Sep. 22, 2020

Robust Machine Learning for Reliable Deployment

Masashi Sugiyama

RIKEN Center for Advanced Intelligence Project/ The University of Tokyo

http://www.ms.k.u-tokyo.ac.jp/sugi/

About Myself

My jobs:

- Director: RIKEN AIP
- Professor: University of Tokyo
- Consultant: several local startups

Interests: Machine learning (ML)

- Weakly-supervised learning,
- Robust learning,
- Transfer learning,
- Density ratio estimation,
- Reinforcement learning,
- Variational inference...

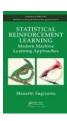
Academic activities:

 PC Chairs for NeurIPS2015, AISTATS2019, ACML2010/2020...

Sugiyama & Kawanabe, Machine Learning in Non-Stationary Environments, MIT Press, 2012

Sugiyama, Suzuki & Kanamori, Density Ratio Estimation in Machine Learning, Cambridge University Press, 2012

Sugiyama, Statistical Reinforcement Learning, Chapman and Hall/CRC, 2015



ESTIMATION IN MACHINE

Sugiyama, Introduction to Statistical Machine Learning, Morgan Kaufmann, 2015

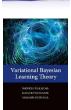
EXTERICAL MACHINE LEARNING MACHINE MAC

Cichocki, Phan, Zhao, Lee, Oseledets, Sugiyama & Mandic, Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations, Now, 2017

Nakajima, Watanabe & Sugiyama, Variational

Press, 2019

Bayesian Learning Theory, Cambridge University



³ Advanced Intelligence Project (AIP)

- 10-year national project in Japan (2016-2025):
- Develop next-generation AI technology (learning and optimization theory, etc.)
- Accelerate scientific research (material, cancer, stem cells, genomics, etc.)
- Solve socially critical problems (natural disaster, elderly healthcare, etc.)
- Study of ethical, legal and social issues of Al (ethical guideline, privacy protection, etc.)
- Human resource development (150+ researchers, 200+ students, 150+ interns, 300+ visiting scientists, 40+ industry projects)

Contents

- Trend in ML Research
 Debugt Mechine Learning
- 2. Robust Machine Learning
 - A) Noisy label learning
 - B) Weakly supervised learning
 - c) Bias in training data
 - D) Noise in test input
- 3. Future ML Research

ML Conferences

ICML: International Conference on Machine Learning (since 1980)

- Conference on learning from data.
- Top statistical ML conference since around 2000.

NeurIPS: Neural Information Processing Systems (since 1987)

- Originally neuro-inspired AI conference.
- Top statistical ML conference since around 2000.
- Neuro/cognitive science papers are also accepted.

Conference Statistics

Rapid increase in size:

ICML	2013	2014	2015	2016	2017	2018	2019	2020
Participants	900	1200	1600	3000	+ 2400	5000	6200	???
Submitted papers	1204	1238	1037	1327	1701	2473	3424	4990
Accepted papers	283	310	270	322	433	618	773	1088
NeurIPS	2013	2014	2015	2016	2017	2018	2019	202
Participants	1200	2400	3800	6000+	7500+	8000+	13000+	· ???
Submitted papers	1420	1678	1838	2500	3240	4856	6743	9467
Accepted papers	360	414	403	568	678	1011	1428	???

