Robust Machine Learning for Reliable Deployment

Masashi Sugiyama

RIKEN Center for Advanced Intelligence Project/
The University of Tokyo

http://www.ms.k.u-tokyo.ac.jp/sugi/

Slides:

RIKEN Center for Advanced Intelligence Project (AIP)

- 10-year national project in Japan (2016-2025):
 - Develop next-generation AI technology (learning and optimization theory, etc.)

Imperfect Information Learning Team:

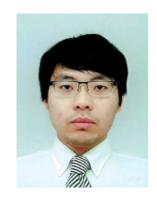
Develop novel ML theories and algorithms that enable accurate learning from limited information.

(150+ researchers, 200+ students, 150+ interns, 300+ visiting scientists, 40+ industry projects)

Imperfect Information Learning Team ³

Members:

- Gang Niu (Research Scientist): Learning theory
- Voot Tangkaratt (Postdoc): Reinforcement learning
- Shuo Chen (Postdoc): Metric learning
- Jingfeng Zhang (Postdoc): Adversarial learning
- Jiaqi Lyu (Postdoc): Weakly supervised learning
- Many great Visiting Scientists, Junior Research Associates, Part-Timers, and Interns over the world!



Today's Topic: Robust Machine Learning

- In real-world applications, it becomes increasingly important to consider robustness against various factors:
 - Data bias: changing environments, privacy.
 - Insufficient information: weak supervision.
 - Label noise: human error, sensor error.
 - Attack: adversarial noise, distribution shift.
- In this talk, I will give an overview of our recent advances in robust machine learning.

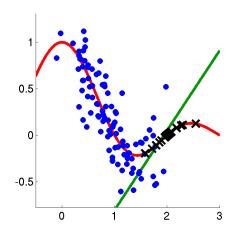
http://www.ms.k.u-tokyo.ac.jp/sugi/publications.html

Contents

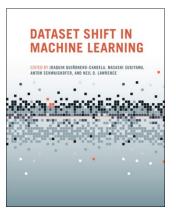
- 1. Transfer learning
- 2. Weakly supervised classification
- 3. Future outlook

Transfer Learning

- Training and test data often have different distributions, due to
 - changing environments,
 - sample selection bias (privacy).

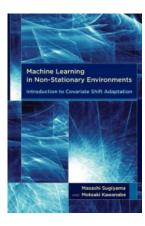


- Transfer learning (domain adaptation):
 - Train a test-domain predictor using training data from different domains.



Quiñonero-Candela, Sugiyama, Schwaighofe & Lawrence (Eds.), Dataset Shift in Machine Learning, MIT Press, 2009.

(Edited volume from NIPS2006 Workshop on Learning When Test and Training Inputs Have Different Distributions) Sugiyama & Kawanabe, Machine Learning in Non-Stationary Environments, MIT Press, 2012



Problem Setup

Given:

• Training data $\{(\boldsymbol{x}_i^{\mathrm{tr}}, y_i^{\mathrm{tr}})\}_{i=1}^{n_{\mathrm{tr}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x}, y)$

 $oldsymbol{x}$: Input

y: Output

Goal:

• Train a predictor $y=f(\boldsymbol{x})$ that works well in the test domain (with some additional data from the test domain).

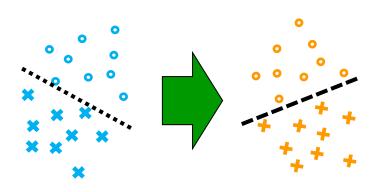
$$\min_{f} R(f) \quad R(f) = \mathbb{E}_{\mathbf{p_{te}}(\boldsymbol{x}, \boldsymbol{y})}[\ell(f(\boldsymbol{x}), y)]$$

 ℓ : loss function

Challenge:

Overcome changing distributions!

$$p_{\mathrm{tr}}(\boldsymbol{x},y) \neq p_{\mathrm{te}}(\boldsymbol{x},y)$$



Various Scenarios

Full-distribution shift:

 $p_{\mathrm{tr}}(\boldsymbol{x},y) \neq p_{\mathrm{te}}(\boldsymbol{x},y)$

Covariate shift:

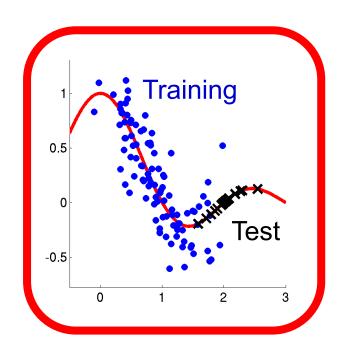
 $p_{\mathrm{tr}}(\boldsymbol{x}) \neq p_{\mathrm{te}}(\boldsymbol{x})$

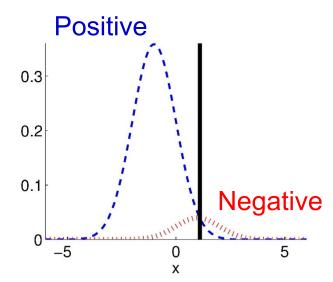
Class-prior/target shift:

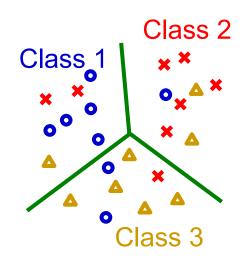
 $p_{\mathrm{tr}}(y) \neq p_{\mathrm{te}}(y)$

Output noise:

- $p_{\mathrm{tr}}(y|\boldsymbol{x}) \neq p_{\mathrm{te}}(y|\boldsymbol{x})$
- Class-conditional shift:
- $p_{\mathrm{tr}}(\boldsymbol{x}|y) \neq p_{\mathrm{te}}(\boldsymbol{x}|y)$







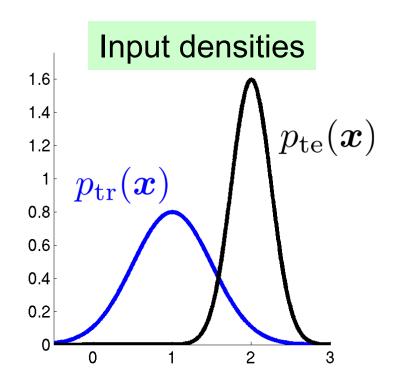
Regression under Covariate Shift

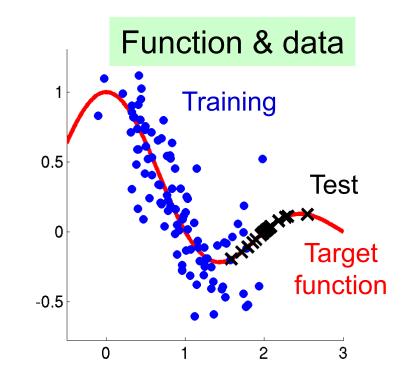
- Covariate shift: Shimodaira (JSPI2000)
 - Training and test input distributions are different:

$$p_{\mathrm{tr}}(\boldsymbol{x}) \neq p_{\mathrm{te}}(\boldsymbol{x})$$

But the output-given-input distribution remains unchanged:

$$p_{\mathrm{tr}}(y|\boldsymbol{x}) = p_{\mathrm{te}}(y|\boldsymbol{x}) = p(y|\boldsymbol{x})$$



