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Problem of Transfer Learning
Given: Training data 

Goal: Train a predictor
that works well in the test domain.

Challenge: Overcome changing distributions!
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Transfer Learning Has been
a Hot Topic for Many Years!

3

Yang, Zhang, Dai & Pan,
Transfer Learning,

Cambridge University Press, 2020

Sugiyama & Kawanabe,
Machine Learning
in Non-Stationary Environments,
MIT Press, 2012

Quiñonero-Candela, Sugiyama, 
Schwaighofe & Lawrence (Eds.),

Dataset Shift in Machine Learning,
MIT Press, 2009.

Pan & Yang,
A survey on transfer learning,

IEEE-TKDE, 2010.



Various Scenarios
Full-distribution shift:
Covariate shift:
Class-prior/target shift:
Output noise:
Class-conditional shift:
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6Regression under Covariate Shift

Training

Test

Function & data

Target
function

Covariate shift:
 Training and test input distributions are different:

 But the output-given-input distribution remains 
unchanged:

Input densities

Shimodaira (JSPI2000)



7Empirical Risk Minimization (ERM)

Generally, ERM is consistent:
 Learned function converges

to the optimal solution
when                  .

However, covariate shift 
makes ERM inconsistent:
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9Importance-Weighted ERM (IWERM)

 IWERM is consistent
even under covariate shift.

How can we know the importance weight?

Importance



Importance Weight Estimation

Estimating the density ratio is substantially
easier than estimating both the densities!
Various direct density-ratio

estimators were developed.
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Sugiyama, Suzuki & Kanamori,
Density Ratio Estimation

in Machine Learning  
(Cambridge University Press, 2012)

Knowing densities Knowing ratio

Vapnik’s principle:
When solving a problem of interest,

one should not solve a more general problem
as an intermediate step

Vapnik (Wiley, 1998)



Least-Squares Importance Fitting (LSIF)

Given training and test input data:

Directly fit a model    to                         by LS:

 Empirical approximation:
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Kanamori, Hido & Sugiyama (JMLR2009)
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Bias-Variance Trade-Off
 Importance-weighted empirical risk estimator

has no bias, but has large variance.
The ordinary empirical risk estimator

has small variance (statistically efficient),
but has large bias.
How can we control the bias-variance trade-off?
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14Flattened Importance Weighting

Large bias, small variance Small bias, large variance(Intermediate)

Flattening factor    may be chosen by
 Importance-weighted Akaike information criterion
 Importance-weighted cross-validation Sugiyama, Krauledat

& Müller (JMLR2007)

Shimodaira
(JSPI2000)

Shimodaira
(JSPI2000)



Relative Importance Weighting
Even with direct methods, reliably estimating 

the importance weight is hard:
 could be highly fluctuated.

Thus, flattening unreliable importance estimator
by power factor    is also unreliable.

Let’s use relative importance weight:

 Directly estimable for each     by relative LSIF.
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Yamada, Suzuki, Kanamori, Hachiya & Sugiyama (NIPS2011, NeCo2013)
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One-Step Adaptation

The classical approaches are two steps:
1. Weight estimation (e.g., LSIF):

2. Weighted predictor training (e.g., IWERM):

Can we integrate these two steps?
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Risk Upper-Bounding
For                             ,                          :

 In terms of this upper-bound minimization,
LSIF followed by IWERM is sub-optimal:
 Let’s directly minimize the upper bound w.r.t. !

 is satisfied by
 : 0/1,     :hinge/softmax cross-entropy

(classification)
 : Tukey,    : squared (regression)
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 LSIF
 IWERM

Zhang,Yamane,
Lu & Sugiyama

(ACML2020,
SNCS2021)

Tukey loss



Theoretical Analysis
Let                                be an empirical solution.

Under some mild conditions, the risk of
the empirical solution is upper-bounded as
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Practical Implementation 21

Importance weight
learning

Predictor
learning



Experimental Evaluation 22

Yamada, Suzuki, Kanamori, Hachiya
& Sugiyama (NIPS2011, NeCo2013)

Shimodaira (JSPI2000)
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Dynamic Importance Weighting

Deep learning adopts iterative optimization.

Let’s learn 
 Importance weight
 predictor
dynamically in the mini-batch-wise manner.
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Fang, Lu, Niu & Sugiyama (NeurIPS2020)

: Learning rate



Mini-Batch-Wise Loss Matching
Suppose we are given
 (Large) training data:
 (Small) test data:

For each mini-batch                                        , 
importance weights are estimated by matching
loss values by kernel mean matching:

No covariate shift assumption is needed!
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Huang, Gretton, Borgwardt, Schölkopf & Smola (NeurIPS2007)



Practical Implementation 26

Experimental Evaluation
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Conclusions
 In transfer learning, combining importance 

estimation and predictor training is promising.
What should we do if the training and test 

distributions are very different?
 Mechanism transfer!
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Independent 
components

“Mechanism”

Observed
data

Teshima, Sato & Sugiyama (ICML2020)


