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2About Myself
My jobs:
 Director: RIKEN AIP
 Professor: University of Tokyo
 Consultant: several local startups
 Interests: Machine learning (ML)
 Weakly-supervised learning,
 Robust learning,
 Transfer learning,
 Density ratio estimation,
 Reinforcement learning,
 Variational inference…
 Academic activities:
 Program Chairs for NeurIPS2015, 

AISTATS2019, ACML2010/2020…
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RIKEN Center for
Advanced Intelligence Project (AIP)
 10-year national project in Japan (2016-2025):
 Develop next-generation AI technology

(learning and optimization theory, etc.)
 Accelerate scientific research

(material, cancer, stem cells, genomics, etc.)
 Solve socially critical problems

(natural disaster, elderly healthcare, etc.)
 Study of ethical, legal and social issues of AI

(ethical guideline, privacy protection, etc.) 
 Human resource development

(150+ researchers, 200+ students,
150+ interns, 300+ visiting scientists,
40+ industry projects) 
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Today’s Topic:
Robust Machine Learning

 In real-world applications, it becomes 
increasingly important to consider robustness:
 Noise: sensor error, human error
 Insufficient information: weak supervision
 Bias: sample selection bias, changing environments
 Attack: adversarial noise, distribution shift
 In this talk, I will give an overview of our recent 

advances in robust machine learning.
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Ordinary Classification
Clean training data:

Training error minimization is 
statistically consistent and work well:
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Noisy Classification
Noisy training data:

Training error minimization is no longer 
consistent and does not work well:
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Standard Approaches

Unsupervised outlier removal:
 Substantially difficult
Robust loss, regularization: 
 Not robust enough
We want to go beyond the

limitations of existing approaches!
 Noise transition correction
 Noiseless sample selection
 Model capacity control
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(1-1) Noise Transition Correction
Noise transition matrix    ：
 Flipping probability from     to    .

Major approaches:
 Loss correction by          to eliminate noise.  
 Classifier correction by to simulate noise.

We want to estimate      only from noisy data:
 Use human cognition as a “mask” for     .

 Learn     and a classifier simultaneously.

 Decompose     into simpler components.

 Extension to input-dependent noise          .
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(1-2) Co-teaching
Memorization of neural nets:
 Stochastic gradient descent fits clean data faster.
 However, naïve early stopping does not work well.

“Co-teaching” between two neural nets:
 Teach small-loss data each other.

 Teach only disagreed data.

 Gradient ascent for large-loss data.

No theory but very robust in experiments:
 Works well even if 50% labels are randomly flipped.
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(1-3) Flooding
Neural nets tend to overfit.
“Flooding” the training error prevents overfitting.
 It induces double descent?
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Ishida, Yamane, Sakai, Niu & Sugiyama (ICML2020)
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Weakly Supervised Learning
Ordinary supervised learning requires

fully labeled data (input-output pairs).
But collecting fully labeled data can be 

expensive in practice.
Can we utilize “weakly” labeled data?
 Complementary classification
 Partial-label classification
 Various weakly supervised

classification methods
for binary problems
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(2-1) Complementary Classification
Complementary label:

a class the pattern does not belong to.
 E.g., “not class 1”, “not a cat”.
 Cheaper than ordinary labels.

Classifiers can be trained
only from complementary labels.
 Unbiased risk estimation

 Multiple complementary labels

 Beyond unbiased risk estimation
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(2-2) Partial-Label Classification
Partial label:

a subset of labels containing the true one
 E.g., “Either 1 or 2”, “dog or cat”
 Cheaper than ordinary labels

Classifiers can be trained
only from partial labels.
 Progressive identification of correct labels.

 Explicit modeling of partial label generation.

15

Feng, Lv, Han, Xu, Niu, Geng, An & Sugiyama (NeurIPS2020)

Nguyen and Caruana (KDD2008)

Lv, Xu, Feng, Niu, Geng & Sugiyama (ICML2020)

Class 1
Class 2

Class 3



(2-3) More for Binary Problems
Binary classification is

possible only from
weakly supervised data!
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Transfer Learning
Training and test data often have 

different distributions, due to
 changing environments,
 sample selection bias.

