Aug. 21, 2021

Rethinking Importance Weighting for Transfer Learning

Masashi Sugiyama

RIKEN Center for Advanced Intelligence Project/ The University of Tokyo

http://www.ms.k.u-tokyo.ac.jp/sugi/

2 **Problem of Transfer Learning** Given: Training data x: Input $\{(\boldsymbol{x}_{i}^{\mathrm{tr}}, y_{i}^{\mathrm{tr}})\}_{i=1}^{n_{\mathrm{tr}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x}, y)$ y: Output **Goal:** Train a predictor y = f(x)that works well in the test domain. $\min R(f) \quad R(f) = \mathbb{E}_{\mathbf{p}_{te}(\mathbf{x}, y)}[\ell(f(\mathbf{x}), y)]$ ℓ : loss function Challenge: Overcome changing distributions! $p_{\mathrm{tr}}(\boldsymbol{x},y) \neq p_{\mathrm{te}}(\boldsymbol{x},y)$

Transfer Learning Has been a Hot Topic for Many Years!

Quiñonero-Candela, Sugiyama, Schwaighofe & Lawrence (Eds.), Dataset Shift in Machine Learning, MIT Press, 2009.

Transfer

Yang, Zhang, Dai & Pan, Transfer Learning, Cambridge University Press, 2020

> Sugiyama & Kawanabe, Machine Learning in Non-Stationary Environments, MIT Press, 2012

Various Scenarios

- 1. Introduction
- 2. Classical results
 - A) Importance weighting
 - B) Adaptive importance weighting
- 3. Recent results
 - A) Joint upper-bound minimization
 - B) Dynamic importance weighting

Regression under Covariate Shift ⁶

Covariate shift: Shimodaira (JSPI2000)

- Training and test input distributions are different: $p_{
 m tr}({m x})
 eq p_{
 m te}({m x})$
- But the output-given-input distribution remains unchanged: $p_{tr}(y|x) = p_{te}(y|x) = p(y|x)$

Empirical Risk Minimization (ERM) ⁷

$$\min_{f} \left[\sum_{i=1}^{n_{\mathrm{tr}}} \ell(f(\boldsymbol{x}_i^{\mathrm{tr}}), y_i^{\mathrm{tr}}) \right]$$

$$\{(\boldsymbol{x}_{i}^{\mathrm{tr}}, y_{i}^{\mathrm{tr}})\}_{i=1}^{n_{\mathrm{tr}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x}, y)$$

Generally, ERM is consistent:

- Learned function converges to the optimal solution when $n_{\rm tr} \to \infty$.
- However, covariate shift makes ERM inconsistent:

 n_{\perp}

t:
$$f(x) = ax + b$$

0.5
0
-0.5
0
0
1 2 3

$$\frac{1}{n_{\mathrm{tr}}} \sum_{i=1}^{n_{\mathrm{tr}}} \ell(f(\boldsymbol{x}_{i}^{\mathrm{tr}}), y_{i}^{\mathrm{tr}}) \stackrel{n_{\mathrm{tr}} \to \infty}{\to} \mathbb{E}_{p_{\mathrm{tr}}(\boldsymbol{x}, y)}[\ell(f(\boldsymbol{x}), y)] \neq R(f)$$

$$p_{\mathrm{tr}}(\boldsymbol{x}) \neq p_{\mathrm{te}}(\boldsymbol{x})$$

- 1. Introduction
- 2. Classical results
 - A) Importance weighting
 - B) Adaptive importance weighting
- 3. Recent results
 - A) Joint upper-bound minimization
 - B) Dynamic importance weighting

Importance-Weighted ERM (IWERM)⁹

$$\min_{f} \left[\sum_{i=1}^{n_{\text{tr}}} \frac{p_{\text{te}}(\boldsymbol{x}_{i}^{\text{tr}})}{p_{\text{tr}}(\boldsymbol{x}_{i}^{\text{tr}})} \ell(f(\boldsymbol{x}_{i}^{\text{tr}}), y_{i}^{\text{tr}}) \right]$$
Importance

IWERM is consistent even under covariate shift.

