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Abstract

In many real-world classification problems, the class balance often changes between
training and test datasets, due to sample selection bias or the non-stationarity
of the environment. Naive classifier training under such changes of class balance
systematically yields a biased solution. It is known that such a systematic bias can
be corrected by weighted training according to the test class balance. However, the
test class balance is often unknown in practice. In this paper, we consider a semi-
supervised learning setup where labeled training samples and unlabeled test samples
are available and propose a class balance estimator based on the energy distance.
Through experiments, we demonstrate that the proposed method is computationally
much more efficient than existing approaches, with comparable accuracy.
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1 Introduction

A fundamental assumption in supervised machine learning is that training and test data
follow the same probability distribution. However, in real-world data, this assumption
does not necessarily hold due to intrinsic sample selection bias and non-stationarity of
the environment [1], and naive training yields a biased solution [2]. In this paper, we
consider the situation called the class balance change in classification [3], where only the
class-prior probabilities change between the training and test phases. In principle, the
bias caused by the class balance change can be corrected by weighted training according
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to the class ratio of the test data. However, in practice, the test class balance is often
unknown and thus it needs to be estimated from data.

So far, semi-supervised class balance estimators from labeled training samples and un-
labeled test samples have been developed, which are based on fitting a mixture of class-
wise training input distributions to the test input distribution. A seminal method [4]
adopts the expectation-maximization (EM) algorithm [5] to estimate the class ratio. An-
other earlier paper [3] showed that the EM-based method can be interpreted as indirectly
fitting a mixture of class-wise training input distributions to the test input distribution
under the Kullback-Leibler (KL) divergence [6], and the EM-based method was improved
by directly estimating the KL divergence without density estimation [7, 8]. Furthermore,
to overcome the high sensitivity of the KL divergence to outliers [9], robust variants based
on the Pearson divergence [10] and the L2 distance were developed [3, 11].

Another line of research uses the maximum mean discrepancy (MMD) [12] for the
mixture model fitting, which measures the distance between embeddings of probability
distributions in a reproducing kernel Hilbert space (RKHS) [13]. A sophisticated im-
plementation was proposed recently that combines MMD with multiple kernel learning
(MKL)[14].

The divergence-based methods reviewed above [3, 11] are equipped with cross-
validation (CV), and therefore all tuning parameters can be objectively optimized. Thanks
to this property, the divergence-based methods work very well in practice, although CV is
computationally rather expensive. On the other hand, choosing a kernel function in the
MMD-based method is not straightforward because changing the kernel function corre-
sponds to changing the error metric and thus CV cannot be employed. Using the median
distance of samples as the Gaussian kernel width is a popular heuristic in MMD [12], but
this can cause significant performance degradation in practice[15]. Using MKL for MMD
is potentially powerful, but this implementation is computationally highly demanding and
thus less practical [14].

In this paper, we propose a novel class balance estimator based on energy distance
[16]. Energy distance may be interpreted as a special case of MMD with a particular
kernel function [17], and thus our contribution in this paper can be regarded as providing
a practical choice of the kernel function to the MMD-based method. Since the proposed
method does not have any tuning parameter, it is extremely simple and computationally
highly efficient. Through experiments, we demonstrate the practical usefulness of the
proposed method.

2 Problem Formulation

In this section, we formulate the problem of class-prior estimation under semi-supervised
leaning setup.

Suppose that we are given a set of training input-output paired samples,

{(xi, yi) | xi ∈ Rd, yi ∈ {1, . . . , c}}ni=1,
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where d denotes the dimensionality of input vector xi and c denotes the number of classes.
The training samples are assumed to be independent and identically distributed to a
probability distribution with density p(x, y). Let ny be the number of training samples
in class y, which satisfies

∑c
y=1 ny = n.

In addition to the training samples, suppose that we are given a set of input-only test
samples {x′

i′}n
′

i′=1 which are independent and identically distributed to another probability
distribution with density

p′(x) =
c∑

y=1

p′(x, y).

