.}}{\sim} p(\boldsymbol{x}) \end{cases}$$

• Model of density ratio $q'({m x})/p({m x})$:

$$s(\boldsymbol{x}) = \sum_{b=1}^{B} \alpha_b \varphi_b(\boldsymbol{x}) + 1$$

 $\varphi_b(\boldsymbol{x}) \geq 0$: Basis function

 $\alpha_b \geq 0$: Parameter

Implementation and Analysis

$$\widehat{\text{pen}L_1}(\theta) = \frac{1}{\lambda} \sum_{b=1}^{B} \max(0, \beta_b) \beta_b - \theta + 1$$

- Algorithm: Find a minimizer w.r.t. $\theta \in [0, 1]$.
 - Computationally very efficient!
- $\begin{array}{l} \hline \textbf{Optimal convergence rate is achieved!} \\ penL_1(\hat{\pi}) penL_1(\pi) = \mathcal{O}_p(1/\sqrt{n_{\mathrm{P}}} + 1/\sqrt{n_{\mathrm{U}}}) \\ \\ \hat{\pi} = \underset{0 \leq \theta \leq 1}{\operatorname{argmin penL_1}(\theta)} \\ \hat{\mu}_{b} = \frac{\theta}{n_{\mathrm{P}}} \sum_{i=1}^{n_{\mathrm{P}}} \varphi_b(x_i^{\mathrm{P}}) \frac{1}{n_{\mathrm{U}}} \sum_{j=1}^{n_{\mathrm{U}}} \varphi_b(x_j^{\mathrm{P}}) \quad \frac{\{x_i^{\mathrm{P}}\}_{i=1}^{n_{\mathrm{U}}} \cdot \hat{p}(x|y=+1)}{\{x_j^{\mathrm{U}}\}_{j=1}^{n_{\mathrm{U}}} \cdot \hat{p}(x)} \\ \\ penL_1(\theta) = \int p(x) f\left(\frac{q'(x)}{p(x)}\right) \mathrm{d}x \\ f(t) = \begin{cases} 1-t \quad (t \leq 1) \quad p(x) = \pi p(x|y=+1) + (1-\pi)p(x|y=-1) \\ \infty \quad (t > 1) \quad q'(x) = \theta p(x|y=+1) \end{cases} \end{array}$
- However, there is no way to assess irreducibility in practice.

- 1. Semi-supervised class-prior shift adaptation
- 2. Positive-unlabeled classification
 - A) Basic solution
 - B) Identifiability
 - c) Density ratio estimation with anchor points
 - D) Partial distribution matching with irreducibility
 - E) Regrouping without irreducibility
 - F) Summary
- 3. Conclusions

Class-Prior Estimation without Irreducibility

$$p(x) = \pi p(x|y = +1) + (1 - \pi)p(x|y = -1)$$

Without irreducibility, any

 $heta \in \left\{ \exists p'(oldsymbol{x}), \ p(oldsymbol{x}) = heta p(oldsymbol{x}|y=+1) + (1- heta)p'(oldsymbol{x})
ight\}$

can be a valid solution, due to common components.Partial matching actually gives its maximum value.

Can we mitigate the positive bias in the absence of irreducibility?

Yao et al. (arXiv2020)

$$p(x) = \pi p(x|y = +1) + (1 - \pi)p(x|y = -1)$$

Idea: Regroup a small positive-dominant region to be fully positive.

- By this regrouping,
 - π is slightly increased,
 - but irreducibility is satisfied!

How can we find a positive-dominant region?

Implementation

- Consider PU label $s \in \{0, 1\}$:
 - If \boldsymbol{x} is P (or U), s = 1 (or s = 0).
- Train a "non-traditional" classifier $\hat{p}(s|\boldsymbol{x})$:
 - Usual supervised classification from $\{x_i^{\mathrm{P}}\}_{i=1}^{n_{\mathrm{P}}}, \{x_i^{\mathrm{U}}\}_{i=1}^{n_{\mathrm{U}}}$.
- Select some unlabeled samples that have the highest positive-confidence: $\hat{p}(s = 1 | x_j^U)$
- Copy them and give positive labels.
- Solve the converted class-prior estimation problem.

