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Abstract

We consider the learning problem under an online Markov decision process (MDP),
which is aimed at learning the time-dependent decision-making policy of an agent
that minimizes the regret — the difference from the best fixed policy. The difficulty
of online MDP learning is that the reward function changes over time. In this paper,
we show that a simple online policy gradient algorithm achieves regret O(

√
T ) for T

steps under a certain concavity assumption and O(log T ) under a strong concavity
assumption. To the best of our knowledge, this is the first work to give an online
MDP algorithm that can handle continuous state, action, and parameter spaces with
guarantee. We also illustrate the behavior of the proposed online policy gradient
method through experiments.

Keywords Markov decision process, online learning, reinforcement learning

1 Introduction

The Markov decision process (MDP) is a popular framework of reinforcement learning
for sequential decision making (Sutton and Barto, 1998), where an agent takes an action
depending on the current state, moves to the next state, receives a reward based on the
last transition, and this process is repeated T times. The goal is to find an optimal

∗This is an extended version of our earlier work presented at ECML/PKDD 2014 (Ma et al., 2014).
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decision-making policy (i.e., a conditional probability density of action given state) that
maximizes the expected sum of rewards over T steps.

In the standard MDP formulation, the reward function is fixed over iterations. How-
ever, this assumption is often violated in reality. In this paper, we consider an online
MDP scenario where the reward function is allowed to change over time. Such an online
MDP problem is an extension of both online decision making and reinforcement learning
(Yu et al., 2009):

• In an online decision making problem, the agent needs to make a decision at each
time step without the knowledge about the future environment (Kalai and Vempala,
2005). A certain cost function will be observed only after the decision is made at
each time step, and the goal is to minimize the regret against the best single decision.
There is no assumption on the dynamics in the online decision making problem, and
thus the decision can switch from one to another abruptly.

• In reinforcement learning, the dynamics are assumed to be Markovian. The reward
function and transition dynamics are fixed but unknown to the agent, and thus the
estimated reward function and transition function will converge to the true ones
if sufficient samples are observed. The goal is to find the optimal policy which
maximizes the cumulative reward without full information about the environment.

The goal of the online MDP problem is to find the best time-dependent policy that
minimizes the regret, the difference from the best fixed policy. We expect the regret to be
o(T ), by which the difference from the best fixed policy vanishes as T goes to infinity.

The MDP expert algorithm (MDP-E), which chooses the current best action at each
state, was shown to achieve regret O(

√
T log |A|) (Even-Dar et al., 2004, 2009), where

|A| denotes the cardinality of the action space. Although this bound does not explicitly
depend on the cardinality of the state space, the algorithm itself needs an expert algorithm
for each state, and thus large state space may not be handled in practice. Another
algorithm called the lazy follow-the-perturbed-leader (lazy-FPL) divides the time steps into
short periods and policies are updated only at the end of each period using the average
reward function (Yu et al., 2009). This lazy-FPL algorithm was shown to have regret
O(T 3/4+ϵ log T (|S|+|A|)|A|2) for ϵ ∈ (0, 1/3). The online MDP algorithm called the online
relative entropy policy search is considered in Zimin and Neu (2013), which was shown to
have regret O(L2

√
T log(|S||A|/L)) for state space with L-layered structure. However,

the regret bounds of these algorithms explicitly depend on |S| and |A|, and the algorithms
cannot be directly implemented for problems with continuous state and action spaces. The
online algorithm for Markov decision processes (Abbasi-Yadkori et al., 2013) was shown
to have regret O(

√
T log |Π|+ log |Π|) with changing transition probability distributions,

where |Π| is the cardinality of the policy set. Although sub-linear bounds still hold for
continuous policy spaces, the algorithm cannot be used with infinite policy candidates
directly. The online MDP problem is formulated as an online linear optimization problem
in Dick et al. (2014). By introducing the stationary occupation measures, the mirror
descent with approximate projections was shown to have regret O(

√
T ). However, the
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algorithm assumes that both the state and action spaces are finite. Yu et al. (2009),
Abbasi-Yadkori et al. (2013), and Neu et al. (2012) considered even more challenging
online MDP problems under unknown or changing transition dynamics.

In practice, full information of the reward function may be hard to acquire, but only
the value of the reward function for the current state and action is available. Such a setup,
called the bandit feedback scenario, has attracted a great deal of attention recently. An
extension of the lazy-FPL method to the bandit feedback scenario, called the exploratory-
FPL algorithm (Yu et al., 2009), was shown to have regret o(T ). Neu et al. (2010b)
proposed a method based on MDP-E that uses an unbiased estimator of the reward
function, and showed that its regret is O(T 2/3(lnT )1/3 ln |A|). Neu et al. (2014) further
improved the regret bound to O(

√
T lnT ln |A|). However, this algorithm cannot be used

in continuous state and action problems.
In this paper, we propose a simple online policy gradient (OPG) algorithm that can

be implemented in a straightforward manner for problems with continuous state and
action spaces, which could be seen as an extension of Dick et al. (2014)1. Under the
assumption that the expected average reward function is concave, we prove that the re-
gret of our OPG algorithm with respect to a compact and convex parametric policies
set is O(

√
T (F 2 + N)), which is independent of the cardinality of the state and action

spaces, but is dependent on the diameter F and dimension N of the parameter space.
Furthermore, regret O(N2 log T ) is also proved under a strong concavity assumption on
the expected average reward function. We also extend the proposed algorithm to a bandit
feedback scenario, and theoretically prove that the regret bound of the proposed algorithm
is O(

√
T ) with the concavity assumption. We numerically illustrate the superior behav-

ior of the proposed OPG algorithm in continuous problems over MDP-E with different
discretization schemes.

The remainder of this paper is organized as follows: In Section 2, we give a formal
definition of the online MDP problem. Our proposed algorithm is given in Section 3,
and regret analyses in full information and the bandit scenario are given in Section 4 and
Section 5, with proofs presented in Appendix.

2 Online Markov decision process

In this section, we formulate the problem of online MDP learning.
An online MDP is specified by

• State space S ⊆ RDs , which could be either continuous or discrete.

• Action space A ⊆ RDa , which contains all possible actions a, A could be either
continuous or discrete.

