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My jobs:

e Director: RIKEN AIP

e Professor: University of Tokyo

e Consultant: several local startups

Interests: Machine learning (ML)
e \Weakly-supervised learning,

e Robust learning,

e Transfer learning,

e Density ratio estimation,

e Reinforcement learning,

e Variational inference...

Academic activities:

e Program Chairs for NeurlPS2015,
AISTATS2019, ACML2010/2020...
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RIKEN Center for >
Advanced Intelligence Project (AIP)

10-year national project in Japan (2016-2025): ,;J )

e Develop next-generation Al technology &
(learning and optimization theory, etc.)

e Accelerate scientific research
(material, cancer, stem cells, genomics, etc.)

e Solve socially critical problems
(natural disaster, elderly healthcare, etc.)

e Study of ethical, legal and social issues of Al
(ethical guideline, privacy protection, etc.)

e Human resource development
(150+ researchers, 200+ students,
150+ interns, 300+ visiting scientists,
40+ industry projects)




Today’s Topic: 4
Robust Machine Learning

In real-world applications, it becomes
increasingly important to consider robustness:

e Noise: sensor error, human error

e Insufficient information: weak supervision

e Bias: sample selection bias, changing environments
e Attack: adversarial noise, distribution shift

In this talk, | will give an overview of our recent
advances in robust machine learning.

http://www.ms.K.u-tokyo.ac.jp/sugi/publications.html
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Ordinary Classification 0

Clean training data: {(z:,v:)}i-,

Class 1 _ | . x Class?2 x € R : Input pattern

0 % | *x** y € {1,...,c}: Clean class label
o

° 6 X (not necessarily
/ Boundary separable)

Training error minimization is
statistically consistent and work well:

1 < (x) € R : Classifier
i 14 79 ) g
n ; (y g(@ )) l(y,g(x)) € R : Loss




Noisy Classification

Noisy training data: {(=:, %)},
Class1 | ,x Class?2 x € RY: Input pattern

x X 0, A% y € {1,...,c}: Noisy class label

0° % (clean labels are
o
/Nundary corrupted)

Training error minimization is no longer
consistent and does not work well:

n

1 - | g(x) € R : Classifier
n ;E(y@,g(mz)) l(y,g(x)) € R : Loss



Standard Approaches

o

Unsupervised outlier removal:
e Substantially difficult

Robust loss, regularization:

e Not robust enough L B
We want to go beyond the
limitations of existing approaches! |\ 4
e Noise transition correction
e Noiseless sample selection
e Model capacity control




(1-1) Noise Transition Correction °
Noise transition matrix T': Bl o1 [o5)
0

T_
e Flipping probability from v to v . T = . g? 065 J
Ma:Or apprOaCheS: Patrini et al. (CVPR2017) Y

e Loss correction by T~ to eliminate noise.
T
e Classifier correction by I" to simulate noise.

We want to estimate T' only from noisy data:
e Use human cognition as a “mask” for 1.

Han, Yao, Niu, Zhou, Tsang, Zhang & Sugiyama (NeurlPS2018)

e Learn I’ and a classifier simultaneously.

Xia, Liu, Wang, Han, Gong, Niu & Sugiyama (NeurlPS2019)

e Decompose 1’ into simpler components.

Yao, Liu, Han, Gong, Deng, Niu, Sugiyama & Tao (NeurlPS2020)

e Extension to input-dependent noise T'(x).

Xia, Liu, Han, Wang, Gong, Liu, Niu, Tao & Sugiyama (NeurlPS2020)



(1-2) Co-teaching 10
Memorization of neural nets: 0 8% \ielreor7
e Stochastic gradient descent fits clean data faster.

e However, naive early stopping does not work well.

“Co-teaching” between two neural nets:
e Teach small-loss data each other.

(
Han, Yao, Yu, Niu, Xu, Hu, Tsang & Sugiyama (NeurlPS2018) | |
|
|
|

’————\

e Teach only disagreed data.