1

 $n_{
m tr}$

$$= \sum_{i=1}^{n_{\mathrm{tr}}} \frac{p_{\mathrm{te}}(\boldsymbol{x}_{i}^{\mathrm{tr}})}{p_{\mathrm{tr}}(\boldsymbol{x}_{i}^{\mathrm{tr}})} \ell(f(\boldsymbol{x}_{i}^{\mathrm{tr}}), y_{i}^{\mathrm{tr}})$$

$$= \mathbb{E}_{p_{\mathrm{tr}}}(\boldsymbol{x}, y) \left[\frac{p_{\mathrm{te}}(\boldsymbol{x})}{p_{\mathrm{tr}}(\boldsymbol{x})} \ell(f(\boldsymbol{x}), y) \right] = R(f)$$

How can we know the importance weight?

Importance Weight Estimation ¹⁰

Estimating the density ratio is substantially easier than estimating both the densities!

Various direct density-ratio estimators were developed.

Sugiyama, Suzuki & Kanamori, Density Ratio Estimation in Machine Learning (Cambridge University Press, 2012)

Least-Squares Importance Fitting (LSIF) 11
Kanamori, Hido & Sugiyama (JMLR2009)
Given training and test input data:

$$\{x_i^{tr}\}_{i=1}^{n_{tr}} \stackrel{\text{i.i.d.}}{\sim} p_{tr}(x) \quad \{x_i^{te}\}_{j=1}^{n_{te}} \stackrel{\text{i.i.d.}}{\sim} p_{te}(x)$$
Directly fit a model r to $r^*(x) = \frac{p_{te}(x)}{p_{tr}(x)}$ by LS:

$$\min_r Q(r) \qquad Q(r) = \int \left(r(x) - r^*(x)\right)^2 p_{tr}(x) dx$$
• Empirical approximation:

$$Q(r) = \int r(x)^2 p_{tr}(x) dx - 2 \int r(x) p_{te}(x) dx + C$$

$$\approx \frac{1}{n_{tr}} \sum_{i=1}^{n_{tr}} r(x_i^{tr})^2 - \frac{2}{n_{te}} \sum_{j=1}^{n_{te}} r(x_j^{te}) + C$$

- 1. Introduction
- 2. Classical results
 - A) Importance weighting
 - B) Adaptive importance weighting
- 3. Recent results
 - A) Joint upper-bound minimization
 - B) Dynamic importance weighting

Bias-Variance Trade-Off

Importance-weighted empirical risk estimator

$$\frac{1}{n_{\mathrm{tr}}} \sum_{i=1}^{n_{\mathrm{tr}}} \frac{p_{\mathrm{te}}(\boldsymbol{x}_{i}^{\mathrm{tr}})}{p_{\mathrm{tr}}(\boldsymbol{x}_{i}^{\mathrm{tr}})} \ell(f(\boldsymbol{x}_{i}^{\mathrm{tr}}), y_{i}^{\mathrm{tr}})$$

has no bias, but has large variance.

The ordinary empirical risk estimator

$$\frac{1}{n_{\mathrm{tr}}} \sum_{i=1}^{n_{\mathrm{tr}}} \ell(f(\boldsymbol{x}_i^{\mathrm{tr}}), y_i^{\mathrm{tr}})$$

has small variance (statistically efficient), but has large bias.

How can we control the bias-variance trade-off?

Flattening factor γ may be chosen by

Shimodaira (JSPI2000)

- Importance-weighted Akaike information criterion
- Importance-weighted cross-validation ^{Sugiyama, Krauledat} & Müller (JMLR2007)

Relative Importance Weighting ¹⁵

Even with direct methods, reliably estimating the importance weight is hard: $p_{te}(x)$

• $r^*(\boldsymbol{x})$ could be highly fluctuated.

$$r^*(\boldsymbol{x}) = rac{p_{ ext{te}}(\boldsymbol{x})}{p_{ ext{tr}}(\boldsymbol{x})}$$

Thus, flattening unreliable importance estimator $\hat{r}(x)$ by power factor γ is also unreliable.