1Our OPG algorithm can also be seen as an extension of the online gradient descent algorithm (Zinke-
vich, 2003) to online MDP problems.
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• Transition density p(s′|s,a), which represents the conditional probability density of
next state s′ given current state s and action a to be taken. We assume that the
transition density is fully available to the agent.

• Reward function sequence r1, r2, . . . , rT , which is pre-fixed real-valued function se-
quence and will not change no matter what action is taken.

An online MDP algorithm produces a stochastic time-dependent policy, which is a con-
ditional probability density of action a to be taken given current state s at each time
step. In this paper, we suppose that the online MDP algorithm A outputs parameter
θt = [θ

(1)
t , . . . , θ

(N)
t ]⊤ ∈ Θ ⊂ RN of stochastic policy π(a|s;θt) at each time step t, where

Θ is a convex and compact parameter set. Thus, algorithm A gives a sequence of policies:

π(a|s;θ1), π(a|s;θ2), . . . , π(a|s;θT ).

Ideally, the objective is to maximize the expected cumulative reward over T time steps
of algorithm A, which can be denoted as

RA(T ) = E

[
T∑
t=1

rt(st,at)
∣∣∣A] . (1)

In above definition, E[·|A] denotes the expectation over the joint state-action distribution
pt(s,a|A) given the algorithm A has been followed at each time step. The state-action
distribution induced by A and the transition density at time step t can be expressed as

pt(s,a|A) = dA,t(s) · π(a|s;θt),

where the state distribution induced by A at time step t is defined as

dA,t(s) = p(st = s|A).

However, maximizing the objective defined in Eq.(1) is not possible, since we cannot
observe all T reward functions during the process of online decision making problem.
Here, we instead design algorithm A that minimizes the regret against the baseline which
is the best parametric offline policy defined by

LA(T ) = Rθ∗(T )−RA(T ).

In above definition of the regret, we suppose that there exists θ∗ such that policy π(a|s;θ∗)
maximizes the expected cumulative rewards:

Rθ∗(T ) = E

[
T∑
t=1

rt(st,at)
∣∣∣θ∗

]
.

The best offline parameter θ∗ is given by

θ∗ = argmax
θ∈Θ

E

[
T∑
t=1

rt(st,at)
∣∣∣θ] , (2)
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where E[·|θ] denotes the expectation over the state-action distribution given the policy
π(a|s;θ) has been followed at each time step.

In this paper, we assume that all candidate policies are parameterized by the parameter
θ, which is different from related works with finite states and actions (Even-Dar et al.,
2004, 2009; Neu et al., 2010b; Yu et al., 2009; Dick et al., 2014). For continuous problems,
it is a common choice to use a parametric policy (e.g., the Gaussian policy) which was
demonstrated to work well (Sutton and Barto, 1998; Peters and Schaal, 2006). For this
reason, the best offline policy defined in Eq.(2) is a suitable baseline given that the best
policy with respect to the class of all Markovian policies is not a suitable baseline for
continuous problems. If the regret is bounded by a sub-linear function with respect to T ,
the algorithm A is shown to be asymptotically as powerful as the best offline policy.

3 Online policy gradient (OPG) algorithm

In this section, we introduce an online policy gradient algorithm for solving the online
MDP problem.

3.1 Algorithm

Differently from the previous works (Even-Dar et al., 2004, 2009; Neu et al., 2010b), we
do not use the expert algorithm in our method, because it is not suitable for handling
continuous state and action problems. Instead, we consider a gradient-based algorithm
which updates the parameter of policy θ along the gradient direction of the expected
average reward function at each time step t.

More specifically, we assume that all the MDPs are ergodic whose state transitions are
induced by the transition density p(s′|s,a) and the parametric policy π(a|s;θ),∀θ ∈ Θ.
Then every policy π(a|s;θ) has a unique stationary state distribution dθ(s):

dθ(s) = lim
t→∞

p(st = s|θ).

Note that the stationary state distribution satisfies

dθ(s
′) =

∫
s∈S

dθ(s)

∫
a∈A

π(a|s;θ)p(s′|s,a)dads.

Let ρt(θ) be the expected average reward function of policy π(a|s;θ) at time step t:

ρt(θ) =Es∼dθ(s),a∼π(a|s;θ) [rt(s,a)]

=

∫
s∈S

dθ(s)

∫
a∈A

rt(s,a)π(a|s;θ)dads, (3)

where the expectation is taken over the stationary state-action distribution of policy
π(a|s;θ).

Then our online policy gradient (OPG) algorithm is given as follows:
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• Initialize policy parameter θ1.

• for t = 1 to ∞

1. Observe current state st = s.

2. Take action at = a according to current policy π(a|s;θt).

3. Observe reward rt from the environment.

4. Move to next state st+1.

5. Update the policy parameter as

θt+1 = P (θt + ηt∇θρt(θt)) , (4)

where P (ϑ) = argminθ∈Θ ∥ϑ − θ∥ is the projection function on parameter
space, ∥ · ∥ denotes the Euclidean norm. ηt =

1√
t
is the step size, and ∇θρt(θ)

is the gradient of ρt(θ):

∇θρt(θ) ≡
[
∂ρt(θ)

∂θ(1)
, . . . ,

∂ρt(θ)

∂θ(N)

]⊤
=

∫
s∈S

∫
a∈A

dθ(s)π(a|s;θ)(∇θ ln dθ(s) +∇θ ln π(a|s;θ))

× rt(s,a)dads. (5)

In Eq.(5), the facts ∇θ ln dθ(s) =
∇θdθ(s)
dθ(s)

and ∇θ ln π(a|s;θ) = ∇θπ(a|s;θ)
π(a|s;θ) are used. Here

we assume that ∇θdθ(s) and ∇θπ(a|s;θ) are differentiable with respect to the policy
parameter θ. If it is time-consuming to obtain the exact stationary state distribution,
gradients estimated by a reinforcement learning algorithm may be used instead in practice.
Since the transition and reward functions are known to the agent, it is straightforward
to estimate the gradient efficiently by using a reinforcement learning technique (e.g.,
REINFORCE and policy gradients with parameter based exploration) (Sutton and Barto,
1998; Williams, 1992; Sehnke et al., 2010). Furthermore, some reinforcement learning
techniques provided a convergence guarantee for the gradient estimation. Especially in
the REINFORCE algorithm, the gradient is approximated by the empirical average value
∇θρ̄t(θ) after sufficient trajectories are collected as

