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RIKEN Center for
Advanced Intelligence Project (AIP)
 10-year national project in Japan (2016-2025):
 Develop next-generation AI technology

(learning and optimization theory, etc.)
 Accelerate scientific research

(material, cancer, stem cells, genomics, etc.)
 Solve socially critical problems

(natural disaster, elderly healthcare, etc.)
 Study of ethical, legal and social issues of AI

(ethical guideline, privacy protection, etc.) 
 Human resource development

(150+ researchers, 200+ students,
150+ interns, 300+ visiting scientists,
40+ industry projects) 
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Today’s Topic:
Robust Machine Learning

 In real-world applications, it becomes 
increasingly important to consider robustness:
 Noise: sensor error, human error
 Insufficient information: weak supervision
 Bias: sample selection bias, changing environments
 Attack: adversarial noise, distribution shift
 In this talk, I will give an overview of our recent 

advances in robust machine learning.
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Ordinary Classification
Clean training data:

Training error minimization is 
statistically consistent and work well:
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Noisy Classification
Noisy training data:

Training error minimization is no longer 
consistent and does not work well:
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Standard Approaches

Unsupervised outlier removal:
 Substantially difficult
Robust loss, regularization: 
 Not robust enough
We want to go beyond the

limitations of existing approaches!
 Noise transition correction
 Noiseless sample selection
 Model capacity control
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(1-1) Noise Transition Correction
Noise transition matrix    ：
 Flipping probability from     to    .

Major approaches:
 Loss correction by          to eliminate noise.  
 Classifier correction by to simulate noise.

We want to estimate      only from noisy data:
 Use human cognition as a “mask” for     .

 Learn     and a classifier simultaneously.

 Decompose     into simpler components.

 Extension to input-dependent noise          .
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(1-2) Co-teaching
Memorization of neural nets:
 Stochastic gradient descent fits clean data faster.
 However, naïve early stopping does not work well.

“Co-teaching” between two neural nets:
 Teach small-loss data each other.

 Teach only disagreed data.

 Gradient ascent for large-loss data.

No theory but very robust in experiments:
 Works well even if 50% labels are randomly flipped.
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Han, Yao, Yu, Niu, Xu, Hu, Tsang & Sugiyama (NeurIPS2018)

Arpit et al. (ICML2017)
Zhang et al. (ICLR2017)
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(1-3) Flooding
Neural nets tend to overfit.
“Flooding” the training error prevents overfitting.
 It induces double descent?
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Ishida, Yamane, Sakai, Niu & Sugiyama (ICML2020)
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Weakly Supervised Learning
Ordinary supervised learning requires

fully labeled data (input-output pairs).
But collecting fully labeled data can be 

expensive in practice.
Can we utilize “weakly” labeled data?
 Complementary classification
 Partial-label classification
 Various weakly supervised

classification methods
for binary problems
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(2-1) Complementary Classification
Complementary label:

a class the pattern does not belong to.
 E.g., “not class 1”, “not a cat”.
 Cheaper than ordinary labels.

Classifiers can be trained
only from complementary labels.
 Unbiased risk estimation

 Multiple complementary labels

 Beyond unbiased risk estimation
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(2-2) Partial-Label Classification
Partial label:

a subset of labels containing the true one
 E.g., “Either 1 or 2”, “dog or cat”
 Cheaper than ordinary labels

Classifiers can be trained
only from partial labels.
 Progressive identification of correct labels.

 Explicit modeling of partial label generation.
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Nguyen and Caruana (KDD2008)

Lv, Xu, Feng, Niu, Geng & Sugiyama (ICML2020)

Class 1
Class 2

Class 3



(2-3) More for Binary Problems
Binary classification is

possible only from
weakly supervised data!
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MIT Press, 2021?
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Transfer Learning
Training and test data often have 

different distributions, due to
 changing environments,
 sample selection bias.