Yu, Han, Yao, Niu, Tsang & Sugiyama (ICML2019)

(& :
|
e Gradient ascent for large-loss data. : 0‘9 |

Han, Niu, Yu, Yao, Xu, Tsang & Sugiyama (ICML2020) \

No theory but very robust in experiments:
e Works well even if 50% labels are randomly flipped.



(1-3) Flooding R

Neural nets tend to overfit.
“Flooding” the training error prevents overfitting.

e |t induces double descent? R(f)—b|+b
IShida, Yamane, Sakai, Niu & Sugiyama (ICML2020)
Loss I‘oss
SR
\\\ test loss
N | 7 fest loss
“::" N training
PN A loss
e e e @
0 » 0 >

Epoch Epoch
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Weakly Supervised Learning ™

Ordinary supervised learning requires
fully labeled data (input-output pairs).

But collecting fully labeled data can be
expensive in practice.

Can we utilize "weakly” labeled data?
e Complementary classification

: - : Class 2
e Partial-label classification Class1 |

. . o
e Various weakly supervised 0 % | *x**

classification methods 0% o I xx
for binary problems /



(2-1) Complementary Classification 14

Complementary label:
a class the pattern does not belong to.

7 (13

e E.g., "not class 17, “not a cat”.

Class 2
e Cheaper than ordinary labels. Class 10 | xx
o x %X
o 9% X

Classifiers can be trained :o o N " %
only from complementary labels. /
e Unbiased risk estimation

Ishida, Niu & Sugiyama (NIPS2017)
Ishida, Niu, Menon & Sugiyama (ICML2019)

e Multiple complementary labels 1/v/n

Feng, Kaneko, Han, Niu, An & Sugiyama (ICML2020)

e Beyond unbiased risk estimation

Chou, Niu, Lin & Sugiyama (ICML2020)



(2-2) Partial-Label Classification '°

Pa rti al Ia bel : Nguyen and Caruana (KDD2008)
a subset of labels containing the true one

e E.g.,, "Either 1 or 27, “"dog or cat” 44s 1 | (’Z‘Iass 2
e Cheaper than ordinary labels .o :x" x
o

Classifiers can be trained /\

only from partial labels. 1/v/n
e Progressive identification of correct labels.

Lv, Xu, Feng, Niu, Geng & Sugiyama (ICML2020)

e Explicit modeling of partial label generation.

Feng, Lv, Han, Xu, Niu, Geng, An & Sugiyama (NeurlPS2020)



(2-3) More for Binary Problems '°

Binary classification is
possible only from
weakly supervised data!

Positive-Unlabeled

(o) (m]
OOU ol o I:Il:I
oo O 0
ODI:II:I (m]

du Plessis, Niu & Sugiyama (NIPS2014, ICML2015)
Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)
Kiryo, du Plessis, Niu & Sugiyama (NIPS2017)
Hsieh, Niu & Sugiyama (ICML2019)

Positive confidence
70%

OOo
OO0l

Ishida, Niu & Sugiyama (NeurlPS2018)

95%

O 20%

Charoenphakdee, Lee & Sugiyama (ICML2019
Lu, Zhang, Niu & Sugiyama (AISTATS2020

1/v/n

Unlabeled-Unlabeled

du Plessis, Niu & Sugiyama (TAAI2013
Lu, Niu, Menon & Sugiyama (ICLR2019

~— — — ~—

Sugiyama, Sakai, Ishida, Nan, Bao & Niu,
Machine Learning from Weak Supervision,
MIT Press, 20217

Positive _ Negative
o X
X
o © %
o x X
o X
° o
o X %

Positive-Negative-Unlabeled

x)ﬂ:l
OOD (m] u"xu

(u]
oo O ax
oD|:||:| Xp

Sakai, du Plessis, Niu & Sugiyama (ICML2017)
Sakai, Niu & Sugiyama (MLJ2018)

Similar-Dissimilar-Unlabeled

Bao, Niu & Sugiyama (ICML2048)
Shimada, Bao, Sato & Sugiyama (arXiv2019)®
Dan, Bao & Sugiyama (arXiv2020)
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Transfer Learning 18

