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Abstract

Log-density gradient estimation is a fundamental statistical problem and possesses
various practical applications such as clustering and measuring non-Gaussianity.
A naive two-step approach of first estimating the density and then taking its log-
gradient is unreliable because an accurate density estimate does not necessarily lead
to an accurate log-density gradient estimate. To cope with this problem, a method
to directly estimate the log-density gradient without density estimation has been
explored, and demonstrated to work much better than the two-step method. The
objective of this paper is to further improve the performance of this direct method
in multi-dimensional cases. Our idea is to regard the problem of log-density gradient
estimation in each dimension as a task, and apply regularized multi-task learning

to the direct log-density gradient estimator. We experimentally demonstrate the
usefulness of the proposed multi-task method in log-density gradient estimation
and mode-seeking clustering.

Keywords

Multi-task learning, log-density gradient, mode-seeking



Multi-Dimensional Log-Density Gradient Estimation 2

1 Introduction

Multi-task learning is a paradigm of machine learning for solving multiple related learning
tasks simultaneously with the expectation that information brought by other related tasks
can be mutually exploited to improve the accuracy (Caruana, 1997). Multi-task learning
is particularly useful when one has many related learning tasks to solve but only few
training samples are available for each task, which is often the case in many real-world
problems such as therapy screening (Bickel et al., 2008) and face verification (Wang et al.,
2009).

Multi-task learning has been gathering a great deal of attention, and extensive stud-
ies have been conducted both theoretically and experimentally (Thrun, 1996; Evgeniou
and Pontil, 2004; Ando and Zhang, 2005; Zhang, 2013; Baxter, 2000). Thrun (1996)
proposed the lifelong learning framework, which transfers the knowledge obtained from
the tasks experienced in the past to a newly given task, and it was demonstrated to im-
prove the performance of image recognition. Baxter (2000) defined a multi-task learning
framework called inductive bias learning, and derived a generalization error bound. The
semi-supervised multi-task learning method proposed by Ando and Zhang (2005) gener-
ates many auxiliary learning tasks from unlabeled data and seeks a good feature mapping
for the target learning task. Among various methods of multi-task learning, one of the
simplest and most practical approaches would be regularized multi-task learning (Evge-
niou and Pontil, 2004; Evgeniou et al., 2005), which uses a regularizer that imposes the
solutions of related tasks to be close to each other. Thanks to its generic and simple
formulation, regularized multi-task learning has been applied to various types of learning
problems such as regression and classification (Evgeniou and Pontil, 2004; Evgeniou et al.,
2005). In this paper, we explore a novel application of regularized multi-task learning to
the problem of log-density gradient estimation (Beran, 1976; Cox, 1985; Sasaki et al.,
2014).

The goal of log-density gradient estimation is to estimate the gradient of the log-
arithm of an unknown probability density function using samples following it. Log-
density gradient estimation has various applications such as clustering (Fukunaga and
Hostetler, 1975; Cheng, 1995; Comaniciu and Meer, 2002; Sasaki et al., 2014), measuring
non-Gaussianity (Huber, 1985) and other fundamental statistical topics (Singh, 1977).

Beran (1976) proposed a method for directly estimating gradients without going
through density estimation, to which we refer as least-squares log-density gradients
(LSLDG). This direct method was experimentally shown to outperform the naive one
consisting of density estimation followed by log-gradient computation, and was demon-
strated to be useful in clustering (Sasaki et al., 2014).

The objective of this paper is to estimate log-density gradients further accurately in
multi-dimensional cases, which is still a challenging topic even using LSLDG. It is impor-
tant to note that since the output dimensionality of the log-density gradient ∇ log p(x) is
the same as its input dimensionality d, multi-dimensional log-density gradient estimation
can be regarded as having multiple learning tasks if we regard estimation of each output
dimension as a task. Based on this view, in this paper, we propose to apply regularized
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multi-task learning to LSLDG. We also provide a practically useful design of parametric
models for successfully applying regularized multi-task learning to log-density gradient
estimation. We experimentally demonstrate that the accuracy of LSLDG can be sig-
nificantly improved by the proposed multi-task method in multi-dimensional log-density
estimation problems and that a mode-seeking clustering method based on the proposed
method outperforms other methods.

The organization of this paper is as follows: In Section 2, we formulate the problem
of log-density gradient estimation and review LSLDG. Section 3 reviews the core idea
of regularized multi-task learning. Section 4 presents our proposed log-density gradient
estimator and algorithms for computing the solution. In Section 5, we experimentally
demonstrate that the proposed method performs well on both artificial and benchmark
data. Application to mode-seeking clustering is given in Section 6. Section 7 concludes
this paper with potential extensions of this work.

2 Log-density gradient estimation

In this section, we formulate the problem of log-density gradient estimation, and then
review LSLDG.

