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2About Myself
Affiliations:
 Director: RIKEN AIP
 Professor: University of Tokyo
 Consultant: several local startups
Research interests:
 Theory and algorithms of ML
 Real-world applications with partners

(signal, image, language, brain, cars,
robots, optics, ads, medicine, biology...)

Goal:
 Develop practically useful algorithms

that have theoretical support
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What Is This Tutorial about?
Machine learning from big labeled data

is highly successful.
 Speech recognition, image understanding,

natural language translation, recommendation…

However, there are various applications
where massive labeled data is not available.
 Medicine, disaster, robots, brain, …
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What Is This Tutorial about?

There are many approaches to coping with 
the label-cost problem:
 Improve data collection (e.g., crowdsourcing)
 Use a simulator to generate pseudo data
 Use domain knowledge (i.e., engineering)
 Use cheap but weak data (e.g., unlabeled)

 I introduce our recent advances in 
classification from weak supervision.
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Our Target Problem:
Binary Supervised Classification

Larger amount of labeled data yields 
better classification accuracy.
Estimation error of the boundary

decreases in order         .
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Unsupervised Classification 6

Gathering labeled data is costly. Let’s use 
unlabeled data that are often cheap to collect:

 Unsupervised classification is typically clustering.
 This works well only when each cluster 

corresponds to a class.

Unlabeled



Semi-Supervised Classification

Use a large number of unlabeled samples and 
a small number of labeled samples.
Find a boundary along the cluster structure

induced by unlabeled samples:
 Sometimes very useful.
 But not that different from unsupervised classification.
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This Tutorial in a Nutshell

1. Background
2. PN Classification
3. PU Classification
4. PNU Classification
5. Pconf Classification
6. UU Classification
7. SU Classification
8. Comp Classification
9. Summary
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• P: Positive
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• U: Unlabeled
• Conf: Confidence
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Method 1: PU Classification 10

Only PU data is available; N data is missing:
 Click vs. non-click
 Friend vs. non-friend

From PU data, PN classifiers are trainable!

Positive

Unlabeled (mixture of
positives +1 and negatives)

du Plessis, Niu & Sugiyama (NIPS2014, ICML2015)
Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)

Kiryo, Niu, du Plessis & Sugiyama (NIPS2017)



Method 2: PNU Classification
(Semi-Supervised Classification)

11

Let’s decompose PNU into PU, PN, and NU:
 Each is solvable.
 Let’s combine them!

Without cluster assumptions,
PN classifiers are trainable!

PU NUPN

Sakai, du Plessis, Niu & Sugiyama (ICML2017)

Positive Negative

Unlabeled

PNU



Method 3: Pconf Classification

Only P data is available, not U data:
 Data from rival companies cannot be obtained.
 Only positive results are reported (publication bias).

“Only-P learning” is unsupervised.
From Pconf data, PN classifiers are trainable!
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Ishida, Niu & Sugiyama (NeurIPS2018)
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Method 4: UU Classification 13

From two sets of unlabeled data with different 
class priors, PN classifiers are trainable!
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Method 5: SU Classification

Delicate classification (money, religion…):
 Highly hesitant to directly answer questions.
 Less reluctant to just say “same as him/her”.

From SU data, PN classifiers are trainable!
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Bao, Niu & Sugiyama (ICML2018)



Method 6: Comp Classification

Labeling patterns in multi-class problems:
 Selecting a collect class from a long list of 

candidate classes is extremely painful.
Complementary labels:
 Specify a class that

a pattern does not belong to.
 This is much easier and

faster to perform!
From complementary labels,

classifiers are trainable!
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Ishida, Niu, Hu & Sugiyama (NIPS2017)
Ishida, Niu, Menon & Sugiyama (ICML2019)



Contents

1. Background
2. PN Classification
3. PU Classification
4. PNU Classification
5. Pconf Classification
6. UU Classification
7. SU Classification
8. Comp Classification
9. Summary
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PN Classification
(Ordinary Supervised Classification)
Labeled data:
 Input             :   -dimensional real vector
 Output                      : Binary class label
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Some Definitions
Classifier: 
 Label prediction by                          

(e.g., linear, additive, kernel, deep models).
Margin: 


Classification is correct.


Classification is wrong.

Zero-one loss:
 1 for correct prediction.
 0 for wrong prediction.
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Classification Error
and Empirical Approximation

Classification error (expected zero-one loss 
over all test data):

 Our goal: Find a minimizer of            .
But this is impossible since          is unknown: 
 Let’s use samples:

 Empirical approximation:

19

: Expectation

i.i.d.: Independent and identically distributed



Minimization of
Empirical Classification Error

However, minimization of            is NP-hard,
due to discrete nature of       :
 We may not be able to obtain

a global minimizer in practice.

Let’s use a smoother loss!
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Surrogate Loss
Let’s use a smoother loss as a surrogate:
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Zero-one
Hinge (SVM)
Ramp (Robust SVM)
Exponential (Boosting)
Logistic (Log. regression)

Many existing methods
can be accommodated

in this framework!