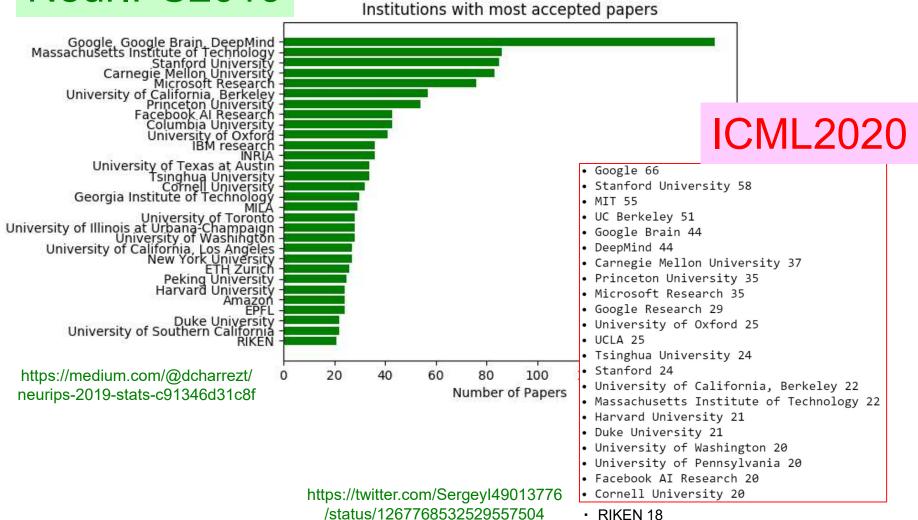
Company sponsoring is very active:

- Around 2000: US-based IT giants
- Around 2010: Worldwide IT giants
- Recently: Diverse companies from startups to giants and from IT to various non-IT

Recent Trends

North-American companies and universities dominate.

NeurIPS2019



NeurIPS2015 vs. 2019

2015: ML technology was the main concern.

- Futuristic technologies such as AlphaGo, autonomous driving cars, and chat robots emerged.
- Expectation for more advanced ML technologies.
- US-based companies dominated AI business.
- 2019: Social impact of ML is a serious concern.
 - Social issues: privacy, fairness, explanability,...
 - ML-driven science: chemistry, biology, medicine,...
 - US and Chinese companies are competing.
 - Minority support: Women, Black, LatinX, Queer,...

Contents

- Trend in ML Research
 Robust Machine Learning

 A) Noisy label learning
 B) Weakly supervised learning
 C) Bias in training data
 D) Noise in test input
- 3. Future ML Research

Today's Topic: Robust Machine Learning

- In real-world applications, it becomes increasingly important to consider robustness:
 - Noise: sensor error, human error
 - Insufficient information: weak supervision
 - Bias: sample selection bias, changing environments
 - Attack: adversarial noise, distribution shift
- In this lecture, I will give an overview of our recent advances in robust machine learning.

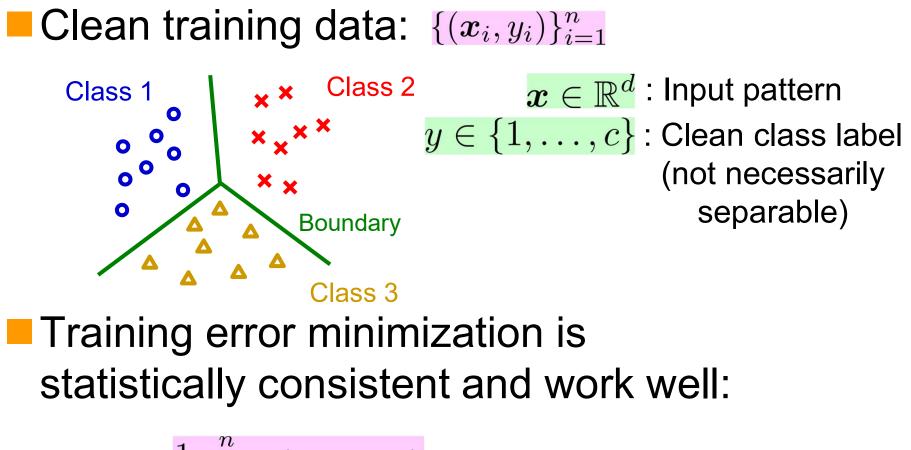
http://www.ms.k.u-tokyo.ac.jp/sugi/publications.html