2.1 Problem formulation and a naive method

Suppose that we are given a set of samples, {xi}
n
i=1, which are independent and identi-

cally distributed from a probability distribution with unknown density p(x) on R
d. The

problem is to estimate the gradient of the logarithm of the density p(x) from {xi}
n
i=1:

∇ log p(x) = (∂1 log p(x), . . . , ∂d log p(x))
⊤ =

(
∂1p(x)

p(x)
, . . . ,

∂dp(x)

p(x)

)⊤
,

where ∂j denotes the partial derivative operator ∂/∂x(j) for x = (x(1), . . . , x(d))⊤.
A naive method for estimating the log-density gradient is to first estimate the proba-

bility density, which is performed by, e.g., kernel density estimation (KDE) as

p̂(x) =
1

n

n∑

i=1

1

(2πσ2)
d
2

exp

(
−
‖x− xi‖

2

2σ2

)
,

where σ > 0 denotes the Gaussian bandwidth, then to take the gradient of the logarithm
of p̂(x) as

∂j log p̂(x) =
∂j p̂(x)

p̂(x)
.

However, this two-step method does not work well because an accurate density esti-
mate does not necessarily provide an accurate log-density gradient estimate. For example,
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Figure 1: A comparison of two log-density gradient estimates based on density estimation.
In (a), p̂2 is a better estimate to the true density p than p̂1, while in (b), ∇ log p̂1 is a
better estimate to the true log-density gradient ∇ log p than ∇ log p̂2.

Figure 1 illustrates that a worse (or better) density estimate can produce a better (or
worse) gradient estimate.

To overcome this problem, LSLDG, a single-step method which directly estimates the
gradient without going through density estimation, was proposed (Beran, 1976; Cox, 1985;
Sasaki et al., 2014), and has been demonstrated to experimentally work well. Next, we
review LSLDG.

2.2 Direct estimation of log-density gradients

The basic idea of LSLDG is to directly fit a model gj(x) to the true log-density gradient
∂j log p(x) under the squared loss:

Rj(gj) :=

∫
(gj(x)− ∂j log p(x))

2 p(x)dx

=

∫ (
gj(x)−

∂jp(x)

p(x)

)2

p(x)dx

=

∫
gj(x)

2p(x)dx− 2

∫
gj(x)∂jp(x)dx+ Cj

=

∫
gj(x)

2p(x)dx− 2

∫ [
gj(x)p(x)

]x(j)=∞
x(j)=−∞dx(\j) + 2

∫
∂jgj(x)p(x)dx+ Cj

=

∫
gj(x)

2p(x)dx+ 2

∫
∂jgj(x)p(x)dx+ Cj,

where Cj :=
∫ (∂jp(x))

2

p(x)
dx is a constant that does not depend on gj ,

∫
(·)dx(\j) denotes

integration except for x(j), and the last deformation comes from integration by parts under
the mild condition that gj(x)p(x)→ 0 as |x(j)| → ∞.
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Then, the LSLDG score Jj(gj) is given as an empirical approximation to the risk
Rj(gj) subtracted by Cj:

Jj(gj) :=
1

n

n∑

i=1

gj(xi)
2 +

2

n

n∑

i=1

∂jgj(xi). (1)

As gj(x), a linear-in-parameter model is used:

gj(x) = θ
⊤
j ψj(x) =

b∑

k=1

θ
(k)
j ψ

(k)
j (x), (2)

where θ
(k)
j is a parameter, ψ

(k)
j (x) is a differentiable basis function, and b is the number

of the basis functions. By substituting (2) into (1) and adding an ℓ2-regularizer, we can

analytically obtain the optimal solution θ̂j as

θ̂j = argmin
θj

[
θ⊤j Gjθj + 2h⊤

j θj + λj‖θj‖
2
]

= −(Gj + λjIb)
−1hj,

where λj ≥ 0 is the regularization parameter, Ib is the b× b identity matrix, and

Gj :=
1

n

n∑

i=1

ψj(xi)ψj(xi)
⊤, hj :=

1

n

n∑

i=1

∂jψj(xi).

Finally, an estimator of the log-density gradient is obtained by

ĝj(x) := θ̂
⊤
j ψj(x).

It was experimentally shown that LSLDG produces much more accurate estimates
of log-density gradients than the KDE-based gradient estimator and that the clustering
method based on LSLDG performs well (Sasaki et al., 2014).

3 Regularized multi-task learning

In this section, we review a multi-task learning framework called regularized multi-task
learning (Evgeniou and Pontil, 2004; Evgeniou et al., 2005), which is powerful and widely
applicable to many machine learning methods.

Consider that we have T tasks of supervised learning as follows. The task t is to learn
an unknown function f ∗

t (x) from samples of input-output pairs {(x
(t)
i , y

(t)
i )}nt

i=1, where

y
(t)
i is the output f ∗

t (x) with noise at the input x = x
(t)
i . When f ∗

t (x) is modeled by a
parameterized function ft(x; θt), learning is performed by finding the parameter θt which
minimizes the empirical risk associated with some loss function l(y, y′):

θ̂t = argmin
θt

1

nt

nt∑

i=1

l(y
(t)
i , ft(x

(t)
t ; θt)) = argmin

θt

Jt(θt),
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where Jt(θt) =
∑nt

i=1 l(y
(t)
i , ft(x

(t)
t ; θt)).

In regularized multi-task learning, the objective function has regularization terms
which impose every pair of parameters to be close to each other while Jt(θt) are jointly
minimized:

T∑

t=1

Jt(θt) +
1

2
γ

T∑

t=1,t′=1

γt,t′‖θt − θt′‖
2,

where γ ≥ 0 is the regularization parameter and γt,t′ ≥ 0 are the similarity parameters
between the tasks t and t′.