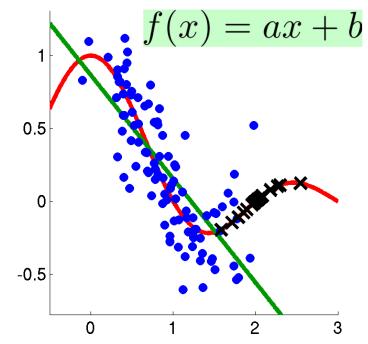


Empirical Risk Minimization (ERM)

$$\min_{f} \left[\sum_{i=1}^{n_{\mathrm{tr}}} \ell(f(\boldsymbol{x}_{i}^{\mathrm{tr}}), y_{i}^{\mathrm{tr}}) \right] \qquad \{(\boldsymbol{x}_{i}^{\mathrm{tr}}, y_{i}^{\mathrm{tr}})\}_{i=1}^{n_{\mathrm{tr}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x}, y)$$

$$\{(\boldsymbol{x}_i^{\mathrm{tr}}, y_i^{\mathrm{tr}})\}_{i=1}^{n_{\mathrm{tr}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x}, y)$$

- Generally, ERM is consistent:
 - Learned function converges to the optimal solution when $n_{\mathrm{tr}} o \infty$.
- However, covariate shift makes ERM inconsistent:



$$\frac{1}{n_{\mathrm{tr}}} \sum_{i=1}^{n_{\mathrm{tr}}} \ell(f(\boldsymbol{x}_{i}^{\mathrm{tr}}), y_{i}^{\mathrm{tr}}) \overset{n_{\mathrm{tr}} \to \infty}{\to} \mathbb{E}_{p_{\mathrm{tr}}(\boldsymbol{x}, y)} [\ell(f(\boldsymbol{x}), y)] \neq R(f)$$
$$p_{\mathrm{tr}}(\boldsymbol{x}) \neq p_{\mathrm{te}}(\boldsymbol{x})$$

Importance-Weighted ERM (IWERM) 11

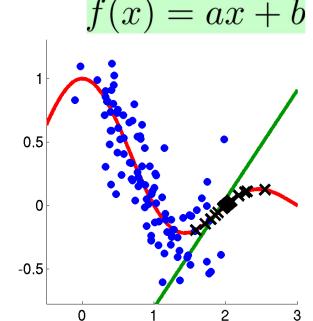
$$\min_{f} \left[\sum_{i=1}^{n_{\mathrm{tr}}} \frac{p_{\mathrm{te}}(\boldsymbol{x}_{i}^{\mathrm{tr}})}{p_{\mathrm{tr}}(\boldsymbol{x}_{i}^{\mathrm{tr}})} \ell(f(\boldsymbol{x}_{i}^{\mathrm{tr}}), y_{i}^{\mathrm{tr}}) \right]$$
Importance

IWERM is consistent even under covariate shift.

$$\frac{1}{n_{\text{tr}}} \sum_{i=1}^{n_{\text{tr}}} \frac{p_{\text{te}}(\boldsymbol{x}_{i}^{\text{tr}})}{p_{\text{tr}}(\boldsymbol{x}_{i}^{\text{tr}})} \ell(f(\boldsymbol{x}_{i}^{\text{tr}}), y_{i}^{\text{tr}})$$

$$\stackrel{n_{\text{tr}} \to \infty}{\to} \mathbb{E}_{\boldsymbol{p}_{\text{tr}}(\boldsymbol{x}, \boldsymbol{y})} \left[\frac{p_{\text{te}}(\boldsymbol{x})}{p_{\text{tr}}(\boldsymbol{x})} \ell(f(\boldsymbol{x}), y) \right]$$

$$= \mathbb{E}_{p_{\text{te}}(\boldsymbol{x}, y)} [\ell(f(\boldsymbol{x}), y)] = R(f)$$



How can we know the importance weight?

Importance Weight Estimation

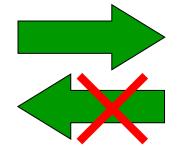
Vapnik's principle:

Vapnik (Wiley, 1998)

When solving a problem of interest, one should not solve a more general problem as an intermediate step

Knowing densities

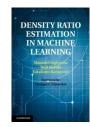
$$p_{\mathrm{te}}(\boldsymbol{x}), p_{\mathrm{tr}}(\boldsymbol{x})$$



Knowing ratio

$$r^*(oldsymbol{x}) = rac{p_{ ext{te}}(oldsymbol{x})}{p_{ ext{tr}}(oldsymbol{x})}$$

- Estimating the density ratio is substantially easier than estimating both the densities!
- Various direct density-ratio estimators were developed.



Sugiyama, Suzuki & Kanamori, Density Ratio Estimation in Machine Learning (Cambridge University Press, 2012)

Least-Squares Importance Fitting (LSIF) Kanamori et al. (JMLR2009)

Given training and test input data:

$$\{oldsymbol{x}_i^{ ext{tr}}\}_{i=1}^{n_{ ext{tr}}} \overset{ ext{i.i.d.}}{\sim} p_{ ext{tr}}(oldsymbol{x}) \qquad \{oldsymbol{x}_j^{ ext{te}}\}_{j=1}^{n_{ ext{te}}} \overset{ ext{i.i.d.}}{\sim} p_{ ext{te}}(oldsymbol{x})$$

■ Directly fit a model r to $r^*({m x}) = rac{p_{
m te}({m x})}{p_{
m tr}({m x})}$ by LS:

$$\min_{r} Q(r) \qquad Q(r) = \int \left(r(\boldsymbol{x}) - r^*(\boldsymbol{x}) \right)^2 p_{\mathrm{tr}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}$$

Empirical approximation:

$$Q(r) = \int r(\boldsymbol{x})^2 p_{\text{tr}}(\boldsymbol{x}) d\boldsymbol{x} - 2 \int r(\boldsymbol{x}) p_{\text{te}}(\boldsymbol{x}) d\boldsymbol{x} + C$$

$$\approx \frac{1}{n_{\text{tr}}} \sum_{i=1}^{n_{\text{tr}}} r(\boldsymbol{x}_i^{\text{tr}})^2 - \frac{2}{n_{\text{te}}} \sum_{j=1}^{n_{\text{te}}} r(\boldsymbol{x}_j^{\text{te}}) + C$$

From Two-Step Adaptation to One-Step Adaptation

- The classical approaches are two steps:
 - 1. Weight estimation (e.g., LSIF):

$$\widehat{r} = \operatorname*{argmin}_{r} \mathbb{E}_{p_{\operatorname{tr}}(\boldsymbol{x})}[(r(\boldsymbol{x}) - r^{*}(\boldsymbol{x}))^{2}]$$

2. Weighted predictor training (e.g., IWERM):

$$\widehat{f} = \operatorname*{argmin}_{f} \mathbb{E}_{p_{\operatorname{tr}}(\boldsymbol{x}, y)} [\widehat{\boldsymbol{r}}(\boldsymbol{x}) \ell(f(\boldsymbol{x}), y)]$$

Can we integrate these two steps?