DATASET SHIFT IN
MACHINE LEARNING

Quinonero-Candela, Sugiyama, Schwaighofer & Lawrence (MIT Press 2009)

Training and test data often have Hpsaiiion
different distributions, due to |
e changing environments, Regression
e sample selection bias. o, NG - ‘”m
Transfer learning o
(domain adaptation): s
e Match the distributions so that 0 B
training data resemble test data. Clas§ification
SCRTER
e S 3P

MIT Press, 2012 %




Unsupervised Transfer Learning '

Given training input-output and test input,
match the training and test distributions:

e Better discrepancy measures for distribution

matCh | na: Kuroki, Charoenphakdee, Bao, Honda, Sato & Sugiyama (AAAI2019)
g : Lee, Charoenphakdee, Kuroki & Sugiyama (arXiv2019)

e Handling noisy labels in the source domain:
Liu, Lu, Han, Niu, Zhang & Sugiyama (arXiv2019)

e No/incomplete unlabeled data
from the teSt domaln Ishii, Takenouchi & Sugiyama (ACML2019)

Ishii, Takenouchi & Sugiyama (WACV2020)

e Transferring data generation mechanism:

Teshima, Sato & Sugiyama (ICML2020)
Teshima, Ishikawa, Tojo, Oono, lkeda & Sugiyama (NeurlPS2020)

e Simultaneous learning of a classifier and
|m po rta nce We|g htS Zhang, Yamane, Lu & Sugiyama (ACML2020)

Fang, Lu, Niu & Sugiyama (NeurlPS2020)



(3-1) Mechanism Transfer %

Is transfer learning possible when data
distributions are seemingly very different?

Yes, if data generation mechanisms are shared:

e Use invertible neural networks (INNS) .. o icvisom)
to invert the data generation mechanism.

e INNs are universal approximators.  oite shass foo oo

Independent 1 q2 »++ (Tar
components . . . ,
“Mechanism” f r(:}* zi} s{?
y v b v y v y v
Observed [o" [ 00 ® o  ,
data v | oy N * v




(3-2) One-Step Adaptation 4
Standard approach: 2 steps
e Weight estimation: min D(w, pie/pir)
e \Weighted classifier training: m}n E,.. [w(z,y)l(f(x),y)]

Proposed methods: 1 step

e \Vith a common feature extractor for w and f,
learn them dynamically in mini-batch training.

Fang, Lu, Niu & Sugiyama (NeurlPS2020)

e Minimize an upper bound of the risk w.r.t. wand f
under covariate shift pu:(y|z) = pre(y|x):

Zhang, Yamane, Lu & Sugiyama (ACML2020)

min J(w, f) J(w, f) = R*(f)
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Adversarial Change
In Test Input

An adversary changes test input points
to confuse our predictor.

e \We want to be robust against such change.

Various studies of adversarial learning:
1. Distributionally robust learning.

2. Adversarial training for pointwise attack.
3. Rejection of adversarial data.

23



(4-1) Distributionally Robust Learning 244

Setting: an adversary changes the test
distribution arbitrarily.

Approach: Learn a predictor such that it still

works well for the worst test distribution. e
e Well studied in regression

(output is continuous) min sup Eo( ) [0g6(z), )]
and works well. 9 qeQ, |

e In classification Qp ={a | Dy(qllp) < 4}
(output is categorical), T B . seonge 28 217
additional condition is needed
to enhance the robustneSS, Hu, Niu, Sato & Sugiyama (ICML2018)

e.d., latent prior probability change. scue, s sugyama qipszo0




(4-2) Pointwise Attack

Deep neural networks are vulnerable to

small perturbations in test input.
Goodfellow et al. (ICLR2015)

: T +
£r sign(VgJ(0,z,y)) esign(VzJ (0, z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

We want to make deep neural networks
stable for such test input perturbations.



(4-2a) Adversarial Training 26
for Pointwise Attack

Setting: an adversary changes

test input points arbitrarily.