It was experimentally demonstrated that the multi-task support vector regression (Ev-
geniou and Pontil, 2004; Evgeniou et al., 2005), performs better than the single-task
counterpart (Vapnik et al., 1997) especially when the tasks are highly related each other.

4 Proposed method

In this section, we present our proposed method and algorithms.

4.1 Basic idea

Our goal in this paper is to improve the performance of LSLDG inmulti-dimensional cases.
For multi-dimensional input x, the log-density gradient ∇ log p(x) has multiple output
dimensions, meaning that its estimation actually consists of multiple learning tasks. Our
basic idea is to apply regularized multi-task learning to solve these tasks simultaneously
instead of learning them independently.

This idea is supported by the fact that the target functions of these tasks,
∂1 log p(x), . . . , ∂d log p(x), are all derived from the same log-density log p(x), and thus
they must be strongly related to each other. Under such strong relatedness, jointly learn-
ing them with sharing information with each other would improve estimation accuracy as
has been observed in other existing multi-task learning work.

4.2 Regularized multi-task learning for least-squares log-density
gradients (MT-LSLDG)

Here, we propose a method called regularized multi-task learning for least-squares log-
density gradients (MT-LSLDG).

Our method MT-LSLDG is given by applying regularized multi-task learning to
LSLDG. Specifically, we consider the problem of minimizing the following objective func-
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tion:

J(θ1, . . . , θd) =
d∑

j=1

Jj(gj(·; θj)) +
d∑

j=1

λj‖θj‖
2 +

1

2
γ

d∑

j,j′=1

γj,j′‖θj − θj′‖
2

=

d∑

j=1

(
θ⊤j Gjθj + 2θ⊤j hj + λj‖θj‖

2
)
+

1

2
γ

d∑

j,j′=1

γj,j′‖θj − θj′‖
2, (3)

where the last term is the multi-task regularizer which imposes the parameters close to
each other.

Denoting the minimizers of (3) by θ̂1, . . . , θ̂d, the estimator ĝ(x) = (ĝ1(x), . . . , ĝd(x))
⊤

is given by, for j = 1, . . . , d,

ĝj(x) = gj(x; θ̂j) = θ̂
⊤
j ψj(x). (4)

We call this method regularized multi-task learning for least-squares log-density gradients
(MT-LSLDG).

4.3 The design of the basis functions

The design of the basis functions ψj(x) in MT-LSLDG is crucial to enjoy the advantage
of regularized multi-task learning. A simple design would be to use a common function
φ(x) = (φ(1)(x), . . . , φ(b)(x)) for all ψj(x), that is, ψ1(x) = · · · = ψd(x) = φ(x). From

(3) and (4), in this design, the multi-task regularizer promotes gj(x; θ̂j) to be more close
to each other so that

g1(x; θ̂1) ≈ · · · ≈ gd(x; θ̂d).

However, it is inappropriate that all gj(x; θ̂j) are similar because the different true partial
derivatives, say ∂j log p(x) and ∂j′ log p(x) for j 6= j′, show different profiles in general.

To avoid this problem, we propose to use the partial derivatives of φ(x) as basis
functions:

ψj(x) = ∂jφ(x).

For this basis function design, it holds that

ĝj(x) = θ̂
⊤
j ψj(x) = θ̂

⊤
j ∂jφ(x) = ∂j θ̂

⊤
j φ(x) ≈ ∂j log p(x).

Thus, θ̂⊤j φ(x) are approximations of the true log-density log p(x). Since the multi-task

regularizer encourages the log-density estimates θ̂⊤j φ(x) to be more similar, this basis
design would be reasonable.
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As a specific choice of φ(k)(x), we use a Gaussian kernel:

ψ
(k)
j (x) = ∂j exp

(
−
‖x− ck‖

2

2σ2

)

=
c
(j)
k − x

(j)

σ2
exp

(
−
‖x− ck‖

2

2σ2

)
,

where ck are the centers of the kernels, and σ > 0 is the Gaussian bandwidth.

4.4 Hyper-parameter tuning

As in LSLDG, the hyper-parameters, which are the ℓ2-regularization parameters λj,
the Gaussian bandwidth σ, and the multi-task parameters γ, γj,j′, can be cross-validated
in MT-LSLDG. The procedure of the K-fold cross-validation is as follows: First, we
randomly partition the set of training samples Str into K folds F1, . . . , FK . Next, for each
k = 1, . . . , K, we estimate the log-density gradient using the samples in Str \ Fk , which

is denoted by ĝ
(k)
j , and then calculate the LSLDG scores for the samples in Fk as J

(k)
CV:

J
(k)
CV =

1

|Fk|

∑

x∈Fk

ĝ
(k)
j (x)2 +

2

|Fk|

∑

x∈Fk

∂ĝ
(k)
j (x)

∂x(j)
.

We average these LSLDG scores to obtain the K-fold cross-validated LSLDG score:

JCV =
1

K

K∑

k=1

J
(k)
CV.

Finally, we choose the hyper-parameters that minimize JCV. Throughout this paper, we
set K = 5.

