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My jobs:

e Director: RIKEN AIP

e Professor: University of Tokyo

e Consultant: several local startups

Interests: Machine learning (ML)
e \Weakly-supervised learning,

e Robust learning,

e Transfer learning,

e Density ratio estimation,

e Reinforcement learning,

e Variational inference...

Academic activities:

e Program Chairs for NeurlPS2015,
AISTATS2019, ACML2010/2020...
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RIKEN Center for >
Advanced Intelligence Project (AIP)

10-year national project in Japan (2016-2025): ,;J )

e Develop next-generation Al technology &
(learning and optimization theory, etc.)

e Accelerate scientific research
(material, cancer, stem cells, genomics, etc.)

e Solve socially critical problems
(natural disaster, elderly healthcare, etc.)

e Study of ethical, legal and social issues of Al
(ethical guideline, privacy protection, etc.)

e Human resource development
(150+ researchers, 200+ students,
150+ interns, 300+ visiting scientists,
40+ industry projects)




Today’s Topic: 4
Robust Machine Learning

In real-world applications, it becomes
increasingly important to consider robustness:

e Noise: sensor error, human error

e Insufficient information: weak supervision

e Bias: sample selection bias, changing environments
e Attack: adversarial noise, distribution shift

In this lecture, | will give an overview of our
recent advances in robust machine learning.

http://www.ms.K.u-tokyo.ac.jp/sugi/publications.html
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Ordinary Classification 0

Clean training data: {(z:,v:)}i-,

Class 1 _ | . x Class?2 x € R : Input pattern

0 % | *x** y € {1,...,c}: Clean class label
o

° 6 X (not necessarily
/ Boundary separable)

Training error minimization is
statistically consistent and work well:

1 < (x) € R : Classifier
i 14 79 ) g
n ; (y g(@ )) l(y,g(x)) € R : Loss




Noisy Classification

Noisy training data: {(=:, %)},
Class1 | ,x Class?2 x € RY: Input pattern

x X 0, A% y € {1,...,c}: Noisy class label

0° % (clean labels are
o
/Nundary corrupted)

Training error minimization is no longer
consistent and does not work well:

n

1 - | g(x) € R : Classifier
n ;E(y@,g(mz)) l(y,g(x)) € R : Loss



Standard Approaches

o

Unsupervised outlier removal:
e Substantially difficult

Robust loss, regularization:

e Not robust enough L B
We want to go beyond the
limitations of existing approaches! |\ 4
e Noise transition correction
e Noiseless sample selection
e Model capacity control




(1-1) Noise Transition Correction °
Noise transition matrix T': Bl o1 [o5)
0

T_
e Flipping probability from v to v . T = . g? 065 J
Ma:Or apprOaCheS: Patrini et al. (CVPR2017) Y

e Loss correction by T~ to eliminate noise.
T
e Classifier correction by I" to simulate noise.

We want to estimate T' only from noisy data:
e Use human cognition as a “mask” for 1.

Han, Yao, Niu, Zhou, Tsang, Zhang & Sugiyama (NeurlPS2018)

e Learn I’ and a classifier simultaneously.

Xia, Liu, Wang, Han, Gong, Niu & Sugiyama (NeurlPS2019)

e Decompose 1’ into simpler components.

Yao, Liu, Han, Gong, Deng, Niu, Sugiyama & Tao (NeurlPS2020)

e Extension to input-dependent noise T'(x).

Xia, Liu, Han, Wang, Gong, Liu, Niu, Tao & Sugiyama (NeurlPS2020)



(1-2) Co-teaching 10
Memorization of neural nets: 0 8% \ielreor7
e Stochastic gradient descent fits clean data faster.

e However, naive early stopping does not work well.

“Co-teaching” between two neural nets:
e Teach small-loss data each other.

(
Han, Yao, Yu, Niu, Xu, Hu, Tsang & Sugiyama (NeurlPS2018) | |
|
|
|

’————\

e Teach only disagreed data.

Yu, Han, Yao, Niu, Tsang & Sugiyama (ICML2019)

(& :
|
e Gradient ascent for large-loss data. : 0‘9 |

Han, Niu, Yu, Yao, Xu, Tsang & Sugiyama (ICML2020) \

No theory but very robust in experiments:
e Works well even if 50% labels are randomly flipped.



