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Problem of Transfer Learning
Given: Training data x: Input
(@, yi) e " pu(e.y) Y Output

Goal: Train a predictor y = f(x)
that works well in the test domain.

min R(f)  R(f) = By @ [{(f (@), y)

¢ : loss function
Challenge: Overcome changing distributions!

ptr(wa y) # pte(wa y)
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Transfer Learning Has been  °
a Hot Topic for Many Years!
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Various Scenarios

Full-distribution shift:  pu(x,y) # pre(z, y)
Covariate shift; P (x) # pre()
Class-prior/target shift: Pix(Y) 7 Pre(y)
Output noise: P (Ylx) # pre(y|)
Class-conditional shift: pu(z|y) # pe(x|y)
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Regression under Covariate Shift °

Covariate shift:

e Training and test input distributions are different:
ptr(w) 7 pte(iB)
e But the output-given-input distribution remains

unchanged: pu(ylz) = pre(ylx) = p(y[x)
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Shimodaira (JSP12000)

Function & data
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Empirical Risk Minimization (ERM)

. r e i.1.d.
mf;n ZE {(x", yi") ey "N pe (@, y)

Generally, ERM is consistent: + :

e Learned function converges
to the optimal solution
when n¢ — o0 . 0

However, covariate shift
makes ERM inconsistent:
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Importance-Weighted ERM (IWERM) J
min Zpte tr z!"), yi")

J L= 1ptr

Importance

IWERM Is consistent
even under covariate shift.

L S pte( ) tr
>~ gpw( tr)f(f( ), Yi")

=l NP [ﬁjgg i) y)]

= Ep,. e l(f(x),1)] = R(f) L

How can we know the importance weight?




~ Importance Weight Estimation *°

Vapnik’s principle: Vapnik (iley, 1998) &

When solving a problem of interest, :

one should not solve a more general problem
as an intermediate step

Knowing densities - Knowing ratio
. B Pte(T)
ruhonte) | | 7o) = 2

Estimating the density ratio is substantially g
easier than estimating both the densities! [&

Various direct density-ratio Sugiyama, Suzuki & Kanamor
. Density Ratio Estimation
estimators were developed. in Machin Learning

(Cambridge University Press, 2012)



L east-Squares Importance Fitting (LSIF) 1

Kanamori, Hido & Sugiyama (JMLR2009)

Given training and test input data:

d.
{wtr}z : 1. k)d. ptr(fL') {a,/,’pe ;ltel i. ;\J pte(w)

Directly fit a model r to r*(x) = ptega:; by LS:

XL
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Bias-Variance Trade-Off 1
Importance-weighted empirical risk estimator

1 Nty pte(mt}r)
(/ E 1“
B ; P (@) (f ("), yi")
has no bias, but has large variance.
The ordinary empirical risk estimator

LS 0wty o)

1=1
has small variance (statistically efficient),
but has large bias.

How can we control the bias-variance trade-off?




Flattened Importance Welghtlng 14

Ny . ( ) ~ Shimodaira
. te (T b JSPI2000)
min e(f Y (
f ; (ptr(w?)) ), )_ 0<y<1

Large bias, small variance (Intermediate) Small bias, large variance

Flattening factor ¥ may be chosen by Shimodaira
(JSPI12000)

e Importance-weighted Akaike information criterion

e Importance-weighted cross-validation ;/2ome; /e scet



Relative Importance Weighting '°

Even with direct methods, reliably estimating

the importance weight is hard: (@) Pre ()
T ) =

e " (x) could be highly fluctuated. P (@)

Thus, flattening unreliable importance estimator
r(x) by power factor 7 is also unreliable.

: : P ’76 tr tr
IIlfll’l ;T(JJ@ ) (f(GCz )7yz )

Let’s use relative importance weight:
Yamada, Suzuki, Kanamori, Hachiya & Sugiyama (NIPS2011, NeCo02013)

ra(e) = Pie(2)
Oper(x) + (1 — 5)pte(x)
e Directly estimable for each 5 by relative LSIF.

0<pB<1
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One-Step Adaptation 17

The classical approaches are two steps:
1. Weight estimation (e.g., LSIF):

= argflm Ep,. (o) [(7(2) — 77 ())?]

2. Weighted predictor training (e.g., IWERM):
f= argj{nin Ep,. (2,4 [7(@)¢(f(2),y)]

Can we integrate these two steps?
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Risk Upper-Bounding 19

Zhang,Yamane,

For¢ <10/ >/¢.r >0, TR(f)? < Ju(r, f): Luigltjﬂ%ggrznoa

Ro(f) = Epy () [€(f (), )] SHES202D
Jo (1, ) = (Ep ) [r(@)l (f(x),y)])? € IWERM
+E,,. () [(r(x) — 7" (x))?] < LSIF

In terms of this upper-bound minimization,
LSIF followed by IWERM is sub-optimal.

e Let’s directly minimize the upper bound w.r.t. r, f!
¢ <1,¢" > (is satisfied by Tukey loss

e /:0/1, ¢ :hinge/softmax cross- entropy .
(classmcatlon)

e /: Tukey, ¢': squared (regression)



Theoretical Analysis 20

Let f = argminmin J,(r, f) be an empirical solution.
f r

Nty

Jo(r, f) = (ni > (@ (f(@]), y:ff)) + (ni > rlel) = 3 (e + c)

=i

(@ g N p(a,y) {23 R pre()
Under some mild conditions, the risk of
the empirical solution is upper-bounded as

Rg(f)gx/iminReI(fHOp(nu/ +ng )

P s P oS

R@(f):Ept(ccy[(f() )]
Ry (f) = Epo@y [l (f(2),y)]