Approach: Consider the worst test input X;:
min £ @)= argmax A0

XEB(x;)

e Conditions for the calibration of surrogate

Bao, Scott & Sugiyama

classification loss has been elucidated. (COLT2020)

However,
e There is no theoretical guarantee for robustness.
e Minimax training is too conservative.



(4-2b) Guaranteed Defense %

to Pointwise Attack
Stabilize output of the neural net: @

Ve. <||l’-||2 <c = tx =argmax{F (X +€),}

(4

Lipchitz-margin training: Teuzuku, Sato & Sugiyama (NewrlPS2018)

e Compute the Lipchitz constant for the entire network:
|IF(X) — F(X +¢€)|2 < Lpe]|2

e Train the neural net to have large prediction margins:
Vi#tx,(Fyy > F;+V2cLp)

Robustness is theoretically guaranteed.

e However, the guarded area is not so large.



(4-2c) Friendly Adversarial Training 23

Minimax training is too conservative:
IO, . _
i Hzl L @Dy) % = arg max £(f (), )

XEB(X{)

“Friendly” adversarial training: ... 29 Han tiw cul
e Among adversarial inputs,

consider the one %, = arg min £(f (%), ;)

with margin p. *eB(x)
s.t. f(f(f), yl) _ myin f(f(f)»)’) = P

e Considering the geometry can further improve

Zhang, Zhu, Niu, Han,

the robustness experimentally. Sugiyama & Kankanhali (arXiv2020)
e Theoretical analysis is still open.



4-3) Classification with Reject Option 29

In severe applications, better to reject difficult
test inputs and ask human to predict instead.

Standard approach: Test points having low-
confidence prediction are rejected.
e Logistic loss results in weak performance.

e New rejection criteria for general losses with
guaranteed theoretical convergence
and better experimental performance.

Ni, Charoenphakdee, Honda & Sugiyama (NeurlPS2019)
OWEVer,

Charoenphakdee, Cui, Zhang & Sugiyama (arXiv2020)

e Adversarial input gives high-prediction confidence.
e Not possible to handle real-time applications.
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Summary >

Nowadays, ML systems are deployed

In various societal problems,

where reliablility is extremely important.

We explored robustness to different factors:
e Noise: sensor error, human error

e |nsufficient information: weak supervision

e Bias: sample selection bias, changing environments
e Attack: adversarial noise, distribution shift



Challenges in Reliable ML

Reliable ML in expectable situations:

e Model the corruption process explicitly and
correct the solution.

Reliable ML in unexpected situations:

e Consider worst-case robustness.

e Include human support.
Exploring somewhere in the middle would
be practically useful and important.

e Partial knowledge of the corruption process.

32



Challenges in Reliable ML~ %3

In reliable ML research, the choice of
performance metrics is crucial.

e Simply improving the accuracy is not the goal.
Since humans use ML systems, performance
metrics should reflect human cognitive bias.

e EX: in image evaluation, MSE is not natural,
but we care edges, texture, faces, etc.

“Designing” appropriate performance metrics
IS an important challenge.



Past and Future of Al Research 34

Logical Al Neuro-inspired Al
e 1960’s: Inference and e 1960’s: Single-layer
search perceptrons
e 1980’'s: Expert systems e 1990’'s: Multi-layer
and knowledge bases perceptrons

Statistical ML based Al

e 2000’s: Frequentist statistics, convex
optimization, Bayesian statistics

2010’s: Deep '

Future Al
Human-like Al? Human-inclusive Al?
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The University of Tokyo
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Han Bao (Computer)
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Jongyeong Lee (Computer)

Tianyi Zhang (Complexity)

Yivan Zhang (Computer)

Taira Tsuchiya (Computer)

Riou Charles Emmanuel (Computer)
Valliappa Chockalingam (Computer)
Tongtong Fang (Complexity)

e Master Student

o Yutaka Kitamura (Computer)

Atsushi Ito (Complexity)

Kenshin Abe (Computer)* Sato lab.
Zijian Xu (Computer)

Hiroki Sei (Computer)

Yugo Fujimoto (Computer)* Sato lab.
Lijie Wang (Computer)

Shida Lei (Computer)* Sato lab.