PN Empirical Risk Minimization
Classification risk for loss   :

Empirical risk:
 Expectation is approximated by sample average:

 Minimize it within a certain model class
(e.g., linear, additive, kernel, deep,…):
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Contents

1. Background
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PU Classification: Setup 24

Given: Positive and unlabeled samples

Goal: Obtain a PN classifier

Positive

Unlabeled (mixture of
positives and negatives)



PN Risk Decomposition
Risk of classifier    :

Since we do not have N data in the PU setting, 
the risk cannot be directly estimated.
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Risk for P data Risk for N data

: Class-prior probability
(assumed known; can be estimated)

Scott & Blanchard (AISTATS2009)
Blanchard, Lee & Scott (JMLR2010)

du Plessis, Niu & Sugiyama (IEICE2014, MLJ2017)
Ramaswamy, Scott & Tewari (ICML2016)



PU Risk Estimation

U-density is a mixture of P- and N-densities:
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PU Risk Estimation (cont.)

This allow us to eliminate the N-density:

 Unbiased risk estimation is possible from PU data,
just by replacing expectations by sample averages!

27

du Plessis, Niu & Sugiyama (ICML2015)



PU Empirical Risk Minimization

Replacing expectations by sample averages 
gives an empirical risk:

Optimal convergence rate is attained:

28

: # of P, U samples

Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)



Theoretical Comparison with PN

Estimation error bounds for PU and PN:

Comparison: PU bound is smaller than PN if 

 PU can be better than PN, provided many PU data!
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Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)

: # of P, N, U samples



Further Correction

PU formulation:

 If                     ,                 .
 However, its PU empirical approximation can be 

negative due to “difference of approximations”.

 This problem is more critical for flexible models 
such as deep nets.

30

Risk for P data Risk for N data



Non-Negative PU Classification

We constrain the sample approximation term
to be non-negative through back-prop training:

Z

 Now the risk estimator is biased. Is it really good?
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Stochastic gradient iterations
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PU test

PN test

PU train

PN train

Overfitting

Empirical error
goes negative

Conv. net
Kiryo, Niu, du Plessis & Sugiyama (NIPS2017)



Theoretical Analysis

 is still consistent and its bias decreases 
exponentially:
 In practice, we can ignore the bias of           !

Mean-squared error of           is not more than
the original one.
 In practice,            is more reliable!

Risk of                    for linear models attains 
optimal convergence rate: 
 Learned function is optimal.

32
Kiryo, Niu, du Plessis & Sugiyama (NIPS2017)

: # of P, U samples



Experiments
With a large number of unlabeled data,

non-negative PU can even outperform PN!
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Plain PU test

PN test

Non-negative PU test

Plain PU train

PN train
Non-negative PU train

Stochastic gradient iterations
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 Binary CIFAR-10:
Positive (airplane, 
automobile, ship, 
truck)
Negative (bird, 
cat, deer, dog, 
frog, horse)

 13-layer CNN 
with ReLU



PU Classification: Summary 34

 Just separating P and U is biased.
 To be unbiased, use composite loss

for P data.

 Optimal convergence rate achieved.

 If                                ,
the same loss for P and U data.

 If                     ,
optimization becomes convex.

 For deep nets, roundup the
empirical false negative error to zero.

Squared

Margin

Double
hingeLogistic

Ramp

Margin

du Plessis, Niu & Sugiyama (ICML2015)

du Plessis, Niu & Sugiyama (NIPS2014)

Natarajan, Dhillon, Ravikumar & Tewari (NIPS2013)

Kiryo, Niu, du Plessis & Sugiyama (NIPS2017)

Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)
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PNU Classification: Setup 36

Given: Positive, negative & unlabeled samples

Goal: Obtain a PN classifier
 PNU classification is semi-supervised learning.

Unlabeled

Positive Negative



PNU Decomposition 37

Let’s decompose PNU into PU, PN, and NU:
 Each can be solved easily.
 Combine them!

Positive Negative

Unlabeled

PU NUPN

Sakai, du Plessis, Niu & Sugiyama (ICML2017)



How to Combine?
Natural choice: Combine PU & NU (symmetric).

Theoretical risk analysis:
 When PU<NU: PU<PN<NU or PN<PU<NU.
 When NU<PU: NU<PN<PU or PN<NU<PU.

PU+NU is not the best possible combination.
PU+PN & NU+PN are the best combinations.
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PU NU

Niu, du Plessis, Sakai, Ma
& Sugiyama (NIPS2016)



PN+PU & PN+NU Classification
Proposed method: Combine two best methods.

 PN+PU classification:

 PN+NU classification:

39

PU NUPN



Theoretical Analysis
Generalization error bound:

 Unlabeled data always helps
without cluster assumptions!

We use unlabeled data
for loss evaluation,
not for regularization (as manifold smoothing).
 Label information is extracted from unlabeled data!