Transfer learning
(domain adaptation):
 Match the distributions so that

training data resemble test data.
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Quiñonero-Candela, Sugiyama, Schwaighofer & Lawrence (MIT Press 2009)

Sugiyama & Kawanabe,
Machine Learning in Non-Stationary  Environments,

MIT Press, 2012
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Unsupervised Transfer Learning
Given training input-output and test input, 

match the training and test distributions:
 Better discrepancy measures for distribution 

matching:
 Handling noisy labels in the source domain:

 No/incomplete unlabeled data
from the test domain:

 Transferring data generation mechanism:

 Simultaneous learning of a classifier and 
importance weights:
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(3-1) Mechanism Transfer
 Is transfer learning possible when data 

distributions are seemingly very different?
Yes, if data generation mechanisms are shared:
 Use invertible neural networks (INNs)

to invert the data generation mechanism.
 INNs are universal approximators.
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Teshima, Sato &
Sugiyama (ICML2020)

Teshima, Ishikawa, Tojo, Oono,
Ikeda & Sugiyama (NeurIPS2020)
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(3-2) One-Step Adaptation
Standard approach: 2 steps
 Weight estimation:
 Weighted classifier training:

Proposed methods: 1 step
 With a common feature extractor for    and   ,

learn them dynamically in mini-batch training.

 Minimize an upper bound of the risk w.r.t. and
under covariate shift                             :
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Fang, Lu, Niu & Sugiyama (NeurIPS2020)

Zhang, Yamane, Lu & Sugiyama (ACML2020)
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Adversarial Change
in Test Input

An adversary changes test input points 
to confuse our predictor.
 We want to be robust against such change.

Various studies of adversarial learning:
1. Distributionally robust learning.
2. Adversarial training for pointwise attack.
3. Rejection of adversarial data.
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(4-1) Distributionally Robust Learning
Setting: an adversary changes the test 

distribution arbitrarily.
Approach: Learn a predictor such that it still 

works well for the worst test distribution.
 Well studied in regression

(output is continuous)
and works well.

 In classification
(output is categorical),
additional condition is needed
to enhance the robustness,
e.g., latent prior probability change.

24

Hu, Niu, Sato & Sugiyama (ICML2018)

Storkey & Sugiyama (NIPS2007)



(4-2) Pointwise Attack
Deep neural networks are vulnerable to 

small perturbations in test input.

We want to make deep neural networks 
stable for such test input perturbations.
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Goodfellow et al. (ICLR2015)



(4-2a) Adversarial Training
for Pointwise Attack

Setting: an adversary changes
test input points arbitrarily.
Approach: Consider the worst test input :

 Conditions for the calibration of surrogate 
classification loss has been elucidated.

However,
 There is no theoretical guarantee for robustness.
 Minimax training is too conservative.
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(4-2b) Guaranteed Defense
to Pointwise Attack

Stabilize output of the neural net:

Lipchitz-margin training:
 Compute the Lipchitz constant for the entire network：

 Train the neural net to have large prediction margins:

Robustness is theoretically guaranteed.
 However, the guarded area is not so large.
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Tsuzuku, Sato & Sugiyama (NeurIPS2018)
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(4-2c) Friendly Adversarial Training
Minimax training is too conservative:

“Friendly” adversarial training:
 Among adversarial inputs,

consider the one
with margin .

 Considering the geometry can further improve
the robustness experimentally.

 Theoretical analysis is still open.
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4-3) Classification with Reject Option

 In severe applications, better to reject difficult 
test inputs and ask human to predict instead.
Standard approach: Test points having low-

confidence prediction are rejected.
 Logistic loss results in weak performance.
 New rejection criteria for general losses with

guaranteed theoretical convergence 
and better experimental performance.

However,
 Adversarial input gives high-prediction confidence.
 Not possible to handle real-time applications.
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Ni, Charoenphakdee, Honda & Sugiyama (NeurIPS2019)
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Summary
Nowadays, ML systems are deployed

in various societal problems,
where reliability is extremely important.
We explored robustness to different factors:
 Noise: sensor error, human error
 Insufficient information: weak supervision
 Bias: sample selection bias, changing environments
 Attack: adversarial noise, distribution shift
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Challenges in Reliable ML
Reliable ML in expectable situations:

 Model the corruption process explicitly and
correct the solution.

Reliable ML in unexpected situations:
 Consider worst-case robustness.
 Include human support.

Exploring somewhere in the middle would 
be practically useful and important.
 Partial knowledge of the corruption process.
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Challenges in Reliable ML
 In reliable ML research, the choice of 

performance metrics is crucial.
 Simply improving the accuracy is not the goal.