Contents

- Trend in ML Research
 Robust Machine Learning

 A) Noisy label learning
 B) Weakly supervised learning
 C) Bias in training data
 D) Noise in test input
- 3. Future ML Research

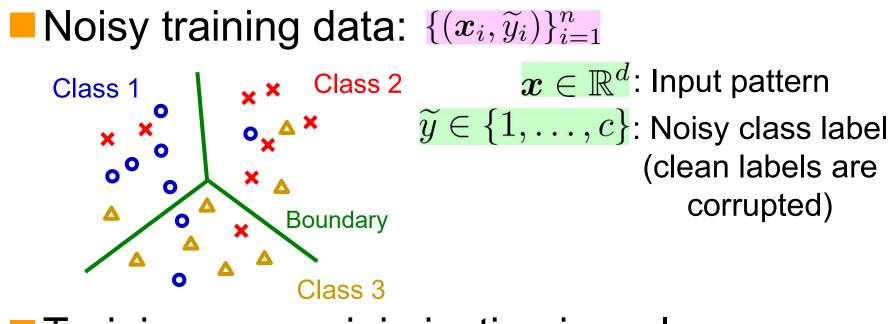
Ordinary Classification



$$rac{1}{n}\sum_{i=1}^n\ell\Big(y_i,oldsymbol{g}(oldsymbol{x}_i)\Big)$$

 $oldsymbol{g}(oldsymbol{x}) \in \mathbb{R}^c$: Classifier

Noisy Classification



Training error minimization is no longer consistent and does not work well:

$$rac{1}{n}\sum_{i=1}^n \ell\Bigl(\widetilde{y}_i, oldsymbol{g}(oldsymbol{x}_i)\Bigr) \qquad oldsymbol{g}(oldsymbol{x}) \in \mathbb{R}^c$$
: Classifier

Standard Approaches

- Unsupervised outlier removal:
 - Substantially difficult
- Robust loss, regularization:
 - Not robust enough
- We want to go beyond the limitations of existing approaches!
 - Noise transition correction
 - Noiseless sample selection
 - Model capacity control

Noise Transition Correction

Noise transition matrix T:

• Flipping probability from y to \widetilde{y} . $\boldsymbol{T}^{ op}=$

Major approaches: Patrini et al. (CVPR2017)

- Loss correction by T^{-1} to eliminate noise.
- Classifier correction by $m{T}$ to simulate noise.
- We want to estimate T only from noisy data:
 - Use human cognition as a "mask" for T.
 - Han, Yao, Niu, Zhou, Tsang, Zhang & Sugiyama (NeurIPS2018)
 - ullet Learn T and a classifier simultaneously.

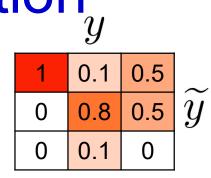
Xia, Liu, Wang, Han, Gong, Niu & Sugiyama (NeurIPS2019)

ullet Decompose T into simpler components.

Yao, Liu, Han, Gong, Deng, Niu, Sugiyama & Tao (arXiv2020)

• Extension to input-dependent noise $oldsymbol{T}(oldsymbol{x})$.

Xia, Liu, Han, Wang, Gong, Liu, Niu, Tao & Sugiyama (arXiv2020)



Co-teaching

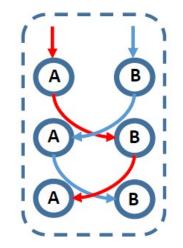
Memorization of neural nets:

Arpit et al. (ICML2017) Zhang et al. (ICLR2017)

- Stochastic gradient descent fits clean data faster.
- However, naïve early stopping does not work well.
- "Co-teaching" between two neural nets:

• Teach small-loss data each other. Han, Yao, Yu, Niu, Xu, Hu, Tsang & Sugiyama (NeurIPS2018)

- Teach only disagreed data. Yu, Han, Yao, Niu, Tsang & Sugiyama (ICML2019)
- Gradient ascent for large-loss data.
 Han, Niu, Yu, Yao, Xu, Tsang & Sugiyama (ICML2020)