Contents

- 1. Transfer learning
 - A) Joint upper-bound minimization
 - B) Dynamic importance weighting
- 2. Weakly supervised classification
- 3. Future outlook

Joint Upper-Bound Minimization

Zhang et al. (ACML2020, SNCS2021)

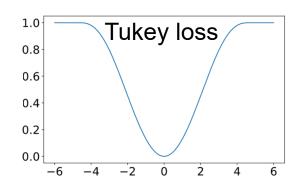
- Suppose we are given
 - Labeled training data: $\{(\boldsymbol{x}_i^{\mathrm{tr}}, y_i^{\mathrm{tr}})\}_{i=1}^{n_{\mathrm{tr}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x}, y)$
 - $\{\boldsymbol{x}_i^{\mathrm{te}}\}_{i=1}^{n_{\mathrm{te}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{te}}(\boldsymbol{x})$ Unlabeled test data:
- Goal: We want to minimize the test risk.

$$R_{\ell}(f) = \mathbb{E}_{p_{te}(\boldsymbol{x},y)}[\ell(f(\boldsymbol{x}),y)]$$
 ℓ : evaluation loss

We use two losses $\ell(\leq 1), \ell'(\geq \ell)$. ℓ' : surrogate loss

For example:

- ℓ : 0/1, ℓ' : hinge or softmax cross-entropy (classification)
- ℓ : Tukey, ℓ' : squared (regression)



Risk Upper-Bounding (cont.)

Zhang et al. (ACML2020, SNCS2021)

For $\ell \leq 1, \ell' \geq \ell, r \geq 0$, the test risk is upper-bounded as

$$\begin{split} \frac{1}{2}R_{\ell}(f)^2 &\leq J_{\ell'}(r,f) \\ R_{\ell}(f) &= \mathbb{E}_{p_{\mathrm{te}}(\boldsymbol{x},y)}[\ell(f(\boldsymbol{x}),y)] \\ J_{\ell'}(r,f) &= (\mathbb{E}_{p_{\mathrm{tr}}(\boldsymbol{x},y)}[r(\boldsymbol{x})\ell'(f(\boldsymbol{x}),y)])^2 \quad \leftarrow \text{IWERM} \\ &+ \mathbb{E}_{p_{\mathrm{tr}}(\boldsymbol{x})}[(r(\boldsymbol{x}) - r^*(\boldsymbol{x}))^2] \quad \leftarrow \text{LSIF} \end{split}$$

- In terms of this upper-bound minimization, 2-step (LSIF followed by IWERM) is not optimal:
- Let's directly minimize the upper bound w.r.t. r, f!

Theoretical Analysis

Under some mild conditions, the test risk of the empirical solution $\widehat{f} = \operatorname*{argmin} \min_{r} \widehat{J}_{\ell'}(r,f)$ is upper-bounded as

$$R_{\ell}(\widehat{f}) \le \sqrt{2} \min_{f} R_{\ell'}(f) + \mathcal{O}_{p}(n_{\text{tr}}^{-1/4} + n_{\text{te}}^{-1/4})$$

$$\widehat{J}_{\ell'}(r, f) = \left(\frac{1}{n_{\mathrm{tr}}} \sum_{i=1}^{n_{\mathrm{tr}}} r(\boldsymbol{x}_i^{\mathrm{tr}}) \ell'(f(\boldsymbol{x}_i^{\mathrm{tr}}), y_i^{\mathrm{tr}})\right)^2 + \left(\frac{1}{n_{\mathrm{tr}}} \sum_{i=1}^{n_{\mathrm{tr}}} r(\boldsymbol{x}_i^{\mathrm{tr}})^2 - \frac{2}{n_{\mathrm{te}}} \sum_{j=1}^{n_{\mathrm{te}}} r(\boldsymbol{x}_j^{\mathrm{tr}}) + C\right)$$

$$\{(\boldsymbol{x}_i^{\mathrm{tr}}, y_i^{\mathrm{tr}})\}_{i=1}^{n_{\mathrm{tr}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x}, y) \qquad \{\boldsymbol{x}_j^{\mathrm{te}}\}_{j=1}^{n_{\mathrm{te}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{te}}(\boldsymbol{x})$$

$$R_{\ell}(\widehat{f}) = \mathbb{E}_{p_{\mathrm{te}}(\boldsymbol{x},y)}[\ell(\widehat{f}(\boldsymbol{x}),y)]$$

$$R_{\ell'}(f) = \mathbb{E}_{p_{\mathrm{te}}(\boldsymbol{x},y)}[\ell'(f(\boldsymbol{x}),y)]$$

Practical Implementation

```
Algorithm 2 Gradient-based Alternating Minimization
 1: \mathcal{Z}^{\mathrm{tr}}, \mathcal{X}^{\mathrm{te}} \leftarrow \left\{ \left( x_i^{\mathrm{tr}}, y_i^{\mathrm{tr}} \right) \right\}_{i=1}^{n_{\mathrm{tr}}}, \left\{ x_i^{\mathrm{te}} \right\}_{i=1}^{n_{\mathrm{te}}}
 2: \mathcal{A} \leftarrow a gradient-based optimizer
 3: f \leftarrow an arbitrary classifier
 4: for round = 0, 1, \dots, \text{numOfRounds} - 1 \text{ do}
            for epoch = 0, 1, \dots, \text{numOfEpochsForG} - 1 do
 5:
                                                                                                                 Importance weight
                 for i = 0, 1, \ldots, \text{numOfMiniBatches} - 1 do
 6:
                       \mathcal{Z}_i^{\mathrm{tr}}, \mathcal{X}_i^{\mathrm{te}} \leftarrow \mathrm{sampleMiniBatch}(\mathcal{Z}^{\mathrm{tr}}, \mathcal{X}^{\mathrm{te}})
 7:
                                                                                                                                   learning
                      g \leftarrow \mathcal{A}(g, \nabla_g \widehat{J}_{\mathrm{UB}}(f, g; \mathcal{Z}_i^{\mathrm{tr}} \cup \mathcal{X}_i^{\mathrm{te}}))
                 end for
 9:
10:
             end for
             for epoch = 0, 1, \ldots, \text{numOfEpochsForF} - 1 do
11:
                  for i = 0, 1, \dots, \text{numOfMiniBatches} - 1 \text{ do}
12:
                                                                                                                                 Predictor
                       \mathcal{Z}_i^{\mathrm{tr}} \leftarrow \mathrm{sampleMiniBatch}(\mathcal{Z}^{\mathrm{tr}})
13:
14:
                      w_i \leftarrow \max(g(\boldsymbol{x}_i), 0), \ \forall (\boldsymbol{x}_i, \cdot) \in \mathcal{Z}_i^{\mathrm{tr}}
                                                                                                                                  learning
                      w_j \leftarrow w_j / \sum_j w_j, \forall j
15:
                       L_i \leftarrow \sum_{(\boldsymbol{x}_j, y_j) \in \mathcal{Z}_i^{\mathrm{tr}}} w_j \ell_{\mathrm{UB}}(\boldsymbol{f}(\boldsymbol{x}_j), y_j)
16:
                       f \leftarrow \mathcal{A}(f, \nabla_f L_i)
17:
```

end for

end for

20: end for

18: 19:

Experimental Evaluation

Table 3 Mean test classification accuracy averaged over 5 trials on image datasets with neural networks. The numbers in the brackets are the standard deviations. For each dataset, the best method and comparable ones based on the *paired t-test* at the significance level 5% are described in bold face.