When the number of similarity parameters γj,j′ is large (i.e. the data dimensionality
is high), cross-validation may be computationally inefficient. In this case, we may use

the heuristic procedure which alternatingly updates the estimates θ̂j and the similarity
parameters γj,j′ as described in Algorithm 1, where α is a hyper-parameter to be selected
by cross-validation. In the update formula (5), the procedure determines the similarity
parameter γj,j′ to be used in the next iteration depending on how close the estimated

parameters θ̂j and θ̂j′ are.

4.5 Optimization algorithms in MT-LSLDG

Here, we develop two algorithms for minimizing (3). One algorithm is to directly evaluate
the analytic solution and the other is an iterative method based on block coordinate
descent (Warga, 1963).
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Algorithm 1 Similarity parameter tuning.

γj,j′ ← 1 for every j = 1, . . . , d; j′ = 1, . . . , d.
repeat

With the current values of γj,j′, calculate the estimates as

(θ̂1, . . . , θ̂d)← arg min
(θ1,...,θd)

J(θ1, . . . , θd).

for j = 1, . . . , d; j′ = 1, . . . , d do

γj,j′ ← exp(−‖θj − θj′‖
2/α2). (5)

end for
until γj,j′ converges for every j,= 1, . . . , d; j′ = 1, . . . , d.

4.5.1 Analytic solution

For simplicity, we assume the similarity parameters are symmetric: γj,j′ = γj′,j. Then,
the objective function J(θ1, . . . , θd) can be expressed as a quadratic function in terms of
θ = (θ⊤1 , . . . , θ

⊤
d )

⊤ as

J(θ) = θ⊤(G+C ⊗ Ib)θ + 2θ⊤h,

where

G = diag(G1, . . . ,Gd), h = (h⊤
1 , . . . ,h

⊤
d )

⊤,

C := diag(λ1, . . . , λd) + γ diag

(
d∑

j=1

γ1,j, . . . ,
d∑

j=1

γd,j

)
− γΓ,

[Γ]j,j′ = γj,j′, diag(·, . . . , ·) is the block-diagonal matrix whose diagonal blocks are its

arguments, and ⊗ denotes the Kronecker product. The minimizer θ̂ of J(θ) is analytically
computed by

θ̂ = argmin
θ

J(θ) = −(G+C ⊗ Ib)
−1h. (6)

4.5.2 Block coordinate descent (BCD) method

Direct computation of the analytic solution (6) involves inversion of a db × db matrix.
This may be not only expensive in terms of computation time but also infeasible in terms
of memory space when the dimensionality d is very large.

Alternatively, we propose an algorithm based on block coordinate descent
(BCD) (Warga, 1963). It is an iterative algorithm which only needs manipulation of
a relatively small b× b matrix at each iteration. This alleviates the memory size require-
ment and hopefully reduces computation time if the number of iterations is not large.
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Algorithm 2 Block coordinate descent (BCD) algorithm.

Initialize θ̃1, . . . , θ̃d.
repeat

for j = 1, . . . , d do

θ̃j ← argmin
θj

J(θ̃1, . . . , θ̃j−1, θj, θ̃j+1, . . . , θ̃d)

=

(
Gj + λjIb + 2γ

∑

j 6=j′

γj,j′Ib

)−1(
−hj + 2γ

∑

j′ 6=j

γj,j′θ̃j′

)
. (7)

end for
until θ̃1, . . . , θ̃d converge.

A pseudo code of the algorithm is shown in Algorithm 2. At each update (7) in

the algorithm, only one vector θ̃j is optimized in a closed-form while fixing the other

parameters θ̃j′ (j
′ 6= j). The update (7) only requires computing the inverse of a b × b

matrix, which seems to be computationally advantageous over evaluating the analytic
solution in terms of the computation cost and memory size requirement.

Another important technique to reduce the overall computation time is to use warm
start initialization: when the optimal value of γ is searched for by cross-validation, we
may use the solutions θ̃1, . . . , θ̃d obtained with γ as initial values for another γ.

5 Experiments on log-density gradient estimation

In this section, we illustrate the behavior of the proposed method and experimentally
investigate its performance.

5.1 Experimental setting

In each experiment, training samples {xi}
n
i=1 and test samples {x′

i′}
n′

i′=1 are drawn in-
dependently from an unknown density p(x). We estimate ∇ log p(x) from the training
samples, and then evaluate the estimation performance by the test score

Jte(ĝ) =
d∑

j=1

[
1

n′

n′∑

i′=1

ĝj(x
′
i′)

2 +
2

n′

n′∑

i′=1

∂j ĝj(x
′
i′)

]
,

where ĝ(x) = (ĝ1(x), . . . , ĝd(x))
⊤ is an estimated log-density gradient. This score is

an empirical approximation of the expected squared loss of ĝ(x) over the test samples
without the constant Cj (see Section 2.2), and a smaller score means a better estimate.

We compare the following three methods:
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• The multi-task LSLDG (MT-LSLDG): our method proposed in Section 4.

• The single-task LSLDG (S-LSLDG): the existing method (Beran, 1976; Cox, 1985)
reviewed in Section 2.2. This method agrees with MT-LSLDG at γ = 0.