Hiroki Ishiguro (Complexity)

Shinji Kawakami (Complexity)* Sato lab.
Jeonghyun Song (Complexity)

Dong Zhang (Complexity)

Zhenguo Wu (Computer)

Wataru Ohtori (Computer)

Tokio Kajitsuka (Computer)

Shota Nakajima (Computer)

Takahiro Suzuki (Computer)* Sato lab.
Kei Mukaiyama (Computer)* Sato lab.
Mingcheng Hou (Computer)* Sato lab.
Hyunggyu Park (Complexity)* Sato lab.
Yuting Tang (Complexity)

Shintaro Nakamura (Complexity)

Xujie Wang (Complexity)

0O 0O 0DO0OOOOOOOOOOOOO OO OO O 0 O

« Bachelor Student

o Kanma Noda (Information Science)
o Toshiki Kodera (Information Science)
o Yuma Aoki (Information Science)

e Research Student

o Kenny Song (Computer)
o Jake Butter (Computer)

RIKEN

Research Scientist

Gang Niu

Postdoctoral Researcher

Voot Tangkaratt

Yasuhisa Nagano (Complexity)* Sato lab.

Visiting Scientist

Bo Han
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Weakly Supervised Learning '
Ordinary supervised learning requires
fully labeled data (input-output pairs).

But collecting fully labeled data can be
expensive in practice.

Can we utilize “weakly” labeled data?
e No negative data

Positive Negative
e Positive confidence data o % X
e Similar/dissimilar data O ooo x o X X
e Complementary data g o X
e Partial-label data Boundary

P: Positive, N: Negative, U: Unlabeled



(2-1) PU Classification 38

Only positive and unlabeled data is available;
negative data is completely missing:

e Click vs. non-click

_ _ Positive Unlabeled

e Friend vs. non-friend 0o o

Ce oEI O blo g O

We want to minimize oon°.3 n o oo_

the risk of classifier f %" A

only from PU data:

R(f) = Epay) [0(uf ()] 7= ply = +1)
= TEp(z]y=+1) {g (f (w))} + (1 = m)Epajy=—1) lf( —f ($))]
¢ > J (¢ ~ J/
Risk for P data Risk for N data

But N-risk cannot be estimated directly.



| |
Key Trick 39
y du Plessis, Niu & Sugiyama (NIPS2014, ICML2015

Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016
Kiryo, du Plessis, Niu & Sugiyama (NIPS2017
Hsieh, Niu & Sugiyama (ICML2019

Risk for P data Risk for N data
R(f) = mEp(a|y=+1) [f (f(@)] + (1 = 1) Ep@jy=—1) [£< - f(w))}
Use “U-density is mixture of P- and N-densities”:
p(x) = mp(xly = +1) + (1 —m)p(xly = —=1)  sep-+y
e Then m=ply=+1)

R(f) = TEp(xy=+1) [E (f(w))}
e 1) i 108

e Empirical risk minimization (ERM) is possible from
PU data, just by replacing expectations by sample

AVETAGEST R feu) - R < €O (j;_ ¥ %)

~— — — —

p(xly = —1)




(2-2) PNU Classification 40
(Semi-Supervised Classification)

Sakai, du Plessis, Niu & Sugiyama (ICML2017)
Sakai, Niu & Sugiyama (MLJ2018)

Let's decompose PNU into PU, PN, and NU:

e Each iIs solvable. Positive  Negative

. PNU_Bo | By x
e Let's combine them! Fo olo * Em
. . OD X
Without cluster assumptions, %5 o 'Ijjx"” 0
PN classifiers are trainable! °pB 0o %o

oo O - %
ODI:II:I (] (o] X I:II:II:I

Roj1(f) < 2Rpx pu(f) + O /y/mp + 1/v/AN + 1//nv)

PU 5o 1 o PN « NUao | o«
Do olg m] o X 0 olo 0
(o) (o) O (| (o) (o) X xx XD Xx':'
oOI:I ol g O oo X O o) o %O

(W]



(2-3) Pconf Classification

Ishida, Niu & Sugiyama (NeurlPS2018)

Only P data is available, even not U data:
e Data from rival companies cannot be obtained.
e Only positive results are reported (publication bias).