Dataset	Shift Level (a, b)	ERM	EIWERM	RIWERM	one-step	
Fashion-MNIST	(2, 4) (2, 5) (2, 6)	81.71(0.17) 72.52(0.54) 60.10(0.34)	84.02(0.18) 76.68(0.27) 65.73(0.34)	84.12(0.06) 77.43(0.29) 66.73(0.55)	85.07(0.08) $78.83(0.20)$ $69.23(0.25)$	
Kuzushiji-MNIST	(2, 4) (2, 5) (2, 6)	77.09(0.18) 65.06(0.26) 51.24(0.30)	80.92(0.32) 71.02(0.50) 58.78(0.38)	81.17(0.24) 72.16(0.19) 60.14(0.93)	82.45(0.12) $74.03(0.16)$ $62.70(0.55)$	
Shimodaira (JSPI2000) Vamada et al. (NIPS2011 M						

Yamada et al. (NIPS2011, NeCo2013)

Contents

- 1. Transfer learning
 - A) Joint upper-bound minimization
 - B) Dynamic importance weighting
- 2. Weakly supervised classification
- 3. Future outlook

Dynamic Importance Weighting

Fang et al. (NeurlPS2020)

Deep learning adopts stochastic optimization:

$$f \leftarrow f - \eta \nabla \widehat{R}(f)$$
 $\eta > 0$: Learning rate

- Importance weight r
- predictor *f*

dynamically in the mini-batch-wise manner.

Mini-Batch-Wise Loss Matching

- Suppose we are given
 - (Large) labeled training data: $\{(\boldsymbol{x}_i^{\mathrm{tr}}, y_i^{\mathrm{tr}})\}_{i=1}^{n_{\mathrm{tr}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x}, y)$ (Small) labeled test data: $\{(\boldsymbol{x}_i^{\mathrm{te}}, y_i^{\mathrm{te}})\}_{i=1}^{n_{\mathrm{te}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{te}}(\boldsymbol{x}, y)$
- For each mini-batch $\{(\bar{\boldsymbol{x}}_i^{\mathrm{tr}}, \bar{y}_i^{\mathrm{tr}})\}_{i=1}^{\bar{n}_{\mathrm{tr}}}, \{(\bar{\boldsymbol{x}}_i^{\mathrm{te}}, \bar{y}_i^{\mathrm{te}})\}_{i=1}^{\bar{n}_{\mathrm{te}}}$ importance weights are estimated by kernel mean matching for loss values:

Huang, et al. (NeurlPS2007)

$$\frac{1}{\bar{n}_{\mathrm{tr}}} \sum_{i=1}^{\bar{n}_{\mathrm{tr}}} \frac{\mathbf{r_i}}{\ell} \ell(f(\bar{\boldsymbol{x}}_i^{\mathrm{tr}}), \bar{y}_i^{\mathrm{tr}}) \approx \frac{1}{\bar{n}_{\mathrm{te}}} \sum_{j=1}^{\bar{n}_{\mathrm{te}}} \ell(f(\bar{\boldsymbol{x}}_j^{\mathrm{te}}), \bar{y}_j^{\mathrm{te}})$$

No covariate shift assumption is needed!

Practical Implementation

Algorithm 1 Dynamic importance weighting (in a mini-batch).

Require: a training mini-batch \mathcal{S}^{tr} , a validation mini-batch \mathcal{S}^{v} , the current model f_{θ_t}

- 1: forward the input parts of \mathcal{S}^{tr} & \mathcal{S}^{v}
- 2: compute the loss values as $\mathcal{L}^{\mathrm{tr}}$ & \mathcal{L}^{v}
- 3: match \mathcal{L}^{tr} & \mathcal{L}^{v} to obtain \mathcal{W}
- 4: weight the empirical risk $R(\boldsymbol{f}_{\theta})$ by W
- 5: backward $\widehat{R}(\boldsymbol{f}_{\theta})$ and update θ

Experimental Evaluation

Table 4: Mean accuracy (standard deviation) in percentage on Fashion-MNIST (F-MNIST for short), CIFAR-10/100 under label noise (5 trials). Best and comparable methods (paired *t*-test at significance level 5%) are highlighted in bold. p/s is short for pair/symmetric flip.