Practical Implementation

Algorithm 2 Gradient-based Alternating Minimization

ol el =g
= W o= O W

15:
16:
17:
18:
19:
20:

O [P VN P
: A < a gradient-based optimizer
: f + an arbitrary classifier
: for round =0, 1, ..., numOfRounds — 1 do
for epoch = 0,1, ..., numOfEpochsForGG — 1 do
for i =0,1,..., numOfMiniBatches — 1 do
Z" X! + sampleMiniBatch(Z', X'¢)
g+ Alg,VoJus(f,g; 2 U Xte))
end for
end for
for epoch = 0,1, ..., numOfEpochsForF — 1 do
for i =0,1,..., numOfMiniBatches — 1 do
Z!" + sampleMiniBatch(Z")
w; + max(g(x;),0), V(z;,-) € 2
w; < w;/ EJ. wj, Vj
Li = 2 (a; y;) ez witu(F(25), y5)
J <« A(f,VgLi)
end for
end for
end for

Importance weight
learning

}

Predictor
learning
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Experimental Evaluation 42

Table 3 Mean test classification accuracy averaged over 5 trials on image datasets with
neural networks. The numbers in the brackets are the standard deviations. For each dataset,
the best method and comparable ones based on the paired t-test at the significance level 5%
are described in bold face.

Shift Level

Dataset (a, b) ERM EIWERM RIWERM one-step
(2, 4) 81.71(0.17)  84.02(0.18) 84.12(0.06) § 85.07(0.08)
Fashion-MNIST (2, 5) 72.52(0.54) 76.68(0.27) 77.43(0.29) § 78.83(0.20)
(2, 6) 60.10(0.34)  65.73(0.34)  66.73(0.55) | 69.23(0.25)
(2, 4) 77.09(0.18) 80.92(0.32) 81.17(0.24) § 82.45(0.12)
Kuzushiji-MNIST (2, 5) 65.06(0.26)  71.02(0.50) 72.16(0.19) § 74.03(0.16)
(2, 6) 51.24(0.30) 58.78(0.38) 60.14(0.93) § 62.70(0.55)

A

Shimodaira (JSP12000)

Yamada, Suzuki, Kanamori, Hachiya
& Sugiyama (NIPS2011, NeCo02013)
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Dynamic Importance Weighting #*

Fang, Lu, Niu & Sugiyama (NeurlPS2020)

Deep learning adopts iterative optimization.

f< f—=nVR(f) n>0:Learning rate
Let's learn
e Importance weight r
e predictor f

dynamically in the mini-batch-wise manner.



Mini-Batch-Wise Loss Matching 2°

Suppose we are given

e (Large) training data: {(x!", 9" )}nt 3v (2, y)
e (Small) test data: {(ate, o)) rve MRS pte(w,y)
For each mini-batch {(&:", &) Yoz, {(&:°, 5:°) Fis
importance weights are estimated by matching

loss values by kernel mean matching:
Huang Gretton, Borgwardt, Schc’jlkopf&SmoIa (NeurlPS2007)

tr 1 tey -te
LS @50 ~ S o)

i—1 =i

No covariate shift assumption is needed!



Practical Implementation

Algorithm 1 Dynamic importance weighting (in a mini-batch).

Require: a training mini-batch S**, a validation mini-batch SV, the current model f 0,

forward the input parts of S & S
compute the loss values as L' & LY
match £ & LV to obtain W

weight the empirical risk R(f,) by W
backward R(f,) and update 6

ol ol 8

Experimental Evaluation

Table 4: Mean accuracy (standard deviation) in percentage on Fashion-MNIST (F-MNIST for short),
CIFAR-10/100 under label noise (5 trials). Best and comparable methods (paired #-test at significance
level 5%) are highlighted in bold. p/s is short for pair/symmetric flip.

Noise

Clean

Uniform

Random

I'w

Reweight

DIW

F-MNIST

03p
04s
0.5s

71.05 (1.03)
73.55 (0.80)
73.55 (0.80)

76.89 (1.06)
77.13(2.21)
73.70 (1.83)

84.62 (0.68)
84.58 (0.76)
82.49 (1.29)

82.69 (0.38)
80.54 (0.66)
78.90 (0.97)

88.74 (0.19)
85.94 (0.51)
84.05 (0.51)

88.19 (0.43)
88.29 (0.18)
87.67 (0.57)

CIFAR-10

03p
04s
0.5s

45.62 (1.66)
45.61 (1.89)
46.35 (1.24)

77.75(3.27)
69.59 (1.83)
65.23(1.11)

83.20 (0.62)
76.90 (0.43)
71.56 (1.31)

45.02 (2.25)
4431 (2.14)
42.84 (2.35)

82.44 (1.00)
76.69 (0.57)
72.62 (0.74)

84.44 (0.70)

80.40 (0.69)
76.26 (0.73)

CIFAR-100

03p
04s
0.5s

10.82 (0.44)
10.82 (0.44)
10.82 (0.44)

50.20 (0.53)
46.34 (0.88)
41.35(0.59)

48.65 (1.16)
42.17 (1.05)
3499 (1.19)

10.85 (0.59)
10.61 (0.53)
10.58 (0.17)

48.48 (1.52)
42.15 (0.96)
36.17 (1.74)

53.94 (0.29)
53.66 (0.28)

49.13 (0.98)
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Conclusions 28

In transfer learning, combining importance
estimation and predictor training is promising.

What should we do if the training and test
distributions are very different?

e Mechanism transfer!
Teshima, Sato & Sugiyama (ICML2020)

Independent 1 q2 »++ (Tar
components . . . ,
“Mechanism” f ) e{} f 0

v y v y v y v
0% ° % o0
%o 00 .
> i »X X X

y
Observed T o"
data