$$\min_{f} \left[\sum_{i=1}^{n_{\mathrm{tr}}} \widehat{r}(\boldsymbol{x}_{i}^{\mathrm{tr}})^{\boldsymbol{\gamma}} \ell(f(\boldsymbol{x}_{i}^{\mathrm{tr}}), y_{i}^{\mathrm{tr}}) \right]$$

Let's use relative importance weight:

Yamada, Suzuki, Kanamori, Hachiya & Sugiyama (NIPS2011, NeCo2013)

$$r_{\beta}(\boldsymbol{x}) = \frac{p_{\text{te}}(\boldsymbol{x})}{\beta p_{\text{tr}}(\boldsymbol{x}) + (1 - \beta)p_{\text{te}}(\boldsymbol{x})} \quad 0 \le \beta \le$$

• Directly estimable for each β by relative LSIF.

- 1. Introduction
- 2. Classical results
 - A) Importance weighting
 - B) Adaptive importance weighting
- 3. Recent results
 - A) Joint upper-bound minimization
 - B) Dynamic importance weighting

One-Step Adaptation

The classical approaches are two steps:

1. Weight estimation (e.g., LSIF):

$$\widehat{r} = \operatorname*{argmin}_{r} \mathbb{E}_{p_{\mathrm{tr}}(\boldsymbol{x})}[(r(\boldsymbol{x}) - r^{*}(\boldsymbol{x}))^{2}]$$

2. Weighted predictor training (e.g., IWERM):

$$\widehat{f} = \operatorname*{argmin}_{f} \mathbb{E}_{p_{\mathrm{tr}}(\boldsymbol{x},y)}[\widehat{r}(\boldsymbol{x})\ell(f(\boldsymbol{x}),y)]$$

Can we integrate these two steps?

- 1. Introduction
- 2. Classical results
 - A) Importance weighting
 - B) Adaptive importance weighting
- 3. Recent results
 - A) Joint upper-bound minimization
 - B) Dynamic importance weighting

Risk Upper-Bounding Zhang, Yamane.

For
$$\ell \leq 1, \ell' \geq \ell, r \geq 0$$
, $\frac{1}{2}R_{\ell}(f)^2 \leq J_{\ell'}(r, f)$: Lu & Sugiyama (ACML2020, R_{\ell}(f) = $\mathbb{E}_{p_{te}(\boldsymbol{x}, y)}[\ell(f(\boldsymbol{x}), y)]$

$$J_{\ell'}(r, f) = (\mathbb{E}_{p_{\mathrm{tr}}(\boldsymbol{x}, y)}[r(\boldsymbol{x})\ell'(f(\boldsymbol{x}), y)])^2 \quad \leftarrow \mathsf{IWERM} \\ + \mathbb{E}_{p_{\mathrm{tr}}(\boldsymbol{x})}[(r(\boldsymbol{x}) - r^*(\boldsymbol{x}))^2] \quad \leftarrow \mathsf{LSIF}$$

- In terms of this upper-bound minimization, LSIF followed by IWERM is sub-optimal:
 - Let's directly minimize the upper bound w.r.t. r, f!
- $\ell < 1, \ell' > \ell$ is satisfied by
 - ℓ : 0/1, ℓ' :hinge/softmax cross-entropy (classification)
 - ℓ : Tukey, ℓ' : squared (regression)

Tukey loss 1.0 0.8 0.6 0.4 0.2 -2

19

Theoretical Analysis

20

Let $\widehat{f} = \underset{f}{\operatorname{argmin}} \min_{r} \widehat{J}_{\ell'}(r, f)$ be an empirical solution.