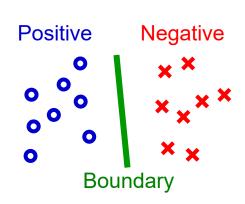
Noise	Clean	Uniform	Random	IW	Reweight	DIW
0.3 p	71.05 (1.03)	76.89 (1.06)	84.62 (0.68)	82.69 (0.38)	88.74 (0.19)	88.19 (0.43)
0.4 s	73.55 (0.80)	77.13 (2.21)	84.58 (0.76)	80.54 (0.66)	85.94 (0.51)	88.29 (0.18)
0.5 s	73.55 (0.80)	73.70 (1.83)	82.49 (1.29)	78.90 (0.97)	84.05 (0.51)	87.67 (0.57)
0.3 p	45.62 (1.66)	77.75 (3.27)	83.20 (0.62)	45.02 (2.25)	82.44 (1.00)	84.44 (0.70)
0.4 s	45.61 (1.89)	69.59 (1.83)	76.90 (0.43)	44.31 (2.14)	76.69 (0.57)	80.40 (0.69)
0.5 s	46.35 (1.24)	65.23 (1.11)	71.56 (1.31)	42.84 (2.35)	72.62 (0.74)	76.26 (0.73)
0.3 p	10.82 (0.44)	50.20 (0.53)	48.65 (1.16)	10.85 (0.59)	48.48 (1.52)	53.94 (0.29)
0.4 s	10.82 (0.44)	46.34 (0.88)	42.17 (1.05)	10.61 (0.53)	42.15 (0.96)	53.66 (0.28)
0.5 s	10.82 (0.44)	41.35 (0.59)	34.99 (1.19)	10.58 (0.17)	36.17 (1.74)	49.13 (0.98)
	0.3 p 0.4 s 0.5 s 0.3 p 0.4 s 0.5 s	0.3 p 71.05 (1.03) 0.4 s 73.55 (0.80) 0.5 s 73.55 (0.80) 0.3 p 45.62 (1.66) 0.4 s 45.61 (1.89) 0.5 s 46.35 (1.24) 0.3 p 10.82 (0.44) 0.4 s 10.82 (0.44)	0.3 p 71.05 (1.03) 76.89 (1.06) 0.4 s 73.55 (0.80) 77.13 (2.21) 0.5 s 73.55 (0.80) 73.70 (1.83) 0.3 p 45.62 (1.66) 77.75 (3.27) 0.4 s 45.61 (1.89) 69.59 (1.83) 0.5 s 46.35 (1.24) 65.23 (1.11) 0.3 p 10.82 (0.44) 50.20 (0.53) 0.4 s 10.82 (0.44) 46.34 (0.88)	0.3 p 71.05 (1.03) 76.89 (1.06) 84.62 (0.68) 0.4 s 73.55 (0.80) 77.13 (2.21) 84.58 (0.76) 0.5 s 73.55 (0.80) 73.70 (1.83) 82.49 (1.29) 0.3 p 45.62 (1.66) 77.75 (3.27) 83.20 (0.62) 0.4 s 45.61 (1.89) 69.59 (1.83) 76.90 (0.43) 0.5 s 46.35 (1.24) 65.23 (1.11) 71.56 (1.31) 0.3 p 10.82 (0.44) 50.20 (0.53) 48.65 (1.16) 0.4 s 10.82 (0.44) 46.34 (0.88) 42.17 (1.05)	0.3 p 71.05 (1.03) 76.89 (1.06) 84.62 (0.68) 82.69 (0.38) 0.4 s 73.55 (0.80) 77.13 (2.21) 84.58 (0.76) 80.54 (0.66) 0.5 s 73.55 (0.80) 73.70 (1.83) 82.49 (1.29) 78.90 (0.97) 0.3 p 45.62 (1.66) 77.75 (3.27) 83.20 (0.62) 45.02 (2.25) 0.4 s 45.61 (1.89) 69.59 (1.83) 76.90 (0.43) 44.31 (2.14) 0.5 s 46.35 (1.24) 65.23 (1.11) 71.56 (1.31) 42.84 (2.35) 0.3 p 10.82 (0.44) 50.20 (0.53) 48.65 (1.16) 10.85 (0.59) 0.4 s 10.82 (0.44) 46.34 (0.88) 42.17 (1.05) 10.61 (0.53)	0.3 p 71.05 (1.03) 76.89 (1.06) 84.62 (0.68) 82.69 (0.38) 88.74 (0.19) 0.4 s 73.55 (0.80) 77.13 (2.21) 84.58 (0.76) 80.54 (0.66) 85.94 (0.51) 0.5 s 73.55 (0.80) 73.70 (1.83) 82.49 (1.29) 78.90 (0.97) 84.05 (0.51) 0.3 p 45.62 (1.66) 77.75 (3.27) 83.20 (0.62) 45.02 (2.25) 82.44 (1.00) 0.4 s 45.61 (1.89) 69.59 (1.83) 76.90 (0.43) 44.31 (2.14) 76.69 (0.57) 0.5 s 46.35 (1.24) 65.23 (1.11) 71.56 (1.31) 42.84 (2.35) 72.62 (0.74) 0.3 p 10.82 (0.44) 50.20 (0.53) 48.65 (1.16) 10.85 (0.59) 48.48 (1.52) 0.4 s 10.82 (0.44) 46.34 (0.88) 42.17 (1.05) 10.61 (0.53) 42.15 (0.96)

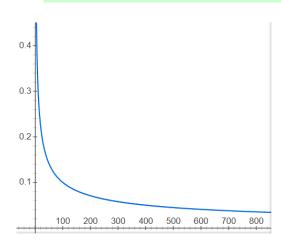
Contents

- 1. Transfer learning
- 2. Weakly supervised classification
- 3. Future outlook

ML from Limited Data

- ML from big labeled data is successful.
 - Speech, image, language, advertisement,...
 - \bullet Estimation error of the boundary decreases in order $1/\sqrt{n}$. \$n: Number of labeled samples



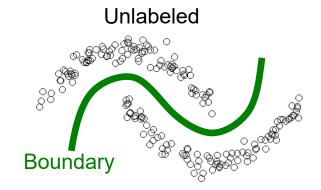


- However, there are various applications where big labeled data is not available.
 - Medicine, disaster, robots, brain, ...

Alternatives to Supervised Classification

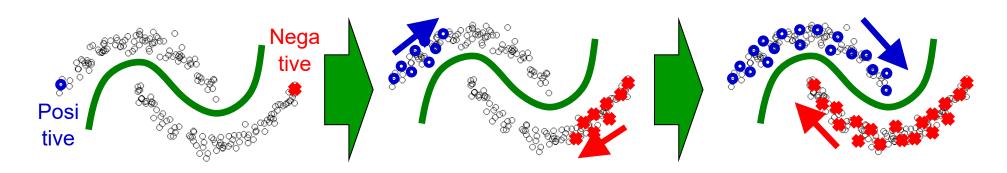
Unsupervised classification:

- No label is used.
- Essentially clustering.
- No guarantee for prediction.



Semi-supervised classification:

- Additionally use a small amount of labeled data.
- Propagate labels along clusters.
- No guarantee for prediction.



Weakly Supervised Learning

- Coping with labeling cost:
 - Improve data collection (e.g., crowdsourcing)
 - Use a simulator to generate pseudo data (e.g., physics, chemistry, robotics, etc.)
 - Use domain knowledge (e.g., engineering) Use cheap but weak data (e.g., unlabeled) High Supervised classification abeling cost Semi-supervised classification Weakly supervised learning High accuracy & low cost Unsupervised classification Low Low Classification accuracy High

Contents

- 1. Transfer learning
- 2. Weakly supervised classification
 - A) Positive-unlabeled classification
 - **B)** Extensions
- 3. Future outlook

Positive-Unlabeled Classification

Given: Positive and unlabeled samples

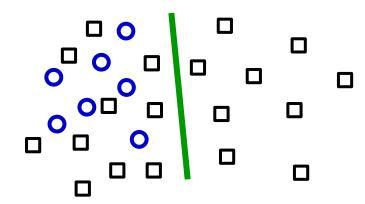
$$\{\boldsymbol{x}_{i}^{\mathrm{P}}\}_{i=1}^{n_{\mathrm{P}}} \overset{\mathrm{i.i.d.}}{\sim} p(\boldsymbol{x}|y=+1)$$
$$\{\boldsymbol{x}_{j}^{\mathrm{U}}\}_{j=1}^{n_{\mathrm{U}}} \overset{\mathrm{i.i.d.}}{\sim} p(\boldsymbol{x})$$

Goal: Obtain a PN classifier

Example: Ad-click prediction

- Clicked ad: User likes it → P
- Unclicked ad: User dislikes it or User likes it but doesn't have time to click it → U (=P or N)

Positive



Unlabeled (mixture of positives and negatives)

PN Risk Decomposition

 \blacksquare Risk of classifier f:

$$R(f) = \mathbb{E}_{p(\boldsymbol{x},y)} \Big[\ell \Big(y f(\boldsymbol{x}) \Big) \Big] \quad \ell : \text{loss function}$$

$$= \pi \mathbb{E}_{p(\boldsymbol{x}|y=+1)} \Big[\ell \Big(f(\boldsymbol{x}) \Big) \Big] + (1-\pi) \mathbb{E}_{p(\boldsymbol{x}|y=-1)} \Big[\ell \Big(-f(\boldsymbol{x}) \Big) \Big]$$
Risk for P data
Risk for N data

 $\pi = p(y = +1)$: Class-prior probability (assumed known; can be estimated)

Scott & Blanchard (AISTATS2009)

Blanchard et al. (JMLR2010)
du Plessis et al. (IEICE2014, MLJ2017)

Ramaswamy et al. (ICML2016)

Yao et al. (arXiv2020)

Since we do not have N data in the PU setting, the risk cannot be directly estimated.