∇θρ̄t(θ) =
1

|H|

|H|∑
n=1

L∑
i=1

∇θ log π(ai|si;θ)R(hn),

where hn is a roll-out sample denoted as hn = [s1,a1, . . . , sL,aL], H = {h1,h2, . . . ,h|H|}
is the set of collected trajectories with length L, and R(hn) is the average reward obtained
by trajectory hn. With theoretical guarantee, the REINFORCE algorithm has been shown
to converge to the true gradient as |H| and L tend to infinity. In the following analysis,
we ignore the approximation error since it could be arbitrarily small by collecting a large
enough number of samples.
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When the reward function does not changed over time, the OPG algorithm is reduced
to the ordinary policy gradient algorithm (Williams, 1992), which is an efficient and
natural algorithm for continuous state and action MDPs. The OPG algorithm can also
be regarded as an extension of the online gradient descend algorithm (Zinkevich, 2003),

which maximizes
∑T

t=1 ρt(θt), not E
[∑T

t=1 rt(st,at)|A
]
. As we showed in the definition

of ρt(θt), the stationary state distribution dθt(s) of policy π(a|s;θt) is used, which is

different from the state distribution dA,t(s) used in E
[∑T

t=1 rt(st,at)|A
]
. As we will

prove in Section 4, the regret bound of the OPG algorithm is O(
√
T ) under a certain

concavity assumption and O(log T ) under a strong concavity assumption on the expected
average reward function. Unlike previous works (Even-Dar et al., 2004, 2009; Yu et al.,
2009; Neu et al., 2010b), these bounds do not depend on the cardinality of state and action
spaces since a parameterized policy space is considered. Therefore, the OPG algorithm
would be suitable for handling continuous state and action online MDPs.

3.2 Bandit feedback

Here we extend the OPG algorithm to the bandit feedback scenario, where the entire
reward function is not available, but only the value of the reward function for the current
state and action is observed:

s1,a1, r1(s1,a1), . . . , st,at, rt(st,at).

Due to lack of the entire reward function, we replace reward function rt in the OPG
algorithm with a random reward function given by

r̂t(s,a) =
rt(s,a)

dA,t(s)π(a|s;θt)
δ(st = s,at = a), (6)

where dA,t(s) can be calculated recursively using the following equation

dA,t(s) =

∫
s′∈S

∫
a∈A

dA,t−1(s
′)π(a|s′;θt−1)p(s|s′,a)dads′.

Note that the above reward function is an unbiased estimator of rt(s,a) for all t = 1, . . . , T
(Yu et al., 2009):

Ept(s,a)[r̂t(s,a)|A] =rt(s,a), ∀s ∈ S,a ∈ A.

In above equation, Ep(st,at)[·|A] denotes the expectation over the joint state-action dis-
tribution pt(s,a) by the policies picked by algorithm A at time step t, where pt(s,a) =
dA,t(s)π(a|s;θt). By the definition ρt(θ) = Es∼dθ(s),a∼π(a|s;θ)[rt(s,a)], the estimated ex-
pected average reward function satisfies

Ept(s,a) [ρ̂t(θ)|A] = ρt(θ),
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where

ρ̂t(θ) =

∫
s∈S

dθ(s)

∫
a∈A

r̂t(s,a)π(a|s;θ)dads.

The gradient of ρ̂t(θ) with respect to the parameter θ can be obtained by passing the
derivative through the integral as

Ept(s,a)

[
∂ρ̂t(θ)

∂θ
|A
]
=

∫
s∈S

∫
a∈A

dA,t(s)π(a|s;θt)
∂ρ̂t(θ)

∂θ
dads

=

∫
s∈S

∫
a∈A

(
∂ log dθ(s)

∂θ
+

∂ log π(a|s;θ)
∂θ

)
× dθ(s)π(a|s;θ)rt(s,a)dads

=
∂ρt(θ)

∂θ
.

As the above equation shows, we replaced the gradient of the expected average reward
function ∂ρt(θ)

∂θ
in Eq.(4) with its unbiased estimator ∂ρ̂t(θ)

∂θ
.

As will be proved in Section 5, the regret bound of the OPG method with bandit
feedback is still O(

√
T ), although the bound is looser than that in the full-feedback case.

If it is not possible to calculate the state distribution directly, its estimate obtained by
reinforcement learning may be employed in practice (Ng et al., 1999).

4 Regret analysis with full feedback

In this section, we provide a regret bound for the OPG algorithm in the full-feedback
case.

4.1 Assumptions

First, we introduce the assumptions required in the proofs. Some assumptions have
already been used in related works for discrete state and action MDPs, and we extend
them to continuous state and action MDPs.

Assumption 1. There exists a positive number τ , such that for two arbitrary distributions
d and d′ over S and for every policy parameter θ ∈ Θ,∫

s∈S

∫
s′∈S

|d(s)− d′(s)|p(s′|s;θ)ds′ds ≤e−1/τ

∫
s∈S

|d(s)− d′(s)|ds,

where

p(s′|s;θ) =
∫
a∈A

π(a|s;θ)p(s′|s,a)da.

τ is called the mixing time (Even-Dar et al., 2004, 2009).
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Assumption 2. There exists a positive constant C1 depending on the specific policy model
π, such that for two arbitrary policy parameters θ and θ′ and for every s ∈ S,∫

a∈A
|π(a|s;θ)− π(a|s;θ′)|da ≤ C1∥θ − θ′∥1,

where ∥ · ∥1 denotes the L1 norm.

The Gaussian policy is a common choice in continuous state and action MDPs. Below,
we consider the Gaussian policy with mean µ(s) = θ⊤ϕ(s) and standard deviation σ,
where θ is the policy parameter and ϕ(s) : S → RN is the basis function. The KL-
divergence between these two policies is given by

D(p(·|s;θ)||p(·|s;θ′)) =

∫
a∈A

Nθ,σ(a) {logNθ,σ(a)− logNθ′,σ(a)} da

=

∫
a∈A

Nθ,σ(a)

{
1

2σ2

(
−(a− θ⊤ϕ(s))2 + (a− θ′⊤ϕ(s))2

)}
da

≤∥ϕ(s)∥2∞
2σ2

∥θ − θ′∥21.