Transfer learning
(domain adaptation):
 Match the distributions so that

training data resemble test data.
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Quiñonero-Candela, Sugiyama, Schwaighofer & Lawrence (MIT Press 2009)

Sugiyama & Kawanabe,
Machine Learning in Non-Stationary  Environments,

MIT Press, 2012
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Unsupervised Transfer Learning
Given training input-output and test input, 

match the training and test distributions:
 Better discrepancy measures for distribution 

matching:
 Handling noisy labels in the source domain:

 No/incomplete unlabeled data
from the test domain:

 Transferring data generation mechanism:

 Simultaneous learning of a classifier and 
importance weights:
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(3-1) Mechanism Transfer
 Is transfer learning possible when data 

distributions are seemingly very different?
Yes, if data generation mechanisms are shared:
 Use invertible neural networks (INNs)

to invert the data generation mechanism.
 INNs are universal approximators.
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Teshima, Sato &
Sugiyama (ICML2020)
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(3-2) One-Step Adaptation
Standard approach: 2 steps
 Weight estimation:
 Weighted classifier training:

Proposed methods: 1 step
 With a common feature extractor for    and   ,

learn them dynamically in mini-batch training.

 Minimize an upper bound of the risk w.r.t. and
under covariate shift                             :
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Fang, Lu, Niu & Sugiyama (NeurIPS2020)

Zhang, Yamane, Lu & Sugiyama (ACML2020)
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Adversarial Change
in Test Input

An adversary changes test input points 
to confuse our predictor.
 We want to be robust against such change.

Various studies of adversarial learning:
1. Distributionally robust learning.
2. Adversarial training for pointwise attack.
3. Rejection of adversarial data.
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(4-1) Distributionally Robust Learning
Setting: an adversary changes the test 

distribution arbitrarily.
Approach: Learn a predictor such that it still 

works well for the worst test distribution.
 Well studied in regression

(output is continuous)
and works well.

 In classification
(output is categorical),
additional condition is needed
to enhance the robustness,
e.g., latent prior probability change.
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Hu, Niu, Sato & Sugiyama (ICML2018)
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(4-2) Pointwise Attack
Deep neural networks are vulnerable to 

small perturbations in test input.

We want to make deep neural networks 
stable for such test input perturbations.
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Goodfellow et al. (ICLR2015)



(4-2a) Adversarial Training
for Pointwise Attack

Setting: an adversary changes
test input points arbitrarily.
Approach: Consider the worst test input ௜:

 Conditions for the calibration of surrogate 
classification loss has been elucidated.

However,
 There is no theoretical guarantee for robustness.
 Minimax training is too conservative.
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(4-2b) Guaranteed Defense
to Pointwise Attack

Stabilize output of the neural net:

Lipchitz-margin training:
 Compute the Lipchitz constant for the entire network：

 Train the neural net to have large prediction margins:

Robustness is theoretically guaranteed.
 However, the guarded area is not so large.
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Tsuzuku, Sato & Sugiyama (NeurIPS2018)
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(4-2c) Friendly Adversarial Training
Minimax training is too conservative:

“Friendly” adversarial training:
 Among adversarial inputs,

consider the one
with margin .

 Considering the geometry can further improve
the robustness experimentally.

 Theoretical analysis is still open.
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4-3) Classification with Reject Option

 In severe applications, better to reject difficult 
test inputs and ask human to predict instead.
Standard approach: Test points having low-

confidence prediction are rejected.
 Logistic loss results in weak performance.
 New rejection criteria for general losses with

guaranteed theoretical convergence 
and better experimental performance.

However,
 Adversarial input gives high-prediction confidence.
 Not possible to handle real-time applications.
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Summary
Nowadays, ML systems are deployed

in various societal problems,
where reliability is extremely important.
We explored robustness to different factors:
 Noise: sensor error, human error
 Insufficient information: weak supervision
 Bias: sample selection bias, changing environments
 Attack: adversarial noise, distribution shift

31



Challenges in Reliable ML
Reliable ML in expectable situations:

 Model the corruption process explicitly and
correct the solution.

Reliable ML in unexpected situations:
 Consider worst-case robustness.
 Include human support.

Exploring somewhere in the middle would 
be practically useful and important.
 Partial knowledge of the corruption process.
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Challenges in Reliable ML
 In reliable ML research, the choice of 

performance metrics is crucial.
 Simply improving the accuracy is not the goal.