PU Risk Estimation

du Plessis et al. (ICML2015)

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|y=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right] + (1 - \pi) \mathbb{E}_{p(\boldsymbol{x}|y=-1)} \left[\ell \left(- f(\boldsymbol{x}) \right) \right]$$

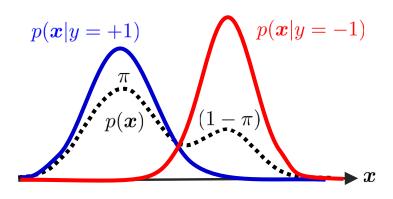
U-density is a mixture of P- and N-densities:

$$p(\mathbf{x}) = \pi p(\mathbf{x}|y = +1) + (1 - \pi)p(\mathbf{x}|y = -1)$$

This allows us to eliminate the N-density:

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|y=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right]$$

$$+ \mathbb{E}_{p(\boldsymbol{x})} \left[\ell \left(-f(\boldsymbol{x}) \right) \right] - \pi \mathbb{E}_{p(\boldsymbol{x}|y=+1)} \left[\ell \left(-f(\boldsymbol{x}) \right) \right]$$



PU Empirical Risk Minimization

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|y=+1)} \left[\ell \left(f(\boldsymbol{x}) \right) \right] + \mathbb{E}_{p(\boldsymbol{x})} \left[\ell \left(-f(\boldsymbol{x}) \right) \right] - \pi \mathbb{E}_{p(\boldsymbol{x}|y=+1)} \left[\ell \left(-f(\boldsymbol{x}) \right) \right]$$

Replacing expectations by sample averages gives an empirical risk:

$$\widehat{R}_{\mathrm{PU}}(f) = \frac{\pi}{n_{\mathrm{P}}} \sum_{i=1}^{n_{\mathrm{P}}} \ell \left(f(\boldsymbol{x}_{i}^{\mathrm{P}}) \right) + \frac{1}{n_{\mathrm{U}}} \sum_{j=1}^{n_{\mathrm{U}}} \ell \left(-f(\boldsymbol{x}_{j}^{\mathrm{U}}) \right) - \frac{\pi}{n_{\mathrm{P}}} \sum_{i=1}^{n_{\mathrm{P}}} \ell \left(-f(\boldsymbol{x}_{i}^{\mathrm{P}}) \right)$$

$$\{\boldsymbol{x}_{i}^{\mathrm{P}}\}_{i=1}^{n_{\mathrm{P}}} \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x}|y=+1) \qquad \{\boldsymbol{x}_{j}^{\mathrm{U}}\}_{j=1}^{n_{\mathrm{U}}} \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x})$$

Optimal convergence rate is attained:

Niu et al. (NIPS2016)

$$R(\widehat{f}_{\mathrm{PU}}) - R(f^*) \le C(\delta) \left(\frac{2\pi}{\sqrt{n_{\mathrm{P}}}} + \frac{1}{\sqrt{n_{\mathrm{U}}}}\right)$$

$$\widehat{f}_{PU} = \operatorname{argmin}_f \widehat{R}_{PU}(f)$$

$$f^* = \operatorname{argmin}_f R(f)$$

with probability $1 - \delta$

 $n_{
m P}, n_{
m U}$: # of P, U samples

Theoretical Comparison with PN

Niu et al. (NIPS2016)

Estimation error bounds for PU and PN:

$$R(\widehat{f}_{PU}) - R(f^*) \le C(\delta) \left(\frac{2\pi}{\sqrt{n_P}} + \frac{1}{\sqrt{n_U}} \right)$$
$$R(\widehat{f}_{PN}) - R(f^*) \le C(\delta) \left(\frac{\pi}{\sqrt{n_P}} + \frac{1 - \pi}{\sqrt{n_N}} \right)$$

$$\widehat{f}_{PN} = \operatorname*{argmin}_{f} \widehat{R}_{PN}(f)$$

with probability $1 - \delta$

$$\widehat{R}_{\mathrm{PN}}(f) = rac{1}{n} \sum_{i=1}^n \ell \Big(y_i f(m{x}_i) \Big)$$
 $n_{\mathrm{P}}, n_{\mathrm{N}}, n_{\mathrm{U}}$: # of P, N, U samples

Comparison: PU bound is smaller than PN if

$$\frac{\pi}{\sqrt{n_{\rm P}}} + \frac{1}{\sqrt{n_{\rm U}}} < \frac{1 - \pi}{\sqrt{n_{\rm N}}}$$

PU can be better than PN, provided many PU data!

Further Correction

$$R(f) = \pi \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=+1)} \Big[\ell \Big(f(\boldsymbol{x}) \Big) \Big] + (1-\pi) \mathbb{E}_{p(\boldsymbol{x}|\boldsymbol{y}=-1)} \Big[\ell \Big(-f(\boldsymbol{x}) \Big) \Big]$$
 Risk for P data Risk for N data $R^-(f)$

PU formulation:

$$p(\mathbf{x}) = \pi p(\mathbf{x}|y = +1) + (1 - \pi)p(\mathbf{x}|y = -1)$$

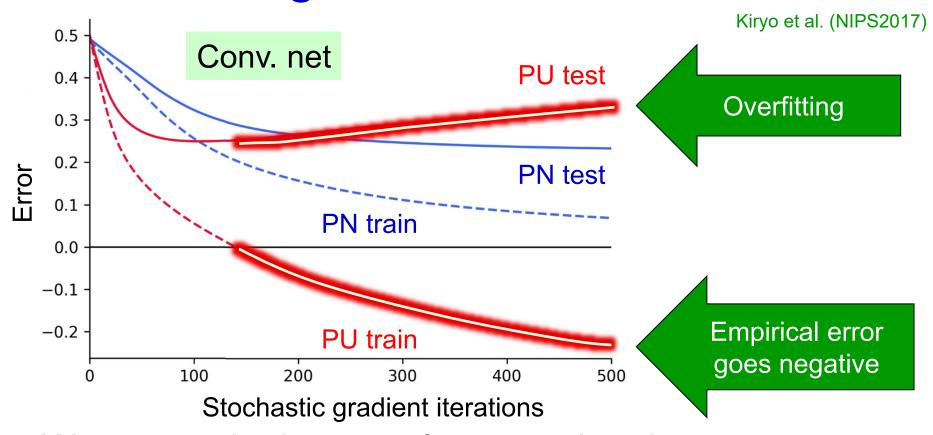
$$R^{-}(f) = \mathbb{E}_{\boldsymbol{p}(\boldsymbol{x})} \left[\ell \left(-f(\boldsymbol{x}) \right) \right] - \pi \mathbb{E}_{\boldsymbol{p}(\boldsymbol{x}|\boldsymbol{y} = +1)} \left[\ell \left(-f(\boldsymbol{x}) \right) \right]$$