• The common-parameter LSLDG (C-LSLDG): LSLDG with common parameters
θ′ = θ1 = · · · = θd learned simultaneously. The solution is given as

θ̂′ = argmin
θ′

[
θ′⊤

d∑

j=1

Gjθ
′ + 2

d∑

j=1

h⊤
j θ

′ + λ‖θ′‖2

]

= −

(
d∑

j=1

Gj + λIb

)−1 d∑

j=1

hj,

where λ ≥ 0 is the ℓ2-regularization parameter. This method agrees with MT-
LSLDG at the limit γ →∞.

In all the methods, we set the number of basis functions as b = min{50, n}, and
randomly choose the kernel centers c1, . . . , cb uniformly from training samples {xi}

n
i=1

without replacement. For hyper-parameters, we use the common ℓ2-regularization pa-
rameter λ and bandwidth parameter σ among all the dimensions, λ1 = · · · = λd = λ and
σ1 = · · · = σd = σ. We also set all the similarity parameters as γj,j′ = 1, which assumes
that all dimensions are equally related to each other. In order to examine whether this
assumption is reasonable, we experimentally compare MT-LSLDG with this assumption
and that with the similarity parameter tuning (Algorithhm 1) in Section 5.2.

5.2 Artificial data

We conduct numerical experiments on artificial data to investigate the basic behavior of
MT-LSLDG. As data density p(x), we consider the following two cases:

• Single Gaussian: The d-dimensional Gaussian density whose mean is 0 and whose
covariance matrix is the diagonal matrix with the first half of the diagonal elements
are 1 and the others are 5.

• Double Gaussian: A mixture of two d-dimensional Gaussian densities with mean
zero and (5, 0, . . . , 0)⊤ and identity covariance matrix. The mixing coefficients are
1/2.

The dimensionality d and sample size n are specified later.
First, we investigate whether MT-LSLDG improves the estimation accuracy of LSLDG

at appropriate γ. We prepare datasets with different dimensionalities d = 2, 10, 20
and sample sizes n = 10, 30, 50. MT-LSLDG is applied to the datasets at each
γ ∈ {0, 0.1, 0.25, 0.5, 1, 2.5, 5, 10,∞}. The Gaussian bandwidth σ and the ℓ2-regularization
parameter λ are chosen by 5-fold cross-validation as described in Section 4 from the
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Figure 2: Average (and standard errors) of relative test scores over 100 runs. The relative
test scores refer to test scores from which the test score of S-LSLDG is subtracted. The
black dotted lines indicate the relative score zero.

candidate lists {10−1, 10−0.25, 100.5, 101.25, 102} and {10−3, 10−2, 10−1}, respectively. The
solution of MT-LSLDG is computed analytically as in (6).

The results are plotted in Figure 2. In the figure, the relative test score is defined as the
test score from which the test score of S-LSLDG is subtracted, and thus negative relative
scores indicate that MT-LSLDG improved the performance of S-LSLDG. When d = 2,
MT-LSLDG does not improve the performance for any γ values (Figure 2(a) and 2(b)).
However, for higher-dimensional data, the performance is improved at appropriate γ val-
ues (e.g., γ = 0.5 for d = 20 in Figure 2(a) and γ = 2.5 for d = 20 in Figure 2(b)).
Similar improvement is observed also for smaller sample size (e.g., n = 10 and n = 30) in
Figure 2(c) and Figure 2(d).

These results confirm that MT-LSLDG improves the performance of S-LSLDG at an
appropriate γ value when data is relatively high-dimensional and the sample size is small.
Since such γ is usually unknown in advance, we need to find a reasonable value in practice.
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Table 1: Averages (and standard errors) of test scores on the artificial data with cross-
validation over 100 runs. MT-LSLDG-T in the table refers to MT-LSLDG with similarity
parameter tuning by Algorithm 1. In each row, the best and comparable to the best
scores in terms of paired t-test with significance level 5% are emphasized in bold face.

Density n MT-LSLDLG MT-LSLDG-T S-LSLDG C-LSLDG

Single
Gaussian

10 −2.87 (0.22) −2.33 (0.37) 0.37 (0.31) −2.58 (0.07)
30 −5.34 (0.04) −5.38 (0.02) −4.97 (0.08) −3.29 (0.03)
50 −5.63 (0.02) −5.64 (0.01) −5.55 (0.02) −4.13 (0.04)

Double
Gaussian

10 −6.83 (0.14) −6.80 (0.17) 1.01 (0.54) −5.02 (0.12)
30 −8.45 (0.03) −8.45 (0.07) −7.63 (0.10) −7.84 (0.04)
50 −8.67 (0.02) −8.71 (0.03) −8.29 (0.10) −8.48 (0.02)

Density d MT-LSLDG MT-LSLDG-T S-LSLDG C-LSLDG

Single
Gaussian

2 0.20 (0.19) 0.21 (0.15) −0.11 (0.15) 0.09 (0.15)
10 −5.34 (0.04) −5.38 (0.02) −4.97 (0.08) −3.29 (0.03)
20 −10.77 (0.03) −10.76 (0.04) −9.98 (0.13) −6.39 (0.01)

Double
Gaussian

2 0.54 (0.22) 0.51 (0.25) 0.50 (0.27) 0.19 (0.22)
10 −8.45 (0.03) −8.45 (0.07) −7.63 (0.10) −7.84 (0.04)
20 −16.88 (0.14) −17.06 (0.125) −14.90 (0.10) −15.26 (0.06)

Next, we investigate whether an appropriate γ value can be chosen by cross-validation.
In this experiment, the cross-validation method in Section 4.3 is performed to choose γ
as well. The candidates of γ is {0, 0.1, 0.25, 0.5, 1, 2.5, 5, 10,∞}. The other experimental
settings such as the data generation and all the LSLDGs are the same as in the last experi-
ment except that we also run MT-LSLDG with similarity parameter tuning by Algorithm 1
with cross-validated α. The candidate list for α is {10−1, 10−1/4, 102/4, 105/4, 102}.