No theory but very robust in experiments:

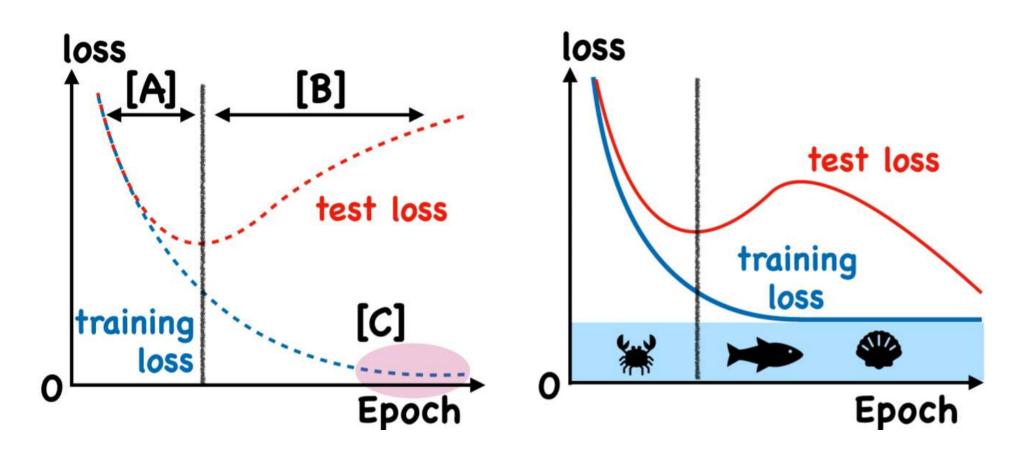
• Works well even if 50% labels are randomly flipped.

Flooding

Neural nets tend to overfit.

"Flooding" the training error prevents overfitting.

Ishida, Yamane, Sakai, Niu & Sugiyama (ICML2020)



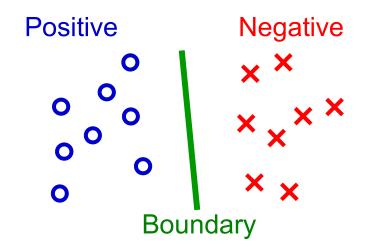
Contents

- Trend in ML Research
 Robust Machine Learning

 A) Noisy label learning
 B) Weakly supervised learning
 C) Bias in training data
 - D) Noise in test input
- 3. Future ML Research

Weakly Supervised Learning ¹⁹

- Ordinary supervised learning requires fully labeled data (input-output pairs).
- But collecting fully labeled data can be expensive in practice.
- Can we utilize "weakly" labeled data?
 - No negative data
 - Positive confidence data
 - Similar/dissimilar data
 - Complementary data
 - Partial-label data



P: Positive, N: Negative, U: Unlabeled

PU Classification

Only positive and unlabeled data is available; negative data is completely missing:

- Click vs. non-click
- Friend vs. non-friend Unlabeled (mixture of positives and negatives) П Positive Π

From PU data, PN classifiers are trainable!

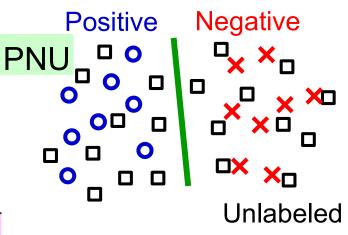
du Plessis, Niu & Sugiyama (NIPS2014, ICML2015) Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016) Kiryo, du Plessis, Niu & Sugiyama (NIPS2017) Hsieh, Niu & Sugiyama (ICML2019)