(1-3) Flooding R

Neural nets tend to overfit.
“Flooding” the training error prevents overfitting.

e |t induces double descent? R(f)—b|+b
IShida, Yamane, Sakai, Niu & Sugiyama (ICML2020)
Loss I‘oss
SR
\\\ test loss
N | 7 fest loss
“::" N training
PN A loss
] . w | > @
0 » 0 >

Epoch Epoch
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Weakly Supervised Learning °
Ordinary supervised learning requires
fully labeled data (input-output pairs).

But collecting fully labeled data can be
expensive in practice.

Can we utilize “weakly” labeled data?
e No negative data

Positive Negative
e Positive confidence data o % X
e Similar/dissimilar data O ooo x o X X
e Complementary data g o X
e Partial-label data Boundary

P: Positive, N: Negative, U: Unlabeled



(2-1) PU Classification 14

Only positive and unlabeled data is available;
negative data is completely missing:

e Click vs. non-click

_ _ Positive Unlabeled

e Friend vs. non-friend 0o o

Ce oEI O blo g O

We want to minimize oon°.3 n o oo_

the risk of classifier f %" A

only from PU data:

R(f) = Epay) [0(uf ()] 7= ply = +1)
= TEp(z]y=+1) {g (f (w))} + (1 = m)Epajy=—1) lf( —f ($))]
¢ > J (¢ ~ J/
Risk for P data Risk for N data

But N-risk cannot be estimated directly.



| |
Key Trick 15
y du Plessis, Niu & Sugiyama (NIPS2014, ICML2015

Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016
Kiryo, du Plessis, Niu & Sugiyama (NIPS2017
Hsieh, Niu & Sugiyama (ICML2019

Risk for P data Risk for N data
R(f) = mEp(a|y=+1) [f (f(@)] + (1 = 1) Ep@jy=—1) [£< - f(w))}
Use “U-density is mixture of P- and N-densities”:
p(x) = mp(xly = +1) + (1 —m)p(xly = —=1)  sep-+y
e Then m=ply=+1)

R(f) = TEp(xy=+1) [E (f(w))}
e 1) i 108

e Empirical risk minimization (ERM) is possible from
PU data, just by replacing expectations by sample

AVETAGEST R feu) - R < €O (j;_ ¥ %)

~— — — —

p(xly = —1)




(2-2) PNU Classification 16
(Semi-Supervised Classification)

Sakai, du Plessis, Niu & Sugiyama (ICML2017)
Sakai, Niu & Sugiyama (MLJ2018)

Let's decompose PNU into PU, PN, and NU:

e Each is solvable. PNUPogitic\,/e Ngga:i(ve

e Let's combine them! Fo olo :D Em
Without cluster assumptions, %5 o | 2 *“o
PN classifiers are trainable! o uol P

oo O - %
ODI:II:I O (o) X I:II:II:I

Roj1(f) < 2Rpx pu(f) + O /y/mp + 1/v/AN + 1//nv)

PU 5o | o PN « NUa | o«
Do po 0 (] o X O olg (]
(o) (o) O (m] (o) (o) X xx XD Xx':'
oOIZI O\ o O oO P O o) o %O

(W]



(2-3) Pconf Classification 17

Ishida, Niu & Sugiyama (NeurlPS2018)

Only P data is available, even not U data:
e Data from rival companies cannot be obtained.
e Only positive results are reported (publication bias).

“Only-P learning” is unsupervised.
From positive-confidence data, ERM is possible!

e Augment r-Pconf samples to (1-r)-Nconf samples.
e Importance sampling from P-dist. to U-dist. Positive

1 — r(x) i confidence
R(f) = mEp(z|y=+1) {ﬁ(f(w)) + () E( — 95% O/o o .
— p(y — ‘I’l) T(IL') — P(y — _|_1|.’L') O go%

’(r) - 2(7) = 00 (1145) OO of o



(2-4) UU Classification 18

du Plessis, Niu & Sugiyama (TAAI2013)

Lu, Niu, Menon & Sugiyama (ICLR2019)
Charoenphakdee, Lee & Sugiyama (ICML2019)
Lu, Zhang, Niu & Sugiyama (AISTATS2020)

From two sets of unlabeled data
with different class priors,
PN classifiers are trainable by ERM!

e In PU, we regarded U as noisy N.

0,(1/vn)
e In UU, we use noisy P and noisy N!



(2-5) SU Classification 19

Bao, Niu & Sugiyama (ICML2018)

Delicate classification (money, religion...):
e Highly hesitant to directly answer questions.
e Less reluctant to just say “same as him/her”.