Table 1 shows that MT-LSLDG improves the performance especially when the dimen-
sionality of data is relatively high and the sample size is small. These results indicate that
the proposed cross-validation method allows us to choose a reasonable γ value. In most
cases of the experiments, MT-LSLDG with γj,j′ = 1 gives estimation accuracy comparable
to that with the similarity parameter tuning procedure. In the remaining experiments,
we use cross-validated γ and the fixed γj,j′ = 1.

5.3 Benchmark data

In this section, we demonstrate the usefulness of MT-LSLDG in gradient estimation on
various benchmark datasets. This experiment uses some IDA benchmark datasets (Rätsch
et al., 2001) and UCI benchmark datasets (Catlett, 1991; Kaya et al., 2012; Lucas et al.,
2013; Tüfekci, 2014; Lichman, 2013). All the datasets are standardized in advance.

For MT-LSLDG, the hyper-parameters σ, λ and γ are chosen by cross-validation. The
candidate lists are σ ∈ {0.1, 0.25, 0.5, 1, 2.5, 5, 10}, λ ∈ {10−5, 10−4, . . . , 10−1} and γ ∈
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Table 2: Averages (and standard errors) of the test scores on the benchmark datasets. In
each dataset, the best and comparable to the best scores in terms of paired t-test with
significance level 5% are emphasized in bold face. The number of trials is 20 for the image
and splice dataset, and is 100 for the other datasets.

Dataset (d, n) MT-LSLDG S-LSLDG C-LSLDG

thyroid (5, 140) −1.076× 102
−1.083× 102 −5.149× 10

(0.066× 102) (0.065× 102) (0.012× 10)
CCPP (5, 200) −3.661× 10 −3.585× 10 −3.232× 10

(0.120× 10) (0.125× 10) (0.187× 10)
diabetes (8, 468) −2.240× 10 −2.211× 10 −1.510× 10

(0.029× 10) (0.034× 10) (0.008× 10)
flare-solar (9, 666) −1.341× 107 6.626× 108 −1.342× 107

(0.021× 107) (3.251× 108) (0.021× 107)
breast-cancer (9, 200) −2.535× 103 −2.169× 102 −2.535× 103

(0.195× 103) (0.294× 102) (0.195× 103)
shuttle (9, 1000) −2.664× 103

−2.974× 103 −1.063× 103

(0.321× 103) (0.109× 103) (0.038× 103)
image (18, 1300) −2.993× 103 1.020× 104 −3.289× 103

(0.541× 103) (1.246× 104) (0.027× 103)
popfailures (18, 50) −2.110× 102 −2.067× 102 −2.108× 102

(0.002× 102) (0.003× 102) (0.002× 102)
german −3.042× 102

−2.960× 102 −1.999× 10
(0.140× 102) (0.092× 102) (0.373× 10)

twonorm (20, 400) −2.233× 10 −2.232× 10 −2.213× 10
(0.001× 10) (0.001× 10) (0.002× 10)

waveform (21, 400) −4.332× 10 −4.321× 10 −3.526× 10
(0.003× 10) (0.002× 10) (0.010× 10)

splice (60, 1000) −2.484× 103 −6.027× 10 −2.382× 103

(0.379× 103) (0.345× 10) (0.393× 103)

{0, 10−5, 10−4, . . . , 101, 102,∞}, respectively. For S-LSLDG and C-LSLDG, the candidate
lists of σ and λ are the same as MT-LSLDG. The solution of MT-LSLDG is computed
by the BCD algorithm described in Section 4.5.2.

The results are presented in Table 2. MT-LSLDG significantly improves the perfor-
mance of either S-LSLDG or C-LSLDG on most of the datasets.

We also run MT-LSLDG for three different samples sizes n for each of the datasets with
changing γ from 0 to ∞. Figure 3 summarizes the results of the experiments. The plots
show that performance highly depends on γ, and that the best γ differs from one dataset
to another, which means that it is very important to select a good γ by cross-validation.
Also, we can see that the blue plot, which is that for the smallest n, shows the largest
improvement over S-LSLDG in most of the datasets. This implies that MT-LSLDG is
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Figure 3: Average (and standard errors) of relative test scores on the IDA datasets and
the other real datasets. The relative test scores refer to test scores from which the test
score of S-LSLDG is subtracted. The black dotted lines indicate the relative score zero.
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Figure 4: Transition of data points during a mode-seeking process. Data samples are
drawn from a mixture of Gaussians, and the data points sampled from the same Gaussian
component are specified by the same color (red, green, or blue) and marker (plus symbol,
circle, or triangle). White squares indicate the points to which data points converged.

advantageous especially when the sample size is small.