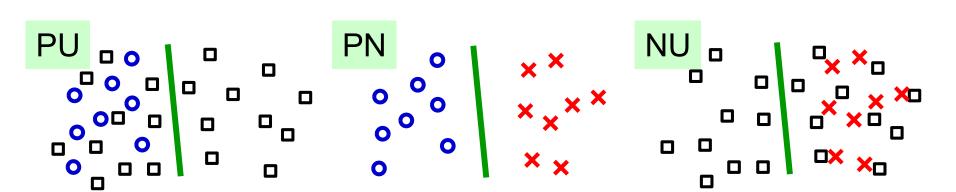
PNU Classification

(Semi-Supervised Classification)

Sakai, du Plessis, Niu & Sugiyama (ICML2017) Sakai, Niu & Sugiyama (MLJ2018)

- Let's decompose PNU into PU, PN, and NU:
 - Each is solvable.
 - Let's combine them!
- Without cluster assumptions, PN classifiers are trainable!



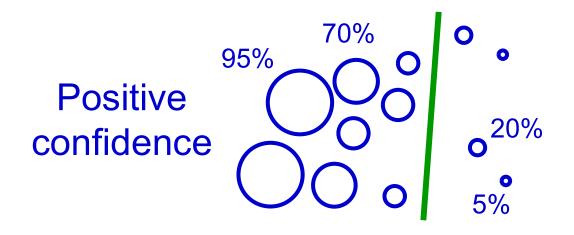


Pconf Classification

Ishida, Niu & Sugiyama (NeurIPS2018)

Only P data is available, not U data:

- Data from rival companies cannot be obtained.
- Only positive results are reported (publication bias).
- "Only-P learning" is unsupervised.
- From Positive-confidence data, PN classifiers are trainable!



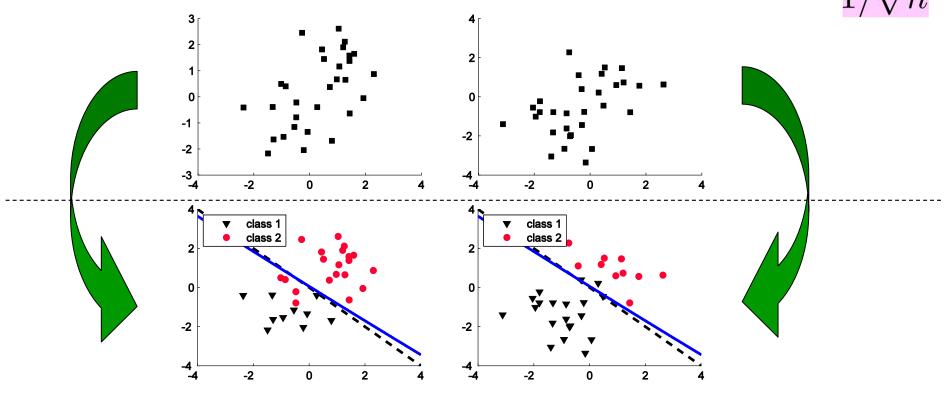
UU Classification

du Plessis, Niu & Sugiyama (TAAI2013) Lu, Niu, Menon & Sugiyama (ICLR2019) Charoenphakdee, Lee & Sugiyama (ICML2019) Lu, Zhang, Niu & Sugiyama (AISTATS2020)

23

From two sets of unlabeled data with different

class priors, PN classifiers are trainable!



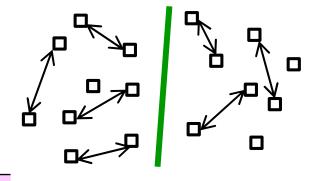
SU Classification

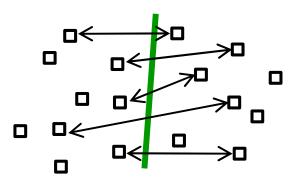
Bao, Niu & Sugiyama (ICML2018)

Delicate classification (money, religion...):

- Highly hesitant to directly answer questions.
- Less reluctant to just say "same as him/her".
- From similar data pairs and unlabeled data, PN classifiers are trainable!
- Learning from dissimilar $1/\sqrt{n}$ data pairs is also possible.
 - SDU classification is also possible.