From similar data pairs o [N
and unlabeled data, 1/vn fn"/” n/:&”
PN classifiers are trainable! e o
e Decoupling S-pairs results in UU classification!
Learning from dissimilar o

data pairs is also possible. o o ]
e SDU classification is also possible. 0

Shimada, Bao, Sato & Sugiyama (NeCo, to appear)
Dan, Bao & Sugiyama (arXiv2020)



(2-6) Complementary Classification 20

Ishida, Niu & Sugiyama (NIPS2017) Feng, Kaneko, Han, Niu, An & Sugiyama (ICML2020)
Ishida, Niu, Menon & Sugiyama (ICML2019) Chou, Niu, Lin & Sugiyama (ICML2020)
Labeling patterns in multi-class problems:
e Selecting the collect class Class1 | S'aSS 2
from a long class list ) .
. . o © X o X
Is extremely painful. o ©

Complementary labels: /K

e Specify a class that a pattern
does not belong to (“not class 17).

e This is much easier and faster to collect!

From complementary labels, N
classifiers are trainable by ERM!

e Noisy labels with uniform transition to other classes.



Incorporating Ordinary Labels 2

Convert multiclass labeling into yes-no labeling:

JJ v ‘{ M Boston Dyn
i
http://www.softbank.jp/corp/group/ v 8
sbr/news/press/2014/20141029 01/ https://www.bostondynamics.com/atlas
Is this Softbank Pepper? Is this iRobot Roomba?
Yes! (ordinary label) No! (complementary label)

Use both of ordinary and complementary labels!
R(f) = Ep(z,y) [E(f(az), y)} + {(c — D)Es(a,5) :E(f(a:),g)] + Const.}




(2-7) Partial-Label Classification 42

Partia| |abe|: Nguyen and Caruana (KDD2008)
a subset of labels containing the true one

e "Either 1 or 2 Class 1 | C)l‘lass 2
. X
e Cheaper than ordinary labels g0 | ox xX
o) X

Oo o X %
: P o
From partial labels, classifiers /

are trainable by ERM!

e Complementary label is a special case
of partial label.

Lv, Xu, Feng, Niu, Geng & Sugiyama (ICML2020)
Feng, Lv, Han, Xu, Niu, Geng, An & Sugiyama (NeurlPS2020)
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Bias in Training Data 24

Quinonero-Candela, Sugiyama, Schwaighofer & Lawrence (MIT Press 2009)

TTTTTTTTTTTTTT
NNNNNNNNNNNNNNN

Training and test data often have T
different distributions, due to N
e changing environments,

e sample selection bias.

Transfer learning/domain adaptation:

e Match the distributions so that Trgining
training data resemble test data. at

Sugiyama & Kawanabe,
Machine Learning in Non-Stationary Environments,
MIT Press, 2012

Test
data




Unsupervised Transfer Learning %

Given training input-output and test input,
match the training and test distributions:
e Better discrepancy measures for matching:

Kuroki, Charoenphakdee, Bao, Honda, Sato & Sugiyama (AAAI2019)
Lee, Charoenphakdee, Kuroki & Sugiyama (arXiv2019)

e Handling noisy labels in the source domain:

Liu, Lu, Han, Niu, Zhang & Sugiyama (arXiv2019)

e No/incomplete unlabeled data
from the test domain: Ishii, Takenouchi & Sugiyama (ACML2019)

Ishii, Takenouchi & Sugiyama (WACV2020)

e Transferring data generation mechanism:

Teshima, Sato & Sugiyama (ICML2020)
Teshima, Ishikawa, Tojo, Oono, lkeda & Sugiyama (NeurlPS2020)

e Simultaneous learning of a classifier and

Zhang, Yamane, Lu & Sugiyama (ACML2020)

Im PO rtance wel g hts: Fang, Lu, Niu & Sugiyama (NeurlPS2020)



(3-1) Mechanism Transfer

Is transfer learning possible when data
distributions are seemingly very different?

Yes, if data generation mechanisms are shared:

e Use invertible neural networks (INNS) .. o icvisom)
to invert the data generation mechanism.

e INNs are universal approximators.  oite shass foo oo

Independent 1 q2 »++ (Tar
components . . . ,
“Mechanism” f r(:}* zi} s{?
y v b v y v y v
Observed [o" [ 00 ® o  ,
data v | oy N * v




(3-2) One-Step Adaptation 27
Standard approach: 2 steps
e Weight estimation: min D(w, pte/pir)
e \Weighted classifier training: m}n E,.. [w(z,y)l(f(x),y)]
Proposed methods: 1 step

e \With a common feature extractor for w and f,
learn them dynamically in mini-batch training.