By Pinsker’s inequality, the following inequality holds:

∥p(·|s,θ)− p(·|s,θ′)∥1 ≤
∥ϕ(s)∥∞

σ
∥θ − θ′∥1. (7)

This implies that the Gaussian policy model satisfies Assumption 2 with C1 =
Φ
σ
, where

∥ϕ(s)∥∞ ≤ Φ,∀s ∈ S. Note that we do not specify any policy model in the analysis, and
therefore the following theoretical analysis is valid for other stochastic policy models as
long as the assumptions are satisfied.

Assumption 3. All the reward functions in online MDPs are bounded. For simplicity,
we assume that the reward functions satisfy

rt(s,a) ∈ [0, 1],∀s ∈ S,∀a ∈ A, ∀t = 1, . . . , T.

Assumption 4. For all t = 1, . . . , T , the second derivative of the expected average reward
function satisfies

∇2
θρt(θ) ≤ 0, (8)

where θ ∈ Θ and Θ is the parameter set which is convex and compact.

This assumption means that the expected average reward function is concave, which
is currently our sufficient condition to guarantee the O(

√
T )-regret bound for the OPG

algorithm. This assumption can be relaxed to locally concave expected average reward
functions, where all the results still hold locally. More specifically the standard policy
gradient algorithm (Sutton and Barto, 1998; Peters and Schaal, 2006) has been shown to
converge to a local optimal solution, and we use a local optimal policy as the baseline in
the definition of the regret instead of the global optimal solution.
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4.2 Regret bound with concavity

We have the following theorem.

Theorem 1. The regret against the best offline policy of the OPG algorithm is bounded
as

LA(T ) ≤
√
T
F 2

2
+
√
TC2N + 2

√
Tτ 2C1C2N + 4τ,

where F is the diameter of Θ and C2 =
2C1−C1e−1/τ

1−e−1/τ .

Note that the constant C1 depends on the specific policy model involved which is
claimed in Assumption 2.

To prove the above theorem, we decompose the regret in the same way as the previous
work (Even-Dar et al., 2004, 2009; Neu et al., 2010a,b):

LA(T ) =Rθ∗(T )−RA(T )

≤

(
Rθ∗(T )−

T∑
t=1

ρt(θ
∗)

)
+

(
T∑
t=1

ρt(θ
∗)−

T∑
t=1

ρt(θt)

)

+

(
T∑
t=1

ρt(θt)−RA(T )

)
. (9)

In the OPG method, ρt(θ) is used for optimization, and the sum of the expected aver-
age reward functions

∑T
t=1 ρt(θ

∗) is calculated based on the stationary state distribution
dθ∗(s) of the policy parameterized by θ∗. However, the sum of the expected rewards
Rθ∗(T )is calculated by dθ,t(s), which is the state distribution at time step t following

policy π(a|s;θ∗). A similar argument can be obtained for
∑T

t=1 ρt(θt) and RA(T ). These
differences affect the first and third terms of the decomposed regret (9).

Below, we bound each of the three terms in Lemma 2, Lemma 3, and Lemma 4, which
are proved in Appendix A, Appendix B, and Appendix C, respectively.

Lemma 2. The difference between the return and the expected average reward function
of the best offline policy parameter satisfies∣∣∣∣∣Rθ∗(T )−

T∑
t=1

ρt(θ
∗)

∣∣∣∣∣ ≤ 2τ.

The first term has already been analyzed for discrete state and action online MDPs in
Even-Dar et al. (2004, 2009), Neu et al. (2014), and Dick et al. (2014), and we extended
it to continuous state and action spaces in Lemma 2.

Lemma 3. The expected average reward function satisfies∣∣∣∣∣
T∑
t=1

(ρt(θ
∗)− ρt(θt))

∣∣∣∣∣ ≤ √
T
F 2

2
+
√
TC2N.
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Lemma 3 is obtained by using the result of Zinkevich (2003).

Lemma 4. The difference between the return and the expected average reward function
of π(a|s;θt),∀t = 1, . . . , T given by the OPG algorithm A satisfies∣∣∣∣∣RA(T )−

T∑
t=1

ρt(θt)

∣∣∣∣∣ ≤ 2τ 2C1C2N
√
T + 2τ.

Lemma 4 is similar to Lemma 5.2 in Even-Dar et al. (2009), but our bound does not
depend on the cardinality of state and action spaces.

Combining Lemma 2, Lemma 3, and Lemma 4, we can immediately obtain Theorem 1.

4.3 Regret analysis under strong concavity

Next we derive a sharper regret bound for the OPG algorithm under a strong concavity
assumption.

Theorem 1 shows the theoretical guarantee of the OPG algorithm with the concave
assumption. If the expected reward function is strongly concave, i.e.,

∇2
θρt ≤ −HIN , (10)

where H is a positive constant and IN is the N × N identity matrix, we have following
theorem.

Theorem 5. The regret against the best offline policy of the OPG algorithm is bounded
as

LA(T ) ≤
C2

2N
2

2H
(1 + log T ) +

2τ 2C1C2N

H
log T + 4τ,

with step size ηt =
1
Ht
.

In above theorem, C2 = 2C1−C1e−1/τ

1−e−1/τ , where C1 depends on the specific policy model.
We again consider the same decomposition as Eq.(9), and the first term of the regret
bound is exactly the same as Lemma 2.

The second term is bounded by the following proposition given the strong concavity
assumption (10) and step size ηt =

1
Ht
:

Proposition 6.
T∑
t=1

(ρt(θ
∗)− ρt(θt)) ≤

C2
2N

2

2H
(1 + log T ).

The proof of Proposition 6 is given in Appendix D, which follow the same line as
Hazan et al. (2007).

From the proof of Lemma 4, the bound of the third term with the strong concavity
assumption (10) is given by following proposition.



An Online Policy Gradient Algorithm 12

Proposition 7.
T∑
t=1

ρt(θt)−RA(T ) ≤
2τ 2C1C2N

H
log T + 2τ. (11)

The result of Proposition 7 is obtained by following the same line as the proof of
Lemma 4 with a different step size. Combining Lemma 2, Proposition 6, and Proposi-
tion 7, we can obtain Theorem 5.