- If $\ell(m) \ge 0$, $\forall m$ $R^-(f) \ge 0$
- However, its PU empirical approximation can be negative due to "difference of approximations".

$$\widehat{R}_{\mathrm{PU}}^{-}(f) = \frac{1}{n_{\mathrm{U}}} \sum_{i=1}^{n_{\mathrm{U}}} \ell\left(-f(\boldsymbol{x}_{i}^{\mathrm{U}})\right) - \frac{\pi}{n_{\mathrm{P}}} \sum_{i=1}^{n_{\mathrm{P}}} \ell\left(-f(\boldsymbol{x}_{i}^{\mathrm{P}})\right) \not \geq 0$$

 This problem is more critical for flexible models such as deep neural networks.

Non-Negative PU Classification



We constrain the sample approximation term to be non-negative through back-prop training:

$$\widetilde{R}_{\mathrm{PU}}(f) = \frac{\pi}{n_{\mathrm{P}}} \sum_{i=1}^{n_{\mathrm{P}}} \ell\Big(f(\boldsymbol{x}_{i}^{\mathrm{P}})\Big) + \max\left\{ 0, \ \frac{1}{n_{\mathrm{U}}} \sum_{i=1}^{n_{\mathrm{U}}} \ell\Big(-f(\boldsymbol{x}_{i}^{\mathrm{U}})\Big) - \frac{\pi}{n_{\mathrm{P}}} \sum_{i=1}^{n_{\mathrm{P}}} \ell\Big(-f(\boldsymbol{x}_{i}^{\mathrm{P}})\Big) \right\}$$

This risk estimator is biased. Is it really good?

Theoretical Analysis

Kiryo et al. (NIPS2017)

$$\widetilde{R}_{\mathrm{PU}}(f) = \frac{\pi}{n_{\mathrm{P}}} \sum_{i=1}^{n_{\mathrm{P}}} \ell\Big(f(\boldsymbol{x}_{i}^{\mathrm{P}})\Big) + \max\left\{\boldsymbol{0}, \ \frac{1}{n_{\mathrm{U}}} \sum_{i=1}^{n_{\mathrm{U}}} \ell\Big(-f(\boldsymbol{x}_{i}^{\mathrm{U}})\Big) - \frac{\pi}{n_{\mathrm{P}}} \sum_{i=1}^{n_{\mathrm{P}}} \ell\Big(-f(\boldsymbol{x}_{i}^{\mathrm{P}})\Big)\right\}$$

- $\blacksquare \widetilde{R}_{PU}(f)$ is still consistent and its bias decreases exponentially: $\mathcal{O}(e^{-n_{\mathrm{P}}-n_{\mathrm{U}}})$ $n_{\mathrm{P}}, n_{\mathrm{U}}$: # of P, U samples
 - In practice, we can ignore the bias of $R_{PU}(f)$!
- Mean-squared error of $\widetilde{R}_{PU}(f)$ is not more than the original one:
 - In practice, $\widetilde{R}_{\mathrm{PU}}(f)$ is more reliable!
- Risk of $\operatorname{argmin}_f R_{\text{PU}}(f)$ for linear models attains the optimal convergence rate: $\mathcal{O}_p\left(\frac{1}{\sqrt{n_{\mathrm{D}}}} + \frac{1}{\sqrt{n_{\mathrm{H}}}}\right)$
 - Learned function is still optimal.

Practical Implementation for Deep Learning

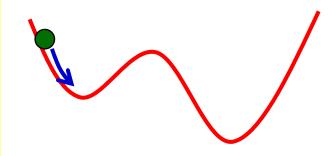
$$\widetilde{R}_{\mathrm{PU}}(f) = \frac{\pi}{n_{\mathrm{P}}} \sum_{i=1}^{n_{\mathrm{P}}} \ell\Big(f(\boldsymbol{x}_{i}^{\mathrm{P}})\Big) + \max\left\{\boldsymbol{0}, \ \frac{1}{n_{\mathrm{U}}} \sum_{i=1}^{n_{\mathrm{U}}} \ell\Big(-f(\boldsymbol{x}_{i}^{\mathrm{U}})\Big) - \frac{\pi}{n_{\mathrm{P}}} \sum_{i=1}^{n_{\mathrm{P}}} \ell\Big(-f(\boldsymbol{x}_{i}^{\mathrm{P}})\Big)\right\}$$

$$\widehat{R}_{\mathrm{PU}}^{-}(f)$$

- Use mini-batch stochastic gradient optimization:
 - If $\widehat{R}_{PU}^-(f) \ge 0$, perform gradient descent as usual.
 - If $\widehat{R}_{\mathrm{PU}}^{-}(f) < 0$, perform gradient ascent:

For poor mini-batch data,

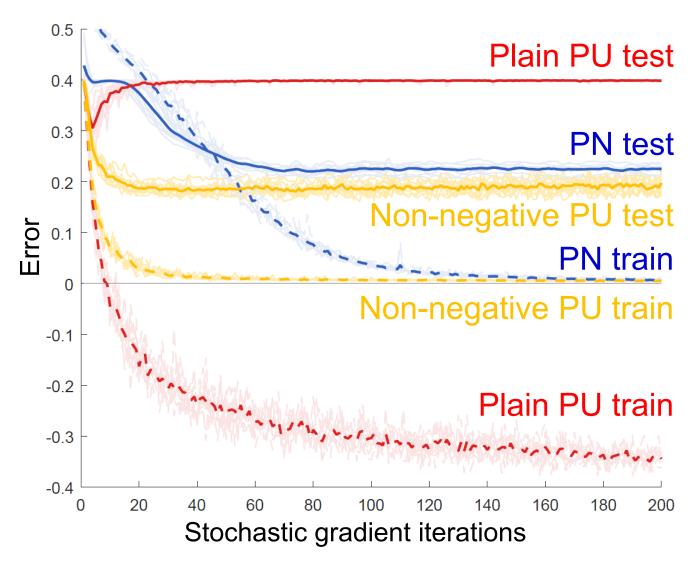
- Step back the gradient to avoid converging to a poor local optimum
- and recompute the gradient with a new mini-batch.