6 Application to mode-seeking clustering

In this section, we apply MT-LSLDG to mode-seeking clustering and experimentally
demonstrate its usefulness.

6.1 Mode-seeking clustering

A practical application of log-density gradient estimation is mode-seeking cluster-
ing (Fukunaga and Hostetler, 1975; Cheng, 1995; Comaniciu and Meer, 2002; Sasaki
et al., 2014). Mode-seeking clustering methods update each data point toward a nearby
mode by gradient ascent, and assign the same clustering label to the data points which
converged to the same mode (Figure 4). Their notable advantage is that we need not
specify the number of clusters in advance. Mode-seeking clustering has been successfully
applied to a variety of real world problems such as object tracking (Comaniciu et al.,
2000), image segmentation (Comaniciu and Meer, 2002; Sasaki et al., 2014), and line edge
detection in images (Bandera et al., 2006).

In mode-seeking, the essential ingredient is the gradient of the data density. To esti-
mate the gradients, mean shift clustering (Fukunaga and Hostetler, 1975; Cheng, 1995;
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Comaniciu and Meer, 2002), which is one of the most popular mode-seeking clustering
methods, employs the two-step method of first estimating the data density by kernel
density estimation and then taking its gradient. However, as we mentioned earlier, this
two-step method does not work well since accurately estimating the density does not
necessarily lead to an accurate estimate of the gradient.

In order to overcome this problem, LSLDG clustering (Sasaki et al., 2014) adopted
LSLDG instead of the two-step method. Sasaki et al. (2014) also provided a practically
useful fixed-point algorithm for mode-seeking as in mean shift clustering (Cheng, 1995):
When the partial derivative of a vector of Gaussian kernels ψj(x) = ∂jφ(x) is used as

the vector of basis functions, the model gj(x) = θ̂
⊤
j ψj(x) can be transformed as

ĝj(x) =
b∑

k=1

θ̂
(k)
j

c
(j)
k − x

(j)

σ2
φ(k)(x)

=
1

σ2

b∑

k=1

θ̂
(k)
j c

(j)
k φ(k)(x)−

x(j)

σ2

b∑

k=1

θ̂
(k)
j φ(k)(x)

=

[
1

σ2

b∑

k=1

θ̂
(k)
j φ(k)(x)

][∑b
k′=1 θ̂

(k′)
j c

(j)
k′ φ

(k′)(x)
∑b

k′=1 θ̂
(k′)
j φ(k′)(x)

− x(j)

]
,

where we assume that 1
σ2

∑b
k=1 θ̂

(k)
j φ(k)(x) is nonzero. Setting ĝj(x) to zero yields a fixed-

point update formula as

x(j) ←

∑b
k′=1 θ̂

(k′)
j c

(j)
k′ φ

(k′)(x)
∑b

k′=1 θ̂
(k′)
j φ(k′)(x)

.

It has been experimentally shown that LSLDG clustering performs significantly better
than mean-shift clustering (Sasaki et al., 2014).

Here, we apply MT-LSLDG to LSLDG clustering and investigate if the performance
is improved in mode-seeking clustering as well for relatively high-dimensional data.

6.2 Experiments

Next, we conduct numerical experiments for mode-seeking clustering.

6.2.1 Experimental setting

We apply the following four clustering methods to various datasets:

• MT-LSLDGC: LSLDG clustering with MT-LSLDG.

• S-LSLDGC: LSLDG clustering with S-LSLDG (Sasaki et al., 2014).

• C-LSLDGC: LSLDG clustering with C-LSLDG (Sasaki et al., 2014).
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Table 3: Averages (and standard errors) of ARIs on artificial data. In each row, the best
and comparable to the best ARI in terms of unpaired t-test with significance level 5% is
emphasized in bold face. The number of trials is 100.

d MT-LSLDGC S-LSLDGC C-LSLDGC Mean-shift

2 0.992 (0.035) 0.973 (0.125) 0.992 (0.036) 0.984 (0.044)
10 0.993 (0.004) 0.994 (0.003) 0.994 (0.004) 0.042 (0.022)
15 0.983 (0.023) 0.982 (0.054) 0.877 (0.217) 0.000 (0.000)
20 0.827 (0.190) 0.586 (0.208) 0.716 (0.352) 0.036 (0.037)

• Mean-shift: mean shift clustering (Comaniciu and Meer, 2002).

For MTL-, S-, and C-LSLDG, all the hyper-parameters are cross-validated as described
in Section 4.3, and for mean-shift, log-likelihood cross-validation is used.

We evaluate the clustering performance by the adjusted Rand index (ARI) (Hubert
and Arabie, 1985). ARI gives one to the perfect clustering assignment and zero on average
to a random clustering assignment. A larger ARI value means a better clustering result.

6.2.2 Artificial data

First, we conduct experiments on artificial data. The density of the artificial data
is a mixture of three d-dimensional Gaussian densities with means (0, 2, 0, . . . , 0),
(−2,−2, 0, . . . , 0), and (2,−2, 0, . . . , 0), covariance matrices 1√

2π
Id, and mixing coef-

ficients 0.4,0.3,0.3. The candidate lists of the hyper-parameters are the following:
σ ∈ {10−1, 10−7/9, 10−5/9, . . . , 105/9, 107/9, 101}, λ ∈ {10−5, 10−4, 10−3, 10−2, 10−1} and,
γ ∈ {0, 10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102,∞}.