- 1. Semi-supervised class-prior shift adaptation
- 2. Positive-unlabeled classification
 - A) Basic solution
 - B) Identifiability
 - c) Density ratio estimation with anchor points
 - D) Partial distribution matching with irreducibility
 - E) Regrouping without irreducibility
 - F) Summary
- 3. Conclusions

Summary: PU Classification

- There is a nice empirical risk minimization method, given class-prior $\pi = p(y = +1)$ can be estimated.
- However, the class-prior is not identifiable in general.
- Simple density ratio estimation solution:
 - Use anchor points (i.e., 100% positive), which may be strong.
- Computationally efficient penL1-div partial matching.
 - Without irreducibility (P-density is not part of N-density), its solution is positively biased.
 - Existence of anchor points is sufficient, but not assessable.

Regrouping:

• By preprocessing of data, the positive bias can be reduced.

- 1. Semi-supervised class-prior shift adaptation
- 2. Positive-unlabeled classification
- 3. Conclusions

Summary: Mixture Proportion Estimation

- Many applications in machine learning:
 - Class-prior shift adaptation: Importance weight p_{te}(y)
 Identifiability allows naïve distribution matching to solve.
 - Positive-unlabeled (PU) classification: Class-prior p(y)
 Non-identifiability posed significant challenges.
 - Noisy label classification: Noise transition $p(\bar{y}|y)$

$$p(\bar{y}|\boldsymbol{x}) = \sum_{y} p(\bar{y}|y) p(y|\boldsymbol{x}) \qquad y: \text{Clean class label}$$
Observed Non-observed $\bar{y}: \text{Noisy class label}$

Multiple non-identifiability is even more challenging!

Challenge: Overcoming Non-Identifiability

- Identifiability conditions have been investigated:
 - Irreducibility, anchor set, anchor points... Blanchard et al. (JMLR2010) Liu & Tao (IEEE-TPAMI2015)
- However, these identifiability conditions may not be satisfied in practice.
- Even without identifiability, it is promising to
 - Reduce estimation bias by regrouping Yao et al. (arXiv2020) (in PU classification).
 - Use a weaker "sufficiently scattered" assumption (in noisy-label classification).

Challenge: Towards Better Machine Learning (ML)

- The estimated proportion is later used in ML tasks.
- Current approach is two-step:
 - Estimate the mixture proportion.
 - Use the estimated proportion to solve the target ML problem.

$$\hat{\pi} = \operatorname*{argmin}_{\pi} \operatorname{MPE}(\pi)$$
 $\hat{f} = \operatorname*{argmin}_{f} \operatorname{ML}(f, \hat{\pi})$

- 1st step is preformed without regards to 2nd step.
- Combining them into one-step is more promising:

$$\hat{f} = \operatorname*{argmin}_{f} \min_{\pi} \mathrm{ML\&MPE}(f, \pi)$$

- Alternate optimization.
- Joint upper-bound optimization. Zhang et al. (ACML2020, LNCS2021)
- Dynamic stochastic optimization.

Kato et al. (arXiv2018)

Xia et al. (NeurIPS2019) Fang et al. (NeurIPS2020) Zhang et al. (ICML2021)

Grateful to Great Collaborators!

Research scientist

PAGE >

VD

Team leade

Masashi Sugiyama	Gang Niu
Research scientist	Research scientist
Fumiko Kawasaki	Takahiro Mimori
Postdoctoral researcher	Postdoctoral researcher
Voot Tangkaratt	Jingfeng Zhang
Postdoctoral researcher	Postdoctoral researcher
Jiaqi Lyu	Shuo Chen
Technical scientist	Technical staff I
Yuka Mori	Masashi Ugawa
Senior visiting scientist	Visiting scientist
Shinichi Nakajima	Yoshihiro Nagano
Visiting scientist	Visiting scientist
Florian Yger	Takashi Ishida
Visiting scientist	Visiting scientist
Miao Xu	Takayuki Osa
Visiting scientist	Visiting scientist
Bo Han	Daichi Noborio
Visiting scientist	Visiting scientist
Yuko Kuroki	Hisashi Yoshida
Visiting scientist	Visiting scientist
Ryohei Kasai	Feng Liu
Visiting scientist	Visiting scientist
Lei Feng	Tongliang Liu
Junior research associate	Junior research associate
Takeshi Teshima	Yifan Zhang
Part-time worker I	Part-time worker I
Zhenghang Cui	Han Bao
Part-time worker I Masahiro Fujisawa	

and many interns over the world!