Experiments

- With a large number of unlabeled data, non-negative PU can even outperform PN!
- Binary CIFAR-10:
 Positive (airplane, automobile, ship, truck)
 Negative (bird, cat, deer, dog, frog, horse)
- 13-layer CNN with ReLU

$$n_{\rm P} = 1000$$
 $n_{\rm U} = 50000$
 $\pi = 0.4$



Summary

- Risk-rewriting: Rewrite the classification risk only in terms of weak data. $R(f) = \mathbb{E}_{p(x,y)} \left[\ell \left(y f(x) \right) \right]$
 - Standard empirical risk minimization formulation.
 - Optimal convergence guarantee.
 - Compatible with any loss, regularization, model, and optimizer.
 - Applicable to various weak data (shown next).
- Non-negative risk correction: Utilize intrinsic non-negativity to mitigate overfitting.
 - Non-negativity of loss, convexity, etc.
 - Applicable to various weak data.
 Lu et al. (ICLR2019)
 - Applicable to noisy-label learning. Han et al. (ICML2020)

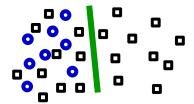
Contents

- 1. Transfer learning
- 2. Weakly supervised classification
 - A) Positive-unlabeled classification
 - **B)** Extensions
- 3. Future outlook

Various Binary Weak Labels

Various weakly supervised classification problems can be solved by risk-rewriting systematically!

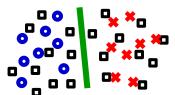
Positive-Unlabeled (PU) (ex: click prediction)



du Plessis et al. (NIPS2014, ICML2015, MLJ2017) Niu et al. (NIPS2016), Kiryo et al. (NIPS2017) Hsieh et al. (ICML2019)

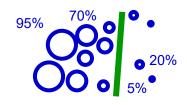
Semi-Supervised (PU+PN)

(first theoretically quaranteed method)



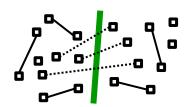
Sakai et al. (ICML2017, ML2018)

Positive-confidence (Pconf) (ex: purchase prediction)



Ishida et al. (NeurIPS2018) Shinoda et al. (IJCAI2021)

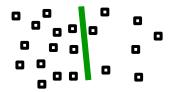
Similar-Dissimilar (SD) (delicate information)

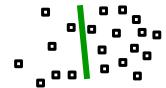


Bao et al. (ICML2018) Shimada et al. (NeCo2021) Dan et al. (ECMLPKDD2021) Cao et al. (ICML2021) Feng et al. (ICML2021)

Unlabeled-Unlabeled (UU)

(learning from different populations)

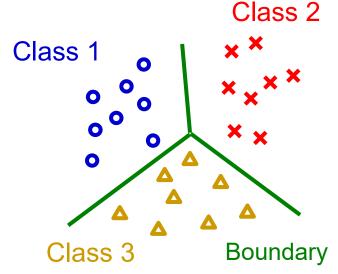




du Plessis et al.,(TAAl2013) Lu et al. (ICLR2019, AISTATS2020) Charoenphakdee et al. (ICML2019) Lei et al. (ICML2021)

Multiclass Methods

- Labeling in multi-class problems is even more painful.
- Risk rewriting is still possible in multi-class problems!



- Multi-class weak-labels:
 - Complementary labels: Specify a class that a pattern does not belong to ("not 1").

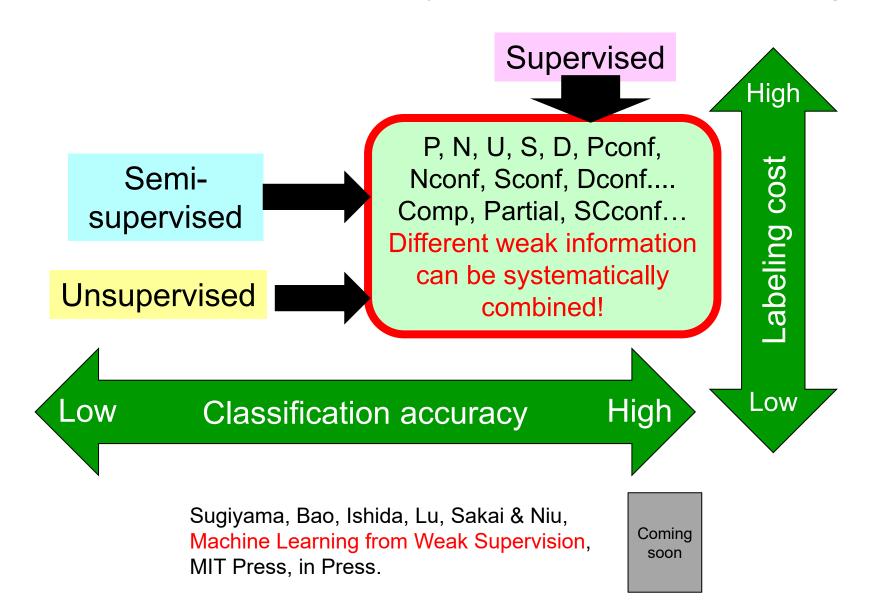
 $1/\sqrt{n}$

Ishida et al. (NIPS2017, ICML2019), Chou et al. (ICML2020)

 Partial labels: Specify a subset of classes that contains the correct one ("1 or 2").

Feng et al. (ICML2020, NeurIPS2020), Lv et al. (ICML2020)

• Single-class confidence: One-class data with full confidence ("1 with 60%, 2 with 30%, and 3 with 10%") Cao et al. (arXiv2021)



Contents

- 1. Transfer learning
- 2. Weakly supervised classification
- 3. Future outlook

Challenges in Reliable Machine Learning

- Reliability for expectable situations:
 - Model the corruption process explicitly and correct the solution.
 - How to handle modeling error?
- Reliability for unexpected situations:
 - Consider worst-case robustness ("min-max").
 - How to make it less conservative?
 - Include human support ("rejection").
 - How to handle real-time applications?
- Exploring somewhere in the middle would be practically more useful:
 - Use partial knowledge of the corruption process.

Axes of ML Research

Learning Method

Noise-robust
Adversarial
Transfer
Reinforcement
Weakly supervised
Semi-supervised
Unsupervised
Supervised

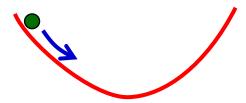
- Decomposing ML research into conceptually orthogonal topics:
 - Model
 - Learning method
 - Regularizer
 - Optimizer
 - ...

Linear Additive Kernel Deep

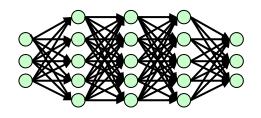
Theory Application

Technological Breakthroughs

Classical convex learning methods allow us to analyze the global solution.



Since optimization in deep learning is complex, stochastic gradient descent is used.



- Thanks to the "gradual learning" nature, we can utilized intermediate learning results:
 - Strengthening supervision for weakly supervised learning.
 - Dynamic importance weighting for transfer learning.
 - Dynamic noise transition estimation for noise-robust learning.
 - Co-teaching for noise-robust learning.

Internship at RIKEN-AIP

- Many of the results introduced todays were first-authored by internship students.
- We wanted to invite interns also from EPFL, if their supervisors allow.
 - However, due to travel restrictions by COVID-19, our internship program has been suspended.
- The only possibility now is an informal internship:
 - Only remote collaboration.
 - No allowance, no official affiliation (too bad...).
- But if you are still interested, please let us know through your supervisor!

Thank you very much!