5 Regret analysis with bandit feedback

In this section, we prove a regret bound for the OPG algorithm in the bandit-feedback
case.

5.1 Regret bound with concavity in bandit scenario

Suppose that there exist ξ > 0 and ϵ > 0 such that the policy and the state distribution
satisfy

π(a|s;θt) ≥ ξ, ∀s ∈ S,∀a ∈ A, ∀t = 1, . . . , T,

dA,t(s) ≥ ϵ,∀s ∈ S, ∀t = 1, . . . , T.

Note that the above assumptions yield the state and action spaces to be compact, where
the Gaussian policy cannot be used directly.

Then we have the following theorem:

Theorem 8. The regret of the OPG algorithm with bandit feedback is

LA(T ) = Rθ∗(T )−RA(T )

≤ 4τ +
F 2

2

√
T + (C3 + C4)N

√
T

+ 2τ 2(C1C3N + C1C4N)
√
T ,

where C3 =
C1

ϵ(1−e−1/τ )
, C4 =

C1

ξϵ
, and C1 depends on the specific policy model as Assump-

tion 2.

Theorem 8 can be proved by extending the proof of Theorem 1 as follows.
The same regret decomposition as Eq.(9) is still possible in the bandit-feedback setting.

The first term can be bounded in the same way as the full-information case, i.e., Lemma 2
still holds. However, the bounds for the second and third terms, originally given in
Lemma 3 and Lemma 4, should be modified as follows:

Lemma 9. The expected average reward function given by the online policy gradient
algorithm with bandit feedback satisfies∣∣∣∣∣

T∑
t=1

ρt(θ
∗)− ρt(θt)

∣∣∣∣∣ ≤ F 2

2

√
T + (C3 + C4)N

√
T .
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The bound of the second part is still O(
√
T ) , but it is looser than the bound in

the full-information scenario which is caused by the estimated gradient of the expected
average reward function.

Lemma 10. The third term of the regret of the online policy gradient algorithm with
bandit feedback is bounded as∣∣∣∣∣RA(T )−

T∑
t=1

ρt(θt)

∣∣∣∣∣ ≤ 2τ 2(C1C3N + C1C4N)
√
T + 2τ.

Proofs of Lemma 9 and Lemma 10 are given in Appendix G. From these lemmas, we
can immediately obtain Theorem 8.

6 Experiments

In this section, we illustrate the behavior of the OPG algorithm through experiments.

6.1 Target tracking

The task is to let an agent track an abruptly moving target located in one-dimensional
real space S = R. The action space is also one-dimensional real space A = R, and we can
change the position of the agent as s′ = s+a. The reward function is given by evaluating
the distance between the agent and target as

rt(s, a) = e−
1
2
(s−tar(t))2− 1

2
a2 , (12)

where tar(t) ∈ [−3, 3] denotes the position of the target at time step t. The mechanism
for moving the target is set as the uniform distribution over the interval [−3, 3].

We use the Gaussian policy with mean parameter µ = θ ·s and standard deviation pa-
rameter σ = 3 in this experiment. From the standard argument (Peters and Schaal, 2006),
the stationary state distribution is the Gaussian distribution with zero mean parameter
and standard deviation parameter σ̃ = σ√

−θ2−2θ
, θ ∈ (−2, 0)2. Then for all t = 1, . . . , T ,

the expected average reward functions are given by

ρt(θ) =

∫
s∈S

N0,σ̃(s)

∫
a∈A

Nµ,σ(a)e
− 1

2
(s−tar(t))2− 1

2
a2dads

=
1

ϖ
exp

(
−tar(t)2(ϖ2 − σ̃2 − σ2σ̃2)

2ϖ2

)
,

where ϖ =
√
1 + σ2 + σ̃2 + σ2σ̃2 + σ̃2θ2. This implies that ρt(θ) is concave with respect

to the parameter θ, and thus ρt(θ) satisfies Assumption 4 for all t = 1, . . . , T 3.

2Note that the parameter space is not closed in this experiment. When θ takes a value less than -1.99
or more than -0.01 during gradient update iterations, we project it back to -1.99 or -0.01, respectively.

3The analysis of concavity is presented in Appendix I.
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As a baseline method for comparison, we consider the MDP-E algorithm (Even-Dar
et al., 2004, 2009), where the exponential weighted average algorithm is used as the best
expert. Since MDP-E can handle only discrete states and actions, we discretize the state
and action spaces. More specifically, the state space is discretized as

(−∞,−6], (−6,−6 + c], (−6 + c,−6 + 2c], . . . , (6,+∞),

and the action space is discretized as

−6,−6 + c,−6 + 2c, . . . , 6.

We consider the following 5 setups for c:

c = 6, 2, 1, 0.5, 0.1.

In the experiment, the state distribution and the gradient are estimated by the policy
gradient estimator REINFORCE introduced in Peters and Schaal (2006). I = 20 inde-
pendent experiments are run with T = 100 time steps, and the average return J(T ) is
used for evaluating the performance:

J(T ) =
1

I

I∑
i=1

[
T∑
t=1

rt(st, at)

]
.

The results are plotted in Figure 1, showing that the OPG algorithm works better than the
MDP-E algorithm with the best discretization resolution. This illustrates the advantage
of directly handling continuous state and action spaces without discretization. The MDP-
E algorithm performs poorly when the discretization resolution is too small. Since the
regret caused by the MDP-E algorithm increases as the cardinalities of state and action
spaces increase. On the other hand, the performance of the MDP-E algorithm is limited
when the discretization resolution is too large. Moreover, it is difficult to design the best
discretization method without the knowledge of the target movement.

Figure 2 shows the average rewards and average regrets for full-information and bandit
feedback cases, which substantiate the theoretical results4.

6.2 Linear-quadratic regulator

The linear-quadratic regulator (LQR) is a simple system, where the transition dynamics
is linear and the reward function is quadratic. This system is instructive because we can
compute the best offline parameter and the gradient directly (Peters and Schaal, 2006).
Here, an online LQR system is simulated to illustrate the parameter update trajectory of
the OPG algorithm.