Note that test output samples {y′i′}n
′

i′=1 for {x′i′}n
′

i′=1 are not provided, i.e., we are consid-
ering the semi-supervised learning setup [18].

We assume that the class-conditional input densities are common between the training
and test samples, but the class-prior probabilities are different:

p(x|y) = p′(x|y) and p(y) ̸= p′(y).

Note that, under this setup, the training and test joint densities p(x, y) and p′(x, y) as
well as the training and test input densities p(x) and p′(x) are generally different. Our
goal is to estimate p′(y) from the labeled training samples {(xi, yi)}ni=1 and the unlabeled
test samples {x′

i′}n
′

i′=1.
The basic strategy to directly estimate p′(y), proposed in [3], is to fit a mixture of

class-wise training input densities,

pθ(x) =
c∑

y=1

θyp
′(x|y) =

c∑
y=1

θyp(x|y),

to a test input density p′(x) under some divergence measure. Here {θy}cy=1 are parameters
that satisfy

∀y 0 ≤ θy ≤ 1 and
c∑

y=1

θy = 1,

which correspond to {p′(y)}cy=1. A naive approach to solving this fitting problem is
the two-step procedure of first estimating densities p(x|y) and p′(x) from training and
test samples and then approximately computing a divergence between pθ(x) and p′(x).
However, since density estimation is known to be a hard statistical inference problem [19],
avoiding density estimation in divergence estimation is more sensible [20]. In the next
section, we review existing class-prior estimators that do not involve density estimation
under various divergence measures.

3 Existing Class-Prior Estimators

In this section, we review existing class-prior estimators under various divergences.
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3.1 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence [6] is one of the standard divergence measures in
statistics and machine learning, and the KL divergence from pθ to p′ is defined as follows:

KL(pθ∥p′) =
∫
pθ(x)log

pθ(x)

p′(x)
dx.

The idea of direct KL divergence estimation without density estimation [7, 8] is to directly

approximate the density ratio function pθ(x)
p′(x)

by a model rβ(x), parameterized with β, by

minimizing the generalized KL divergence from pθ to rβp
′:

gKL(pθ∥rβp′) =
∫
pθ(x)log

pθ(x)

rβ(x)p′(x)
dx− 1 +

∫
rβ(x)p

′(x)dx.

As the density ratio model, let us employ the Gaussian kernel model,

rβ(x) =
b∑

l=0

βlψl(x), (1)

where

ψ0(x) = 1 and ψl(x) = exp

(
−∥x− xl∥2

2σ2

)
. (2)

Then the regularized empirical optimization problem is given by

max
β

[
c∑

y=1

θy
ny

∑
i:yi=y

log

(
b∑

l=0

βlψl(xi)

)
1

n′

n′∑
i′=1

b∑
l=0

βlψl(x
′
i′)− λ

b∑
l=1

β2
l

]
,

where the second term corresponds to the normalization
∫
rβ(x)p

′(x)dx = 1, the third
term is the quadratic regularizer and λ ≥ 0 is the regularization parameter. Note that
tuning parameters such as σ and λ can be optimized by cross-validation.

With the solution β̂ of the above optimization problem, the KL divergence KL(pθ∥p′)
can be estimated as

K̂L(pθ∥p′) =
c∑

y=1

θy
ny

∑
i:yi=y

logrβ̂(xi).

The class-prior {θy}cy=1 that minimizes the above KL divergence is typically chosen by
searching from a set of candidate values [3].
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3.2 Pearson Divergence

The Pearson (PE) divergence [10] is defined as

PE(pθ∥p′) =
∫
p′(x)

(
pθ(x)

p′(x)
− 1

)2

dx.

An advantage of the PE divergence over the KL divergence is that it does not include
the log function, which is highly non-linear around zero, and thus estimation with the PE
divergence would be more robust against outliers.