$$\begin{split} \widehat{J}_{\ell'}(r,f) &= \left(\frac{1}{n_{\mathrm{tr}}} \sum_{i=1}^{n_{\mathrm{tr}}} r(\boldsymbol{x}_{i}^{\mathrm{tr}}) \ell'(f(\boldsymbol{x}_{i}^{\mathrm{tr}}), y_{i}^{\mathrm{tr}})\right)^{2} + \left(\frac{1}{n_{\mathrm{tr}}} \sum_{i=1}^{n_{\mathrm{tr}}} r(\boldsymbol{x}_{i}^{\mathrm{tr}})^{2} - \frac{2}{n_{\mathrm{te}}} \sum_{j=1}^{n_{\mathrm{te}}} r(\boldsymbol{x}_{j}^{\mathrm{tr}}) + C\right) \\ \left\{\left(\boldsymbol{x}_{i}^{\mathrm{tr}}, y_{i}^{\mathrm{tr}}\right)\right\}_{i=1}^{n_{\mathrm{tr}}} \stackrel{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x}, y) \qquad \left\{\boldsymbol{x}_{j}^{\mathrm{te}}\right\}_{j=1}^{n_{\mathrm{te}}} \stackrel{\mathrm{i.i.d.}}{\sim} p_{\mathrm{te}}(\boldsymbol{x}) \end{split}$$

Under some mild conditions, the risk of the empirical solution is upper-bounded as

$$R_{\ell}(\hat{f}) \le \sqrt{2} \min_{f} R_{\ell'}(f) + \mathcal{O}_{p}(n_{\rm tr}^{-1/4} + n_{\rm te}^{-1/4})$$

$$R_{\ell}(\widehat{f}) = \mathbb{E}_{p_{te}(\boldsymbol{x}, y)}[\ell(\widehat{f}(\boldsymbol{x}), y)]$$

$$R_{\ell'}(f) = \mathbb{E}_{p_{\mathrm{te}}(\boldsymbol{x},y)}[\ell'(f(\boldsymbol{x}),y)]$$

Practical Implementation

Experimental Evaluation

Table 3 Mean test classification accuracy averaged over 5 trials on image datasets with neural networks. The numbers in the brackets are the standard deviations. For each dataset, the best method and comparable ones based on the *paired t-test* at the significance level 5% are described in bold face.

Dataset	Shift Level (a, b)	ERM	EIWERM	RIWERM	one-step
Fashion-MNIST	(2, 4) (2, 5) (2, 6)	$81.71(0.17) \\72.52(0.54) \\60.10(0.34)$	$\begin{array}{c} 84.02(0.18) \\ 76.68(0.27) \\ 65.73(0.34) \end{array}$	$\begin{array}{c} 84.12(0.06) \\ 77.43(0.29) \\ 66.73(0.55) \end{array}$	85.07(0.08) 78.83(0.20) 69.23(0.25)
Kuzushiji-MNIST	(2, 4) (2, 5) (2, 6)	$77.09(0.18) \\ 65.06(0.26) \\ 51.24(0.30)$	80.92(0.32) 71.02(0.50) 58.78(0.38)	$\begin{array}{c} 81.17(0.24) \\ 72.16(0.19) \\ 60.14(0.93) \end{array}$	$egin{array}{l} 82.45(0.12)\ 74.03(0.16)\ 62.70(0.55) \end{array}$
				↑	

Shimodaira (JSPI2000)

Yamada, Suzuki, Kanamori, Hachiya & Sugiyama (NIPS2011, NeCo2013)

22

- 1. Introduction
- 2. Classical results
 - A) Importance weighting
 - B) Adaptive importance weighting
- 3. Recent results
 - A) Joint upper-bound minimization
 - **B)** Dynamic importance weighting

Dynamic Importance Weighting ²⁴

Fang, Lu, Niu & Sugiyama (NeurIPS2020)

Deep learning adopts iterative optimization.

 $f \leftarrow f - \eta \nabla \widehat{R}(f)$ $\eta > 0$: Learning rate

Let's learn

• Importance weight r

• predictor f

dynamically in the mini-batch-wise manner.

25 Mini-Batch-Wise Loss Matching

Suppose we are given

- (Small) test data:

• (Large) training data: $\{(\boldsymbol{x}_i^{\mathrm{tr}}, y_i^{\mathrm{tr}})\}_{i=1}^{n_{\mathrm{tr}}} \sim p_{\mathrm{tr}}(\boldsymbol{x}, y)$ $\{(\boldsymbol{x}_{i}^{\mathrm{te}}, y_{i}^{\mathrm{te}})\}_{i=1}^{n_{\mathrm{te}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{te}}(\boldsymbol{x}, y)$