Shimada, Bao, Sato & Sugiyama (arXiv2019) Dan, Bao & Sugiyama (arXiv2020)





Complementary Classification ²⁵

Complementary label:

a class the pattern does not belong to.

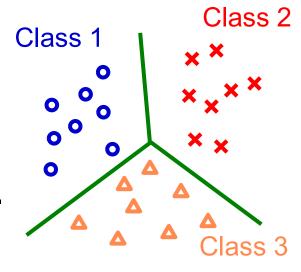
- E.g., "not class 1".
- Cheaper than ordinary labels.
- Classifiers can be trained only from complementary labels.
 - Unbiased risk estimation

• Multiple complementary labels

Feng, Kaneko, Han, Niu, An & Sugiyama (ICML2020)

Beyond unbiased risk estimation

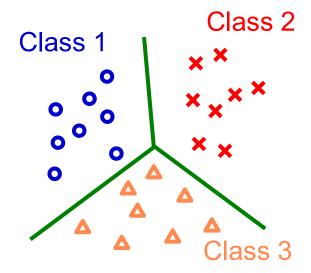
Chou, Niu, Lin & Sugiyama (ICML2020)



Partial-Label Classification

Partial label: Nguyen and Caruana (KDD2008) a subset of labels containing the true one

- "Either 1 or 2"
- Cheaper than ordinary labels
- Classifiers can be trained only from partial labels. $1/\sqrt{n}$



- Progressive identification of correct labels. Lv, Xu, Feng, Niu, Geng & Sugiyama (ICML2020)
- Explicit modeling of partial label generation. Feng, Lv, Han, Xu, Niu, Geng, An & Sugiyama (submitted)

Contents

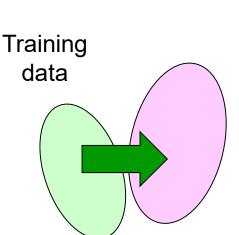
- Trend in ML Research
 Robust Machine Learning

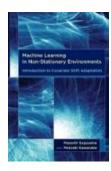
 A) Noisy label learning
 B) Weakly supervised learning
 - c) Bias in training data
 - D) Noise in test input
- 3. Future ML Research

Bias in Training Data

Quiñonero-Candela, Sugiyama, Schwaighofer & Lawrence (MIT Press 2009) Training and test data often have different distributions, due to

- changing environments,
- sample selection bias.
- Transfer learning:
 - Match the distributions so that training data resemble test data.





Sugiyama & Kawanabe, Machine Learning in Non-Stationary Environments, MIT Press, 2012 Test data

Unsupervised Transfer Learning ²⁹

Given training input-output and test input, match the training and test distributions:

- Better discrepancy measures for matching: Kuroki, Charoenphakdee, Bao, Honda, Sato & Sugiyama (AAAI2019) Lee, Charoenphakdee, Kuroki & Sugiyama (arXiv2019)
- Handling noisy labels in the source domain: Liu, Lu, Han, Niu, Zhang & Sugiyama (arXiv2019)
- Transferring data generation mechanism:

Teshima, Sato & Sugiyama (ICML2020)

• Simultaneous learning of a classifier and importance weights:

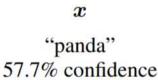
Zhang, Yamane, Lu & Sugiyama (submitted) Fang, Lu, Niu & Sugiyama (arXiv2020)

Contents

- Trend in ML Research
 Robust Machine Learning

 A) Noisy label learning
 B) Weakly supervised learning
 C) Bias in training data
 D) Noise in test input
- 3. Future ML Research

Noise in Test Input ³¹ Neural nets are vulnerable to small perturbations in test input. Goodfellow et al. (ICLR2015)




```
\operatorname{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))
```

"nematode" 8.2% confidence

=

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon" 99.3 % confidence

We want to be robust to such perturbations:

- Defense to pointwise adversarial attack.
- Robust to adversarial distribution shift.
- Rejection of adversarial data.