Furthermore, the PE divergence can be directly estimated without density estimation

analytically [21]. More specifically, the density ratio function pθ(x)
p′(x)

is modeled in the same

way as Eq.(1), and the parameter β is learned to minimize the squared error to the true
density ratio:

min
β

∫
p′(x)

(
pθ(x)

p′(x)
− rβ(x)

)2

dx.

With empirical approximation and ℓ2 regularization, the solution β̂ can be obtained an-
alytically as

β̂ = min
β

[
β⊤Ĝβ − 2β⊤Ĥθ + λβ⊤Rβ

]
=
(
Ĝ+ λR

)−1
Ĥθ,

where λ ≥ 0 is the regularization parameter, R is the identity matrix with the first
element zero, Ĝ and Ĥ are defined as

Ĝl,l′ =
1

n′

n′∑
i′=1

ψl(x
′
i′)

⊤ψl′(x
′
i′),

Ĥl,y =
1

ny

∑
i:yi=y

ψl(xi),

and ψl(x) is a basis function defined in Eq.(2). Note that tuning parameters such as σ
and λ can be optimized by cross-validation.

With the solution β̂, the PE divergence PE(pθ∥p′) can be estimated as

P̂E(pθ∥p′) = β⊤Ĥθ − 1

2
β⊤Ĝβ − 1

2
.

The class-prior {θy}cy=1 that minimizes the above PE divergence is typically chosen by
searching from a set of candidate values [3].
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3.3 L2 Distance

The KL and PE divergences are members of the f -divergence class [22, 23], containing

the density ratio function pθ(x)
p′(x)

. Another class of distance measures is the Lt distance for

t ≥ 0, which contains the density difference function pθ(x)− p′(x):

Lt(p
θ, p′) =

(∫ ∣∣pθ(x)− p′(x)
∣∣tdx) 1

t

.

Although density ratio function pθ(x)
p′(x)

can be unbounded (e.g., the ratio of Gaussian densi-

ties with the same variance and different means), density difference function pθ(x)−p′(x)
is always bounded as long as pθ(x) and p′(x) are both bounded. Thus, divergence
measures based on the density difference are expected to be more stable. Note that f -
divergences are invariant under transformation of x, while the Lt distance is symmetric,
i.e., Lt(p

θ, p′) = Lt(p
′, pθ).

The idea of direct L2 distance estimation without density estimation [11] is to directly
approximate the density difference function pθ(x)−p′(x) by a model fα(x) with parameter
α estimated by minimizing the squared error:∫ (

fα(x)−
(
pθ(x)− p′(x)

))2
dx.

Let us employ a Gaussian kernel density difference model,

fα(x) =
n+n′∑
l=1

αlψl(x),

where

ψl = exp

(
−∥x− cl∥2

2σ2

)
.

cl denotes (c1, . . . , cn+n′) = (x1, . . . ,xn,x
′
1, . . .x

′
n′). With empirical approximation and

ℓ2 regularization, the solution α̂ can be obtained analytically as

α̂ = min
α

[
α⊤Uα− 2α⊤v̂ + λα⊤α

]
=
(
U + λI

)−1
v̂,

where, for d being the dimensionality of x,

Ul,l′ = (πσ2)
d
2 exp

(
−∥cl − cl′∥2

4σ2

)
,

v̂l =
1

n′

n′∑
i′=1

ψl(x
′
i′)−

c∑
y=1

θy
ny

∑
i:yi=y

ψl(xi),
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λ ≥ 0 is the regularization parameter and I is the identity matrix. Note that tuning
parameters such as σ and λ can be optimized by cross-validation.

With the solution α̂, the L2 distance L2(p
θ, p′) can be estimated as

L̂2(p
θ, p′) = 2v̂⊤α̂− α̂⊤Uα̂.

The class-prior {θy}cy=1 that minimizes the L2 distance is typically chosen by searching
from a set of candidate values [11].

3.4 Maximum Mean Discrepancy

Maximum mean discrepancy (MMD) [24] measures the distance between embeddings of
probability distributions in a reproducing kernel Hilbert space (RKHS) [13].