Let state and action spaces be one-dimensional real space: S = R, A = R. The
transitions are deterministically performed as

s′ = s+ a.

4The state and action spaces are bounded to [−2, 2] in the bandit feedback experiment.
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Figure 1: Average and standard deviation of returns of the OPG algorithm and the
MDP-E algorithm with different discretization resolution c.

The reward function is defined as

rt(s, a) = −1

2
Qts

2 − 1

2
Rta

2,

where Qt ∈ R and Rt ∈ R are chosen from {1, . . . , 10} uniformly at time step t =
10, 20, 30, . . . , 10000 5. Thus, the reward function is changing abruptly.

We use the Gaussian policy with mean parameter µ = θ · s and standard deviation
parameter σ = 0.1 and σ = 1 in full information and bandit feedback experiments,
respectively. The best offline parameter is given by θ∗ = −0.92, and the initial parameter
for the OPG algorithm is drawn uniformly at random.

From the standard argument (Peters and Schaal, 2006), the expected average reward
function of the above LQR system is given by

ρt(θ) = −1

2
(Rt + Pt)σ

2,

where Pt is the positive definite solution of the modified Ricatti equation Pt = Qt + Pt +
2θPt + θ2Pt + θ2Rt. Then the second order derivative of ρt(θ) is given by

∂2ρt(θ)

∂θ2
=

σ2Qt(6θ
2 + 12θ + 8)− 4σ2θ3Rt

2(2θ + θ2)3
.

Given the fact that P is the positive definite solution which yields −2 < θ < 0, we can

obtain ∂2ρt(θ)
∂θ2

≤ 0. This means that the expected average reward function of the target
LQR system is always concave with respect to the policy parameter.

5The reward function is not bounded, which violates Assumption 3. However, it is interesting to
illustrate that the parameter updated by the OPG algorithm still converges to the best offline parameter.
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Figure 2: Average rewards and average regrets of the OPG algorithm with full information
and bandit feedback.
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In the top graph of Figure 3, a parameter update trajectory of OPG with full informa-
tion in the online LQR problem is plotted by the solid line, and the best offline parameter
is denoted by the dashed line. This shows that the OPG solution quickly approaches the
best offline parameter.

Next, we also include the Gaussian standard deviation σ in the policy parameter, i.e.,
θ = (µ, σ)⊤. When σ takes a value less than 0.01 during gradient update iterations, we
project it back to 0.01. A parameter update trajectory is plotted in the bottom graph
of Figure 3, showing again that the OPG solution smoothly approaches the best offline
parameter.

In the top graph of Figure 4, the solid line shows the trajectory of the OPG algorithm
with bandit feedback in the online LQR system simulation. The result validates that
the OPG solution converges to the best offline parameter with a slightly slower speed
compared with the full information result.

The parameter trajectory is shown in the bottom graph of Figure 4 when the standard
deviation σ is included in the parameter. The OPG solution still approaches the best
offline mean parameter as we expect.

7 Conclusion

In this paper, we proposed an online policy gradient method for continuous state and
action online MDPs, and showed that the regret of the proposed method is O(

√
T ) under

a certain concavity assumption on the expected average reward function. A notable
fact is that the regret bound does not depend on the cardinality of state and action
spaces, which makes the proposed algorithm suitable in handling continuous states and
actions. We further extended our method to the bandit-feedback scenario, and showed
that the regret of the extended method is still O(

√
T ). Furthermore, we also established

the O(log T ) regret bound under a strong concavity assumption for the full information
setup. Through experiments, we illustrated that directly handling continuous state and
action spaces by the proposed method is more advantageous than discretizing them and
applying an existing method.

Our future work will extend the current theoretical analysis to non-concave expected
average reward functions, where gradient-based algorithms suffer from the local optimal
problem. A difficulty in this situation it that the regret bound with bandit feedback
becomes trivial when the lower bounds of policy and state distributions are too small.
Thus improving our current result in the bandit feedback scenario is an important future
work. Another important challenge is to develop an effective method to estimate the
stationary state distribution, which is required in our algorithm.
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Appendix

A Proof of Lemma 2

The following proposition holds, which can be obtained by recursively using Assumption 1:

Proposition 11. For any policy parameter θ, the state distribution dθ,t at time t and
stationary state distribution dθ satisfy∫

s∈S
|dθ,t(s)− dθ(s)|ds ≤ 2e−t/τ .

The first part of the regret bound in Theorem 1 is caused by the difference between
the state distribution at time t and the stationary state distribution following the best
offline policy parameter θ∗.∣∣∣∣∣Rθ∗(T )−

T∑
t=1

ρt(θ
∗)

∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

[∫
s∈S

dθ∗,t(s)

∫
a∈A

rt(s,a)π(a|s;θ∗)dsda

−
∫
s∈S

dθ∗(s)

∫
a∈A

rt(s,a)π(a|s;θ∗)dsda

]∣∣∣∣
≤

T∑
t=1

∫
s∈S

|dθ∗,t(s)− dθ∗(s)| ds

≤ 2
T∑
t=1

e−t/τ

≤ 2τ,

where the second inequality can be obtained by Assumption 1.

B Proof of Lemma 3

The following proposition is a continuous extension of Lemma 6.3 in (Even-Dar et al.,
2009):

Proposition 12. For two policies with different parameters θ and θ′, an arbitrary dis-
tribution d over S, and the constant C1 > 0 given in Assumption 2, it holds that∫

s∈S
d(s)

∫
s′∈S

|p(s′|s;θ)− p(s′|s;θ′)|ds′ds ≤ C1∥θ − θ′∥1,

where

p(s′|s;θ) =
∫
a∈A

π(a|s;θ)p(s′|s,a)da.
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Then we have the following proposition, which is proved in Appendix E:

Proposition 13. For all t = 1, . . . , T , the expected average reward function ρt(θ) for two
different parameters θ and θ′ satisfies

|ρt(θ)− ρt(θ
′)| ≤ C2∥θ − θ′∥1.

From Proposition 13, we have the following proposition:

Proposition 14. Let

θ = [θ(1), . . . , θ(i), . . . , θ(N)],

θ′ = [θ(1), . . . , θ(i)
′
, . . . , θ(N)],

and suppose that the expected average reward ρt(θ) for all t = 1, . . . , T is Lipschitz con-
tinuous with respect to each dimension θ(i). Then we have

|ρt(θ)− ρt(θ
′)| ≤ C2|θ(i) − θ(i)

′|, ∀i = 1, . . . , N.