Defense to Pointwise Attack ³²

Stabilize output of the neural net:

$$\forall \epsilon, \left(\|\epsilon\|_2 < c \implies t_X = \operatorname*{argmax}_i \left\{ F\left(X + \epsilon\right)_i \right\} \right)$$

Lipchitz-margin training:

Tsuzuku, Sato & Sugiyama (NeurIPS2018)

 Compute the Lipchitz constant for each layer and for the entire network:

 $||F(X) - F(X + \epsilon)||_2 \le L_F ||\epsilon||_2$

 Train the neural net to have large prediction margins:

 $\forall i \neq t_X, (F_{t_X} \ge F_i + \sqrt{2}cL_F)$

• Robustness is theoretically guaranteed.

33 **Distributionally Robust Learning** Consider the worst-case test distribution when only training $\min_{\theta} \sup_{q \in \mathcal{Q}_p} \mathbb{E}_{q(x,y)}[\ell(g_{\theta}(x), y)]$ input-output is given: However, a naïve $\mathcal{Q}_p = \{ q \mid \mathcal{D}_f(q \| p) \le \delta \}$ "f-divergence ball" minimax approach [Bagnell 2005, Ben-Tal+ 2013, Namkoong+ 2016, 2017] does not work well:

- Proved to be non-robust for classification. Hu, Niu, Sato & Sugiyama (ICML2018)
- Elucidated the condition for loss calibration.

Bao, Scott & Sugiyama (COLT2020)

• New formulation for being not too conservative.

Zhang, Xu, Han, Niu, Cui, Sugiyama & Kankanhalli (ICML2020)

Classification with Reject Option ³⁴

Ni, Charoenphakdee, Honda & Sugiyama (NeurIPS2019)

In severe applications, better to reject difficult test inputs and ask human to predict instead.

Approach 1: Reject low-confidence prediction

- Existing methods have limitation in loss functions (e.g., logistic loss), resulting in weak performance.
- New rejection criteria for general losses with theoretical convergence guarantee.

Approach 2: Train the classifier and rejector

- Existing methods only focus on binary problems.
- This approach was proved not converge to the optimal solution generally in multi-class cases.

Contents

- Trend in ML Research
 Robust Machine Learning

 A) Noisy label learning
 B) Weakly supervised learning
 C) Bias in training data
 D) Noise in test input
- 3. Future ML Research

Summary of Robust ML

- Nowadays, ML systems are deployed in various societal problems, where reliability is extremely important:
 - Robustness to expectable situations:

Model the corruption process explicitly and correct the solution.

• Robustness to unexpected situations:

Consider worst-case robustness,

Include human support.

• Somewhere in the middle would be practically more important.

Summary of General Al

Many companies are interested in AI:

- IT, finance, manufacturing, material, IT, education, medicine, electricity,...
- Al-driven science is becoming norm:
 - Physics, astronomy, chemistry, material, medicine, biology, informatics, control,...
- Social impact of AI is a serious concern:
 - Privacy, fairness, explanability,...

Future of ML Research

- Current ML achieves human-level performance for elementary tasks such as image understanding, speech recognition, and language translation:
 - Many standard jobs may be replaced by AI.
 - However, highly creative jobs and low-level jobs will never be taken over by AI.

There are still challenges in ML research:

 ML from less data, further robustness, time-series analysis, automatic ML, sequential decision making, life-long learning,...

Past and Future of AI Research ³⁹

Logical Al

- 1960's: Inference and search
- 1980's: Expert systems and knowledge bases

Neuro-inspired Al

- 1960's: Single-layer perceptrons
- 1990's: Multi-layer perceptrons

Statistical ML based AI

- 2000's: Frequentist statistics, convex optimization, Bayesian statistics
- 2010's: Deep learning

Future AI Need young talents!