40

: Empirical version of 

: # of P, N, U samples



Experiments

Proposed PN+PU & PN+NU works well!
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(Grandvalet & Bengio,
NIPS2004)

(Belkin et al.,
JMLR2006)

EntRegProposed

(Niu et al., 
ICML2013)

(Li et al., 
JMLR2013)5% t-test

Misclassification error rate: average (std)
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Pconf Classification: Setup

Given: Positive-confidence samples

 Positive patterns:
 Their confidence:

Goal: Obtain a PN classifier

43

Ishida, Niu & Sugiyama (NeurIPS2018)

Pconf

95%
70%

5%

20%



Pconf Risk Estimation
Classification risk:

Naïve “confidence-weighting” is not correct.

Right form is given by importance sampling:

resulting in an empirical risk:
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Theoretical Analysis

Estimation error:

Optimal parametric convergence rate
is attained!
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Experiments

Works better than naïve “weighted” baseline!
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Correct classification rate: average (std) 5% t-test
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UU Classification: Setup

Given: Two sets of unlabeled data

Assumption: Only class-priors are different

Goal: Obtain a PN classifier
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Optimal UU Classifier

Sign of the difference of class-posteriors:

Under uniform test class-prior,

Sign of     is unknown, but just knowing

still allows optimal separation!
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Boundary

du Plessis, Niu & Sugiyama (TAAI2013)



UU Risk Estimation
For
 uniform test class-prior:
 symmetric loss:

the classification risk can be expressed as

resulting an empirical risk (up to label flip):
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Nan, Niu, Menon & Sugiyama (ICLR2019)



Theoretical Analysis

Estimation error:

Optimal parametric convergence rate
is attained!
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Experiments 52

10% labels (pi=1/2)
100% labels (pi=1/2)

10% labels (pi=p)

UU is close
to PN oracle!
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SU Classification 54

Given: Similar and unlabeled samples

Goal: Obtain a PN classifier
This is a special case of UU classification:

Classification from dissimilar data
is also possible (DU, SD, SDU)!

Bao, Niu & Sugiyama (ICML2018)

Shimada, Bao, Sato & Sugiyama (arXiv2019)
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Multiclass Labeling is Costly
Labeling in multi-class classification:
 What is the robot in this image?

Selecting the correct class from a long list of
candidates is extremely time-consuming!
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1. Amazon Kiva
2. Aldebaran Nao
3. Softbank Pepper
4. Sony Aibo
5. iRobot Roomba

︙
83. Boston Dynamics Atlas

︙
100. Rethink Robotics Baxter

https://www.bostondynamics.com/atla



Complementary Classification

Given: Complementarily labeled data

 Pattern    does not belong to class                        .
Goal: Obtain a multiclass classifier
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Ishida, Niu, Hu & Sugiyama (NIPS2017)
Ishida, Niu, Menon & Sugiyama (ICML2019)

Class 1 Class 2

Boundary
Class c



Possible Approaches

Approach 1: Classification from partial labels

 Multiple candidate classes are provided for each    .
 Complementary labels are the extreme case of 

partial labels given to all       classes other than    .

Approach 2: Multi-label classification
 Each     can belong to multiple classes.
 Negative label for    and positives for the rest.

We want a more direct approach!
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Cour, Sapp & Taskar (JMLR2011)



Multi-Class Classification
 -class classifier:

 -class loss:
 One-versus-rest:

 Pairwise comparison: 

 -class classification risk:
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: one-vs-rest classifier for   



Complementary Risk Estimation

Risk can be equivalently expressed as

 Complementary loss:

Empirical risk estimation is possible from 
complementary data!
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Ishida, Niu, Menon & Sugiyama (ICML2019)



Theoretical Analysis

Estimation error:

Optimal parametric convergence rate
is attained!
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Ishida, Niu, Hu & Sugiyama (NIPS2017)



Experiments 62

5% t-testCorrect classification rate: average (std)

Proposed
method
works
well!

Proposed Partial-label Multi-label



Incorporating Ordinary Labels
Convert multiclass labeling into yes-no labeling:

Use both of ordinary and complementary labels!
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Is this Softbank Pepper?
Yes! (ordinary label)

Is this iRobot Roomba?
No! (complementary label)

http://www.softbank.jp/corp/group/
sbr/news/press/2014/20141029_01/ https://www.bostondynamics.com/atlas



Experiments 64

5% t-test

Incorpo-
rating 

comple-
mentary
labels

Improves 
the 

accuracy!
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Model vs. Learning Methods 66

Linear Kernel Deep …

Model

Additive

Supervised

Unsupervised

…

Reinforcement

Learning
Method

Semi-supervised

Weakly supervised

Any learning method and 
model can be combined!

Theory Experiments



Learning from Weak Supervision67
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P, N, U, Pconf, Nconf,
S, D, Comp…

Any data can be
systematically

combined!

Sugiyama, Niu, Sakai & Ishida,
Machine Learning from Weak Supervision
MIT Press, 2020 (?)