Form Proposition 14, we have the following proposition:

Proposition 15. For all t = 1, . . . , T , the partial derivative of expected average reward
function ρt(θ) with respect to θ(i) is bounded as∣∣∣∣∂ρt(θ)∂θ(i)

∣∣∣∣ ≤ C2,∀i = 1, . . . , N,

and ∥∇θρt(θ)∥1 ≤ NC2.

From Proposition 15, the result of online convex optimization (Zinkevich, 2003) is
applicable to the current setup. More specifically we have

T∑
t=1

(ρt(θ
∗)− ρt(θt)) ≤

F 2

2

√
T + C2N

√
T ,

which concludes the proof.

C Proof of Lemma 4

The following proposition holds, which can be obtained from Assumption 2 and

∥θt − θt+1∥1 ≤ ηt∥∇θρt(θt)∥1 ≤ C2Nηt.

Proposition 16. Consecutive policy parameters θt and θt+1 given by the OPG algorithm
satisfy ∫

a∈A
|π(a|s;θt)− π(a|s;θt+1)|da ≤ C1C2Nηt.
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From Proposition 12 and Proposition 16, we have the following proposition:

Proposition 17. For consecutive policy parameters θt and θt+1 given by the OPG algo-
rithm and arbitrary transition probability density p(s′|s,a), it holds that∫

s∈S
d(s)

∫
s′∈S

∫
a∈A

p(s′|s,a)

× |π(a|s;θt)− π(a|s;θt+1)|dads′ds ≤ C1C2Nηt.

Then the following proposition holds, which is proved in Appendix F following the
same line as Lemma 5.1 in Even-Dar et al. (2009):

Proposition 18. The state distribution dA,t given by algorithm A and the stationary
state distribution dθt of policy π(a|s;θt) satisfy∫

s∈S
|dθt(s)− dA,t(s)|ds ≤ 2τ 2ηt−1C1C2N + 2e−t/τ .

Although the original bound given in Even-Dar et al. (2004, 2009) depends on the
cardinality of the action space, it is not the case in the current setup.

Then the third term of the decomposed regret (9) is expressed as∣∣∣∣∣RA(T )−
T∑
t=1

ρt(θt)

∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

∫
s∈S

dA,t(s)

∫
a∈A

rt(s,a)π(a|s;θt)dads

−
T∑
t=1

∫
s∈S

dθt(s)

∫
a∈A

rt(s,a)π(a|s;θt)dads

∣∣∣∣∣
≤

T∑
t=1

∫
s∈S

|dA,t(s)− dπt(s)|ds

≤ 2τ 2C1C2N
T∑
t=1

ηt + 2
T∑
t=1

e−t/τ

≤ 2τ 2C1C2N
√
T + 2τ,

which concludes the proof.

D Proof of Proposition 6

The proof of Proposition 6 can be obtained from Hazan et al. (2007), i.e., by the Taylor
approximation, the expected average reward function can be decomposed as

ρt(θ
∗)− ρt(θt)

= ∇θρt(θt)
⊤(θ∗ − θt) +

1

2
(θ∗ − θt)

⊤∇2
θρt(ξt)(θ

∗ − θt)

≤ ∇θρt(θt)
⊤(θ∗ − θt)−

H

2
∥θ∗ − θt∥2, (13)
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where ξt is some point between θ∗ and θt. The last inequality comes from the strong
concavity assumption (10). Given the parameter updating rule,

∇θρt(θ
∗ − θt) =

1

2ηt

(
(θ∗ − θt)

2 − (θ∗ − θt+1)
2
)
+ ηt∥∇θρt(θt)∥2,

summing up all T terms of (13) and setting ηt =
1
Ht

yield

T∑
t=1

(ρt(θ
∗)− ρt(θt)) ≤

T∑
t=1

(
1

ηt+1

− 1

ηt
−H

)
∥θ∗ − θt∥2 + ∥∇tρt(θt)∥2

T∑
t=1

ηt

≤ C2
2N

2

2H
(1 + log T ).

E Proof of Proposition 13

For two different parameters θ and θ′, we have

|ρt(θ)− ρt(θ
′)| =

∣∣∣∣∫
s∈S

dθ(s)

∫
a∈A

π(a|s;θ)rt(s,a)dads

−
∫
s∈S

dθ′(s)

∫
a∈A

π(a|s;θ′)rt(s,a)dads

∣∣∣∣
≤
∫
s∈S

|dθ(s)− dθ′(s)|
∫
a∈A

π(a|s;θ)rt(s,a)dads

+

∫
s∈S

dθ′(s)

∫
a∈A

|π(a|s;θ)− π(a|s;θ′)| rt(s,a)dads. (14)

The first equation comes from Eq.(3), and the second inequality is obtained from the
triangle inequality. Since Assumption 2 and Assumption 3 imply∫

s∈S
dθ′(s)

∫
a∈A

|π(a|s;θ)− π(a|s;θ′)|rt(s,a)dads ≤ C1∥θ − θ′∥1,

and also ∫
a∈A

π(a|s;θ)rt(s,a)da ≤ 1,
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Eq.(14) can be written as

|ρt(θ)− ρt(θ
′)| ≤

∫
s∈S

|dθ(s)− dθ′(s)|ds+ C1∥θ − θ′∥1

=

∫
s∈S

∫
s′∈S

|dθ(s′)p(s|s′;θ)− dθ′(s′)p(s|s′;θ′)|ds′ds

+ C1∥θ − θ′∥1

≤
∫
s∈S

∫
s′∈S

|dθ(s′)p(s|s′;θ)− dθ′(s′)p(s|s′;θ)|ds′ds

+

∫
s∈S

∫
s′∈S

dθ′(s′)|p(s|s′;θ)− p(s|s′;θ′)|ds′ds

+ C1∥θ − θ′∥1

≤ e−1/τ

∫
s∈S

|dθ(s)− dθ′(s)|ds+ 2C1∥θ − θ′∥1.