Since humans use ML systems, performance
metrics should reflect human cognitive bias. 
 Ex: in image evaluation, MSE is not natural,

but we care edges, texture, faces, etc.
“Designing” appropriate performance metrics 

is an important challenge.
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Past and Future of AI Research
Logical AI

 1960’s: Inference and 
search

 1980’s: Expert systems 
and knowledge bases

Neuro-inspired AI
 1960’s: Single-layer 

perceptrons
 1990’s: Multi-layer 

perceptrons
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Statistical ML based AI
 2000’s: Frequentist statistics, convex 

optimization, Bayesian statistics
 2010’s: Deep learning

Future AI
Human-like AI? Human-inclusive AI?
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Weakly Supervised Learning
Ordinary supervised learning requires

fully labeled data (input-output pairs).
But collecting fully labeled data can be 

expensive in practice.
Can we utilize “weakly” labeled data?
 No negative data
 Positive confidence data
 Similar/dissimilar data
 Complementary data
 Partial-label data
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(2-1) PU Classification 38

Only positive and unlabeled data is available; 
negative data is completely missing:
 Click vs. non-click
 Friend vs. non-friend

We want to minimize
the risk of classifier
only from PU data:

But N-risk cannot be estimated directly.

Positive Unlabeled

Risk for P data Risk for N data



Key Trick

Use “U-density is mixture of P- and N-densities”:

 Then

 Empirical risk minimization (ERM) is possible from 
PU data, just by replacing expectations by sample 
averages!
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(2-2) PNU Classification
(Semi-Supervised Classification)
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Let’s decompose PNU into PU, PN, and NU:
 Each is solvable.
 Let’s combine them!

Without cluster assumptions,
PN classifiers are trainable!
PU NUPN

Sakai, du Plessis, Niu & Sugiyama (ICML2017)
Sakai, Niu & Sugiyama (MLJ2018)
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(2-3) Pconf Classification
Only P data is available, even not U data:
 Data from rival companies cannot be obtained.
 Only positive results are reported (publication bias).

“Only-P learning” is unsupervised.
From positive-confidence data, ERM is possible!
 Augment r-Pconf samples to (1-r)-Nconf samples.
 Importance sampling from P-dist. to U-dist.
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(2-4) UU Classification 42

From two sets of unlabeled data
with different class priors,
PN classifiers are trainable by ERM!

 In PU, we regarded U as noisy N.
 In UU, we use noisy P and noisy N!
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(2-5) SU Classification
Delicate classification (money, religion…):
 Highly hesitant to directly answer questions.
 Less reluctant to just say “same as him/her”.

From similar data pairs
and unlabeled data,
PN classifiers are trainable!
 Decoupling S-pairs results in UU classification!

Learning from dissimilar
data pairs is also possible.
 SDU classification is also possible.
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Shimada, Bao, Sato & Sugiyama (NeCo2021)
Dan, Bao & Sugiyama (arXiv2020)



(2-6) Complementary Classification

Labeling patterns in multi-class problems:
 Selecting the collect class

from a long class list
is extremely painful.

Complementary labels:
 Specify a class that a pattern

does not belong to (“not class 1”).
 This is much easier and faster to collect!

From complementary labels,
classifiers are trainable by ERM!
 Noisy labels with uniform transition to other classes.
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Incorporating Ordinary Labels
Convert multiclass labeling into yes-no labeling:

Use both of ordinary and complementary labels!
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Is this Softbank Pepper?
Yes! (ordinary label)

Is this iRobot Roomba?
No! (complementary label)

http://www.softbank.jp/corp/group/
sbr/news/press/2014/20141029_01/ https://www.bostondynamics.com/atlas



(2-7) Partial-Label Classification
Partial label:

a subset of labels containing the true one
 “Either 1 or 2”
 Cheaper than ordinary labels

From partial labels, classifiers
are trainable by ERM!

 Complementary label is equivalent to
partial label with size k-1.
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Weakly Supervised Learning 47
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Sugiyama, Ishida, Lu, Bao, Sakai & Niu,
Machine Learning from Weak Supervision
MIT Press, 2021(?)