“Only-P learning” is unsupervised.
From positive-confidence data, ERM is possible!

e Augment r-Pconf samples to (1-r)-Nconf samples.
e Importance sampling from P-dist. to U-dist. Positive

1 — r(x) i confidence
R(f) = mEp(z|y=+1) {ﬁ(f(w)) + () E( — 95% O/o o .
— p(y — ‘I’l) T(IL') — P(y — _|_1|.’L') O go%

’(r) - 2(7) = 00 (1145) OO of o



(2-4) UU Classification 42

du Plessis, Niu & Sugiyama (TAAI2013)

Lu, Niu, Menon & Sugiyama (ICLR2019)
Charoenphakdee, Lee & Sugiyama (ICML2019)
Lu, Zhang, Niu & Sugiyama (AISTATS2020)

From two sets of unlabeled data
with different class priors,
PN classifiers are trainable by ERM!

e In PU, we regarded U as noisy N.

0,(1/vn)
e In UU, we use noisy P and noisy N!



(2-5) SU Classification 43

Bao, Niu & Sugiyama (ICML2018)

Delicate classification (money, religion...):
e Highly hesitant to directly answer questions.
e Less reluctant to just say “same as him/her”.

From similar data pairs o [N
and unlabeled data, 1/vn fn"/” n/:&”
PN classifiers are trainable! e o
e Decoupling S-pairs results in UU classification!
Learning from dissimilar o

data pairs is also possible. o o ]
e SDU classification is also possible. 0

Shimada, Bao, Sato & Sugiyama (NeCo02021)
Dan, Bao & Sugiyama (arXiv2020)



(2-6) Complementary Classification 44

Ishida, Niu & Sugiyama (NIPS2017)
Ishida, Niu, Menon & Sugiyama (ICML2019)
Chou, Niu, Lin & Sugiyama (ICML2020)

Labeling patterns in multi-class problems:

e Selecting the collect class Class1 | 2582
from a long class list o° : x X
is extremely painful. °0° *

Complementary labels: /K

e Specify a class that a pattern
does not belong to (“not class 17).

e This is much easier and faster to collect!

From complementary labels, N
classifiers are trainable by ERM!

e Noisy labels with uniform transition to other classes.



Incorporating Ordinary Labels #°

Convert multiclass labeling into yes-no labeling:

JJ v ‘{ M Boston Dyn
i
http://www.softbank.jp/corp/group/ v 8
sbr/news/press/2014/20141029 01/ https://www.bostondynamics.com/atlas
Is this Softbank Pepper? Is this iRobot Roomba?
Yes! (ordinary label) No! (complementary label)

Use both of ordinary and complementary labels!
R(f) = Ep(z,y) [E(f(az), y)} + {(c — D)Es(a,5) :E(f(a:),g)] + Const.}




(2-7) Partial-Label Classification “°

Partia| |abe|: Nguyen and Caruana (KDD2008)
a subset of labels containing the true one

e "Either 1 or 2 Class 1 | C)l‘lass 2
. X
e Cheaper than ordinary labels g0 | ox xX
o) X

Oo o X %
: P o
From partial labels, classifiers /

are trainable by ERM!

Feng, Kaneko, Han, Niu, An & Sugiyama (ICML2020)
Lv, Xu, Feng, Niu, Geng & Sugiyama (ICML2020)
Feng, Lv, Han, Xu, Niu, Geng, An & Sugiyama (NeurlPS2020)

e Complementary label is equivalent to
partial label with size k-1.



Weakly Supervised Learning #

Supervised

High
P/N/U/Pconf/Nconf/S/D,

Semi- Comp/Partial... §
supervised Any data can be 22

. systematically =
Unsupervised - S
P combined! §

Low Classification accuracy  High JALoW

Sugiyama, Ishida, Lu, Bao, Sakai & Niu,
Machine Learning from Weak Supervision
MIT Press, 2021(7?)