The second equality comes from the definition of the stationary state distribution, and the
third inequality can be obtained from the triangle inequality. The last inequality follows
from Assumption 1 and Proposition 12. Thus, we have

|ρt(θ)− ρt(θ
′)| ≤ 2C1 − C1e

−1/τ

1− e−1/τ
∥θ − θ′∥1,

which concludes the proof.

F Proof of Proposition 18

This proof is following the same line as Lemma 5.1 in Even-Dar et al. (2009).∫
s∈S

|dA,k(s)− dθt(s)|ds

=

∫
s∈S

∫
s′∈S

|dA,k−1(s
′)p(s|s′;θk)− dθt(s

′)p(s|s′;θt)| ds′ds

≤
∫
s∈S

∫
s′∈S

|dA,k−1(s
′)p(s|s′;θt)− dθt(s

′)p(s|s′;θt)| ds′ds

+

∫
s∈S

∫
s′∈S

|dA,k−1(s
′)p(s|s′;θk)− dA,k−1(s

′)p(s|s′;θt)| ds′ds

≤ e−1/τ

∫
s∈S

|dA,k−1(s)− dθt(s)| ds+ 2(t− k)C1C2Nηt−1. (15)

The first equation comes from the definition of the stationary state distribution, and the
second inequality can be obtained by the triangle inequality. The third inequality holds
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from Assumption 1 and∫
s∈S

∫
s′∈S

|dA,k−1(s
′)p(s|s′;θk)− dA,k−1(s

′)p(s|s′;θt)| ds

≤ C1∥θt − θk∥1

≤ C1

t−1∑
i=k

ηi∥∇θρi(θi)∥1

≤ 2(t− k)C1C2Nηt−1.

Recursively using Eq.(15), we have∫
s∈S

|dA,t(s)− dπt(s)|ds ≤ 2
t∑

k=2

e−(t−k)/τ (t− k)C1C2Nηt−1 + 2e−t/τ

≤ 2τ 2C1C2Nηt−1 + 2e−t/τ ,

which concludes the proof.

G Proofs of Lemma 9 and Lemma 10

As we show in Section 5, an unbiased estimator of reward function is used for updating the
parameter θ, we also show that the corresponding estimated gradient is unbiased which
can be bounded by the following lemma, which is proved in Appendix H.

Lemma 19. The estimated gradient ∇θρ̂t(θ) satisfies

∥∇θρ̂t(θ)∥1 ≤ C3N + C4N.

Following the same line with the proof of Lemma 3.1 in Flaxman et al. (2005), we
firstly define the auxiliary functions for all x ∈ Θ as

ϱt(x) = ρt(x) + x⊤κt,

where κt = ∇θρ̂t(θt)−∇θρt(θt). Observed that

∇xϱt(θt) = ∇θρ̂t(θt),

and the unbiased estimation satisfies

Ept(s,a) [ϱt(θt)|A] = ρt(θt),

where the above equation follows from the fact Ept(s,a)[κt|A] = 0, and Ept(s,a)[θtκt|A] = 0.
Thus, we can obtain

T∑
t=1

(ρt(θ
∗)− ρt(θt)) ≤

F 2

2

√
T + (C3 + C4)N

√
T ,

which concludes the proof of Lemma 9 by using the result of Lemma 19. Similarly, using
Lemma 19 in the proof of Lemma 4, we obtain Lemma 10.
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H Proof of Lemma 19

The estimated gradient is expressed as

∇θρ̂t(θt) =

∫
s∈S

∫
a∈A

dθt(s)π(a|s;θt)r̂t(s,a)

× (∇θ ln dθt(s) +∇θ ln π(a|s;θt))dsda

=
∇θdθt(st)

dA,t(st)
rt(st,at)

+
dθt(st)

dA,t(st)
ln∇θπ(a|s;θt)rt(st,at).

Consider the stationary distribution as a function of parameter θ for all s ∈ S, Then,
from Proposition 13, the bound for the gradient of the stationary distribution is given by

|∇θdθt(s)| ≤
C1N

1− e−1/τ
, ∀s ∈ S,∀t = 1, . . . , T.

Similarly, from Assumption 2, the bound for the gradient of policy π is given by

|∇θ ln π(a|s;θt)| ≤
C1N

ξ
,∀s ∈ S, ∀a ∈ A, ∀t = 1, . . . , T.

Then we have

∥∇θρ̂t(θt)∥1 ≤
C1N

ϵ(1− e−1/τ )
+

C1N

ϵξ
,∀t = 1, . . . , T.

I Concavity Analysis for Target Tracking

The reward function in the target tracking experiment is defined as

rt(s, a) = e−
1
2
(s−tar(t))2− 1

2
a2 ,∀t = 1, . . . , T.

Then for all t = 1, . . . , T , the expected average reward function are given by

ρt(θ) =

∫
s∈S

N0,σ̃(s)

∫
a∈A

Nµ,σ(a)e
− 1

2
(s−tar(t))2− 1

2
a2dads

=
1

ϖ
exp

(
−tar(t)2(ϖ2 − σ̃2 − σ2σ̃2)

2ϖ2

)
,

where ϖ =
√
1 + σ2 + σ̃2 + σ2σ̃2 + σ̃2θ2 and σ̃ = σ√

−θ2−2θ
. For verifying the concavity of

ρt(θ), we obtain the derivative of ρt(θ) with respect to θ by plugging in σ = 3 as

∂ρt(θ)

∂θ
=

√
−θ2 − 2θ

−θ2 − 20θ + 90
exp

(
−t2

2
· −θ2 − 20θ

−θ2 − 20θ + 90

)
×
[
−tar(t)2

−90(θ + 10)

(−θ2 − 20θ + 90)2
− −9θ2 + 90θ + 90

(−θ2 − 20θ + 90)(−θ2 − 2θ)

]
.
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Figure 5: The derivative of ρt(θ) with respect to θ.

Obeserved that ∂ρt(θ)
∂θ

is monotonically non-increasing as shown in Figure 5. Thus, the
defined expected average reward functions ρt(θ),∀t = 1, . . . , T are concave with respect
to the parameter θ.
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Neu, G., György, A., Szepesvári, C., and Antos, A. (2010b). Online Markov decision
processes under bandit feedback. In Advances in Neural Information Processing Systems
23, pages 1804–1812.
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