- Professor
 - Masashi Sugiyama (Complexity, Computer, Information, RIKEN)
- Lecturer
 - <u>Naoto Yokoya</u> (Complexity, Computer, Information, RIKEN)
 - <u>Takashi Ishida</u> (Complexity, Computer, Information)
- Project Lecturer

 <u>Nobutaka Ito</u> (Complexity)
- Associate professor (to <u>Sato Lab</u> from April 2020)
 <u>Issei Sato</u> (Computer, Information, Complexity, RIKEN)
- Project Assistant Professor

 Chao-Kai Chiang (Complexity)
- Project Researcher (Postdoctoral Researcher)
 - <u>Yoshihiro Nagano</u> (Complexity)
 - Dongxian Wu (Complexity)
- Project Specialist
 - Yuko Kawashima (Complexity)
 - Soma Yokoi (Complexity)
 - Fumi Sato (Complexity)

Doctor Student

- Seiya Tokui (Computer)<u>* Sato lab.</u>
 Shinii Nakadai (Computer)
- Kento Nozawa (Complexity)* Sato lab.
- Kento Suzuki (Complexity)
- Han Bao (Computer)
- <u>Zhenghang Cui</u> (Computer)* Sato lab.
- Liyuan Xu (Computer)
- <u>Takeshi Teshima</u> (Complexity)
- Ryuichi Kiryo (Computer)
- Masahiro Fujisawa (Complexity)<u>* Sato lab.</u>
- Jongyeong Lee (Computer)
- Tianyi Zhang (Complexity)
- <u>Yivan Zhang</u> (Computer)
- Riou Charles (Computer)
- Valliappa Chockalingam (Computer)
- Tongtong Fang (Complexity)
- Boyo Chen (Complexity)
- Xiaoyu Dong (Complexity)
- Yujie Zhang (Complexity)
- Xinqiang Cai (Complexity)
- Jian Song (Complexity)
- Wanshui Gan (Complexity)

- Master Student
 - Atsushi Ito (Complexity)
 - Shinji Kawakami (Complexity)<u>* Sato lab.</u>
 - Wataru Ohtori (Computer)
 - Tokio Kajitsuka (Computer)
 Shota Nakajima (Computer)
 - Takahiro Suzuki (Computer)* Sato lab
 - Kei Mukaiyama (Computer)* Sato lab.
 - Mingcheng Hou (Computer)<u>* Sato lab.</u>
 - Hyunggyu Park (Complexity)* Sato lab.
 - Yuting Tang (Complexity)
 - Shintaro Nakamura (Complexity)
 - Xujie Wang (Complexity)
 - Toshiki Kodera (Computer)
 - Yuma Aoki (Computer)
 - Jiahuan Li (Computer)
 - o Jianuari Li (Computer)
 - Chengwei Liang (Computer)
 Huanjian Zhou (Complexity)
 - Kun Yang (Complexity)
 - Takanori Shirasaka (Complexity)
 - Reo Iizuka (Complexity)
 - Xiaomou Hou (Complexity)
- Bachelor Student
 - Kanma Noda (Information Science)
 - Kento Yamamoto (Information Science)
 - Kazuki Ota (Information Science)
 - Kazutaka Yahiro (Information Science)
 - Hikaru Fujita (Information Science)

Research Student

- Kenny Song (Computer)
 - Or Raveh (Computer)
 - Johannes Ackermann (Computer)
 - Anan Methasate (Computer)
 - Cemal Erat (Computer)

49