Since humans use ML systems, performance
metrics should reflect human cognitive bias. 
 Ex: in image evaluation, MSE is not natural,

but we care edges, texture, faces, etc.
“Designing” appropriate performance metrics 

is an important challenge.
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Past and Future of AI Research
Logical AI

 1960’s: Inference and 
search

 1980’s: Expert systems 
and knowledge bases

Neuro-inspired AI
 1960’s: Single-layer 

perceptrons
 1990’s: Multi-layer 

perceptrons
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Statistical ML based AI
 2000’s: Frequentist statistics, convex 

optimization, Bayesian statistics
 2010’s: Deep learning

Future AI
Human-like AI? Human-inclusive AI?
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Weakly Supervised Learning
Ordinary supervised learning requires

fully labeled data (input-output pairs).
But collecting fully labeled data can be 

expensive in practice.
Can we utilize “weakly” labeled data?
 No negative data
 Positive confidence data
 Similar/dissimilar data
 Complementary data
 Partial-label data
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(2-1) PU Classification 38

Only positive and unlabeled data is available; 
negative data is completely missing:
 Click vs. non-click
 Friend vs. non-friend

We want to minimize
the risk of classifier
only from PU data:

But N-risk cannot be estimated directly.

Positive Unlabeled

Risk for P data Risk for N data



Key Trick

Use “U-density is mixture of P- and N-densities”:

 Then

 Empirical risk minimization (ERM) is possible from 
PU data, just by replacing expectations by sample 
averages!
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du Plessis, Niu & Sugiyama (NIPS2014, ICML2015)
Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)

Kiryo, du Plessis, Niu & Sugiyama (NIPS2017)
Hsieh, Niu & Sugiyama (ICML2019)



(2-2) PNU Classification
(Semi-Supervised Classification)
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Let’s decompose PNU into PU, PN, and NU:
 Each is solvable.
 Let’s combine them!

Without cluster assumptions,
PN classifiers are trainable!
PU NUPN

Sakai, du Plessis, Niu & Sugiyama (ICML2017)
Sakai, Niu & Sugiyama (MLJ2018)
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(2-3) Pconf Classification
Only P data is available, even not U data:
 Data from rival companies cannot be obtained.
 Only positive results are reported (publication bias).

“Only-P learning” is unsupervised.
From positive-confidence data, ERM is possible!
 Augment r-Pconf samples to (1-r)-Nconf samples.
 Importance sampling from P-dist. to U-dist.
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(2-4) UU Classification 42

From two sets of unlabeled data
with different class priors,
PN classifiers are trainable by ERM!

 In PU, we regarded U as noisy N.
 In UU, we use noisy P and noisy N!
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(2-5) SU Classification
Delicate classification (money, religion…):
 Highly hesitant to directly answer questions.
 Less reluctant to just say “same as him/her”.

From similar data pairs
and unlabeled data,
PN classifiers are trainable!
 Decoupling S-pairs results in UU classification!

Learning from dissimilar
data pairs is also possible.
 SDU classification is also possible.
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Shimada, Bao, Sato & Sugiyama (NeCo2021)
Dan, Bao & Sugiyama (arXiv2020)



(2-6) Complementary Classification

Labeling patterns in multi-class problems:
 Selecting the collect class

from a long class list
is extremely painful.

Complementary labels:
 Specify a class that a pattern

does not belong to (“not class 1”).
 This is much easier and faster to collect!

From complementary labels,
classifiers are trainable by ERM!
 Noisy labels with uniform transition to other classes.
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Incorporating Ordinary Labels
Convert multiclass labeling into yes-no labeling:

Use both of ordinary and complementary labels!
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Is this Softbank Pepper?
Yes! (ordinary label)

Is this iRobot Roomba?
No! (complementary label)

http://www.softbank.jp/corp/group/
sbr/news/press/2014/20141029_01/ https://www.bostondynamics.com/atlas



(2-7) Partial-Label Classification
Partial label:

a subset of labels containing the true one
 “Either 1 or 2”
 Cheaper than ordinary labels

From partial labels, classifiers
are trainable by ERM!

 Complementary label is equivalent to
partial label with size k-1.
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Weakly Supervised Learning 47
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Sugiyama, Ishida, Lu, Bao, Sakai & Niu,
Machine Learning from Weak Supervision
MIT Press, 2021(?)