For each mini-batch $\{(\bar{x}_i^{\text{tr}}, \bar{y}_i^{\text{tr}})\}_{i=1}^{\bar{n}_{\text{tr}}}, \{(\bar{x}_i^{\text{te}}, \bar{y}_i^{\text{te}})\}_{i=1}^{\bar{n}_{\text{te}}}\}$ importance weights are estimated by matching loss values by kernel mean matching:

Huang, Gretton, Borgwardt, Schölkopf & Smola (NeurIPS2007)

$$\frac{1}{\bar{n}_{\mathrm{tr}}} \sum_{i=1}^{\bar{n}_{\mathrm{tr}}} \boldsymbol{r_i} \ell(f(\bar{\boldsymbol{x}}_i^{\mathrm{tr}}), \bar{y}_i^{\mathrm{tr}}) \approx \frac{1}{\bar{n}_{\mathrm{te}}} \sum_{j=1}^{\bar{n}_{\mathrm{te}}} \ell(f(\bar{\boldsymbol{x}}_j^{\mathrm{te}}), \bar{y}_j^{\mathrm{te}})$$

No covariate shift assumption is needed!

Practical Implementation

Algorithm 1 Dynamic importance weighting (in a mini-batch).

Require: a training mini-batch S^{tr} , a validation mini-batch S^{v} , the current model $f_{\theta_{t}}$

- 1: forward the input parts of S^{tr} & S^{v}
- 2: compute the loss values as \mathcal{L}^{tr} & \mathcal{L}^{v}
- 3: match $\mathcal{L}^{\mathrm{tr}}$ & \mathcal{L}^{v} to obtain \mathcal{W}
- 4: weight the empirical risk $R(\boldsymbol{f}_{ heta})$ by \mathcal{W}
- 5: backward $\widehat{R}(\boldsymbol{f}_{\theta})$ and update θ

Experimental Evaluation

Table 4: Mean accuracy (standard deviation) in percentage on Fashion-MNIST (F-MNIST for short), CIFAR-10/100 under label noise (5 trials). Best and comparable methods (paired *t*-test at significance level 5%) are highlighted in bold. p/s is short for pair/symmetric flip.

	Noise	Clean	Uniform	Random	IW	Reweight	DIW
F-MNIST	0.3 p	71.05 (1.03)	76.89 (1.06)	84.62 (0.68)	82.69 (0.38)	88.74 (0.19)	88.19 (0.43)
	0.4 s	73.55 (0.80)	77.13 (2.21)	84.58 (0.76)	80.54 (0.66)	85.94 (0.51)	88.29 (0.18)
	0.5 s	73.55 (0.80)	73.70 (1.83)	82.49 (1.29)	78.90 (0.97)	84.05 (0.51)	87.67 (0.57)
CIFAR-10	0.3 p	45.62 (1.66)	77.75 (3.27)	83.20 (0.62)	45.02 (2.25)	82.44 (1.00)	84.44 (0.70)
	0.4 s	45.61 (1.89)	69.59 (1.83)	76.90 (0.43)	44.31 (2.14)	76.69 (0.57)	80.40 (0.69)
	0.5 s	46.35 (1.24)	65.23 (1.11)	71.56 (1.31)	42.84 (2.35)	72.62 (0.74)	76.26 (0.73)
CIFAR-100	0.3 p	10.82 (0.44)	50.20 (0.53)	48.65 (1.16)	10.85 (0.59)	48.48 (1.52)	53.94 (0.29)
	0.4 s	10.82 (0.44)	46.34 (0.88)	42.17 (1.05)	10.61 (0.53)	42.15 (0.96)	53.66 (0.28)
	0.5 s	10.82 (0.44)	41.35 (0.59)	34.99 (1.19)	10.58 (0.17)	36.17 (1.74)	49.13 (0.98)

- 1. Introduction
- 2. Classical results
 - A) Importance weighting
 - B) Adaptive importance weighting
- 3. Recent results
 - A) Joint upper-bound minimization
 - B) Dynamic importance weighting

Conclusions

In transfer learning, combining importance estimation and predictor training is promising.

- What should we do if the training and test distributions are very different?
 - Mechanism transfer!

Teshima, Sato & Sugiyama (ICML2020)