Fang, Lu, Niu & Sugiyama (NeurlPS2020)

e Minimize an upper bound of the risk w.r.t. wand
under covariate shift pe(y|z) = pre(y|2):

Zhang, Yamane, Lu & Sugiyama (ACML2020)

min J(w, f) J(w, f) = R*(f)
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Noise in Test Input 29
Neural nets are vulnerable to small

perturbations in test input. coodfellow et al. (ICLR2015)

S
A By

+.007 x —
v Sen(Ve 0. 2,0)  ign(V,.J(8,2.9))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

We want to be robust to such perturbations:
e Robust to adversarial distribution shift.

e “Friendly” adversarial training.

e Defense to pointwise adversarial attack.

e Rejection of adversarial data.



(4-1) Distributionally Robust Learning 30

Consider the worst-case test distribution
when only training
input-output is given: min sup By (g [E(g6(2), )]

qEQp

However, a naive Q, = {q| Dy(qllp) < o} g
m i n i m aX a p p roa Ch f'd:;:;g%;gf:;ngilion Namkoong+ 2016, 2017]

does not work well:
e Proved to be non-robust for classification.

Hu, Niu, Sato & Sugiyama (ICML2018)

e Elucidated the condition for loss calibration.

Bao, Scott & Sugiyama (COLT2020)

e New formulation for being not too conservative.

Zhang, Xu, Han, Niu, Cui, Sugiyama & Kankanhalli (ICML2020)



(4-2) “Friendly” Adversarial Training 3’

Adversarial training:
e Consider the worst test input.
AN, _ _
m;ngzl 0f (%).y) % =argmax £(f (%), )

XEB(x;)

e However, minimax training is too conservative.

"Friendly” adversarial training: ... &t
e Among adversarial inputs,
consider the one x; = arg min 2(f (%), y;)

XEB(x;)

with certain margin p. LA, ) = min £(F(),y) 2 p

e Taking into account “geometry” can further

Zhang, Zhu, Niu, Han,

Improve the robustness. Sugiyama & Kankanhall (arXiv2020)



(4-3) Defense to Pointwise Attack’

Stabilize output of the neural net:

Ve. <||fr||2 <c¢ = tx = argmax {F (X + E)?._})

(!

I_I pCh itz-m a rg | N tra | N | ng : Tsuzuku, Sato & Sugiyama (NeurlPS2018)

e Compute the Lipchitz constant
for each layer and for the entire network:

|F(X) — F(X +€)ll2 < Lr|e]l2

e Train the neural net to have
large prediction margins:
Vi#tx,(Fy. > F; ++/2cLp)

e Robustness is theoretically guaranteed.



(4-4) Classification with Reject Option 33

Ni, Charoenphakdee, Honda & Sugiyama (NeurlPS2019)

In severe applications, better to reject difficult
test inputs and ask human to predict instead.

Approach 1: Train the classifier and rejector
e Existing methods only focus on binary problems.

e \We proved this approach does not converge to
the optimal solution generally in multi-class cases.

Approach 2: Reject low-confidence prediction

e Existing methods have limitation in loss functions
(e.g., logistic loss), resulting in weak performance.

e New rejection criteria for general losses with
theoretical convergence guarantee.
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Summary 39

Nowadays, ML systems are deployed
In various societal problems,
where reliability is extremely important.

We explored robustness to different factors:

e Noise: sensor error, human error

e |nsufficient information: weak supervision

e Bias: sample selection bias, changing environments
e Attack: adversarial noise, distribution shift



Challenges in Reliable ML

Reliable ML in expectable situations:

e Model the corruption process explicitly and
correct the solution.

Reliable ML in unexpected situations:

e Consider worst-case robustness,

e Include human support.
Exploring somewhere in the middle would
be practically useful and important.

e Partial knowledge of the corruption process.

36



Challenges in Reliable ML %/

In reliable ML research, the choice of
performance metrics is crucial.

e Simply improving the accuracy is not the goal.
Since humans use ML systems, performance
metrics should reflect human cognitive bias.

e EX: in image evaluation, MSE is not natural,
but we care edges, texture, faces, etc.

“Designing” appropriate performance metrics
IS an important challenge.



Past and Future of Al Research 38

Logical Al Neuro-inspired Al
e 1960’s: Inference and e 1960’s: Single-layer
search perceptrons
e 1980’'s: Expert systems e 1990’'s: Multi-layer
and knowledge bases perceptrons

Statistical ML based Al

e 2000’s: Frequentist statistics, convex
optimization, Bayesian statistics

2010’s: Deep '

Future Al
Human-like Al? Human-inclusive Al?