The results are shown in Table 3. We can see that MT-LSLDGC performs well espe-
cially for the largest dimensionality d = 20.

6.2.3 Real data

Next, we perform clustering on real data. The following three datasets are used:

• Accelerometry data: 5-dimensional data used in (Hachiya et al., 2012) for hu-
man activity recognition extracted from mobile sensing data available from http:

//alkan.mns.kyutech.ac.jp/web/data. The number of classes is 3. In each run
of experiment, we use randomly chosen 100 samples from each class. The total
number of samples is 300.

• Vowel data: 10-dimensional data of recorded British English vowel sounds avail-
able from https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+

(Vowel+Recognition+-+Deterding+Data). The number of classes is 11 In each
run of experiment, we use randomly chosen 500.
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Table 4: Averages (and standard errors) of ARIs on real data. In each row, the best
and comparable to the best ARI in terms of paired t-test with significance level 5% is
emphasized in bold face. The number of trials is 100 for the accelerometry data and the
sat-image data, and is 20 for the speech data.

dataset (d, n) MT-LSLDGC S-LSLDGC C-LSLDGC Mean-shift

accelerometry (5, 300) 0.40 (0.01) 0.53 (0.02) 0.24 (0.01) 0.26 (0.04)
vowel (10, 500) 0.15 (0.00) 0.15 (0.00) 0.15 (0.00) 0.04 (0.00)

sat-image (36, 2000) 0.48 (0.00) 0.43 (0.01) 0.35 (0.00) 0.00 (0.00)
speech (50, 400) 0.17 (0.02) 0.00 (0.00) 0.15 (0.01) 0.00 (0.00)

• Sat-image data: 36-dimensional multi-spectral satellite image available from https:

//archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite). The
number of classes is 6. In each run of experiment, we use randomly chosen 2000
samples.

• Speech data: 50-dimensional voice data by two French speakers (Sugiyama et al.,
2014). The number of classes is 2. In each run of experiment, we use randomly
chosen 200 samples from each class. The total number of samples is 400.

For MT-LSLDG, the hyper-parameters are cross-validated using the candidates,
σ ∈ {10−1, 10−6/9, 10−3/9, . . . , 1012/9, 1015/9, 102}, λ ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 100}
and γ ∈ {10−5, 10−4, . . . , 101, 102}, except that we use relatively small candidate lists
σ ∈ {0.5, 1, 2.5, 5, 10}, λ ∈ {0.003, 0.01, 0.1, 1} and γ ∈ {0.1, 1, 10} for the speech data
since it has large dimensionality and optimization is computationally expensive. For S-
and C-LSLDG, we used the same candidates of MT-LSLDG for σ and λ. For mean shift
clustering, the Gaussian kernel is employed in KDE, and the bandwidth parameter in
the kernel is selected by 5-fold cross-validation with respect to the log-likelihood of the
density estimate from the same candidates of MT-LSLDG for σ.

The results are shown in Table 4. For the accelerometry data whose dimensionality
is only five, S-LSLDGC gives the best performance and MT-LSLDGC does not improve
the performance, although MT-LSLDGC performs better than C-LSLDGC.

On the other hand, for the higher-dimensional dataset, the vowel data, the sat-image
data, and the speech data, the performance of MT-LSLDGC is the best or comparable to
the best. These results indicate that MT-LSLDG is a promising method in mode-seeking
clustering especially when the dimensionality of data is relatively large.

7 Conclusion

We proposed a multi-task log-density gradient estimator in order to improve the existing
estimator in higher-dimensional cases. Our fundamental idea is to exploit the relatedness
inhering in the partial derivatives through regularized multi-task learning. As a result,
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we experimentally confirmed that our method significantly improves the accuracy of log-
density gradient estimation. Finally, we demonstrated its usefulness of the proposed
log-density gradient estimator in mode-seeking clustering.

Although fixing the similarity parameters γj,j′ to be 1 worked reasonably well in our
experiments, carefully tuning them may further improve the estimation accuracy. A good
practice may be to use the heuristic procedure given in Algorithm 1, whose properties
have yet to be analyzed. Another way is to use Bayesian optimization techniques such
as the Gaussian process approaches studied in Bergstra et al. (2013) and Snoek et al.
(2012), which have been experimentally shown to be reasonably fast even in large-scale
hyper-parameter tuning tasks.

As log-density gradient is a vector-valued function learning problem, one may consider
applying kernel-based methods for such problems (Micchelli et al., 2005; Caponnetto et al.,
2008). Micchelli et al. (2005) showed a representer theorem for a wide class of optimiza-
tions in a reproducing kernel Hilbert space of vector-valued functions whose objective
functional depends only on outputs of the function to be optimized. However, it may not
be possible to directly employ those methods in the LSLDG framework since the LSLDG
objective functional also depends on the gradients besides outputs of the function. It is
an important open question whether LSLDG also admits a similar representer theorem
or not.

Log-density gradient estimation would be useful in a measure for non-Gaussianity (Hu-
ber, 1985) and other further fundamental statistical topics (Singh, 1977). In the future
work, we will investigate the performance of our proposed method in these topics.
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