Let x, x̌ and x′, x̌′ be samples drawn from the probability distributions with densities
pθ and p′, respectively, and ψ be a characteristic kernel [24] such as the Gaussian kernel.
Then MMD is defined

MMD(pθ, p′) = Ex,x̌∼pθ [ψ(x, x̌)] + Ex′,x̌′∼p′ [ψ(x
′, x̌′)]

− 2Ex∼pθ,x̌′∼p′ [ψ(x, x̌
′)],

where E denotes the expectation. For any characteristic kernel ψ, MMD(pθ, p′) = 0 if and
only if pθ = p′.

An advantage of MMD is that it can be immediately estimated from samples. However
a practical difficulty of using MMD is that the performance depends on the choice of kernel
function ψ, and cross-validation cannot be used, because changing the kernel function
corresponds to changing the error metric. A popular heuristic in MMD is to use the
median distance of samples as the Gaussian kernel width [12], although this does not
always work well [15]. Recently, an MMD-based class-prior estimator was proposed, which
learns the kernel function by multiple kernel learning [14]. Although this was shown to
work well, it is computationally very expensive.

4 Proposed Method

As shown above, the MMD-based class-prior estimator with a single kernel can be com-
putationally more efficient than the methods based on the KL divergence, the PE diver-
gence, and the L2 distance because no cross-validation is included. However, in practice,
the choice of kernel functions is not straightforward. In this section, we introduce an-
other distance measure called the energy distance [16], and propose to use it in class-prior
estimation.

4.1 Energy Distance

The energy distance is defined as the weighted L2 distance between characteristic func-
tions, which is the inverse Fourier transform of the density function.
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More specifically, the energy distance between pθ and p′ is defined as follows:

ED(pθ, p′) =

∫
Rd

∥ϕpθ(t)− ϕp′(t)∥2
(

π
d+1
2

Γ
(
d+1
2

)∥t∥d+1

)−1

dt,

where ϕp denotes the characteristic function of p, ∥ · ∥ denotes the Euclidean distance,
and Γ(·) is the gamma function. The energy distance has the following properties:

• ED(pθ, p′) = ED(p′, pθ),

• ED(pθ, p′) ≥ 0,

• ED(pθ, p′) = 0 if and only if pθ = p′.

An important property of the energy distance is that ED(pθ, p′) can be equivalently ex-
pressed as

ED(pθ, p′) = 2Ex∼pθ,x̌′∼p′∥x− x̌′∥ − Ex,x̌∼pθ∥x− x̌∥
− Ex′,x̌′∼p′∥x′ − x̌′∥, (3)

under the mild assumptions that Ex∼pθ∥x∥ < ∞ and Ex′∼p′∥x′∥ < ∞. Eq.(3) allows us
to immediately obtain a sample approximation to the energy distance in the same way as
MMD. However, unlike MMD, there is no tuning parameter such as the Gaussian kernel
width. Below, we propose to use the energy distance in class-prior estimation, which we
will demonstrate to be practically useful in the next section.

Actually, the energy distance was shown to be a special case of MMD [17], meaning
that MMD with a certain choice of kernels is reduced to the energy distance. Therefore,
our contribution in this paper can be regarded as providing a practical choice of the kernel
function in the MMD-based method. The resulting proposed method does not contain any
tuning parameter, and thus it is extremely simple and computationally highly efficient.

4.2 Class-Prior Estimation under Energy Distance

Here, we describe the procedure of class-prior estimation based on the energy distance,
which minimizes an empirical approximation of ED(pθ, p′) with respect to θ.

4.2.1 Convexity of ED(pθ, p′) as a Function of θ

ED(pθ, p′) given by Eq.(3) can be more specifically expressed as

ED(pθ, p′) = 2
c∑

y=1

θyEx∼p(x|y),x̌′∼p′∥x− x̌′∥

−
c∑

y,y′=1

θyθy′Ex∼p(x|y),x̌∼p(x|y′)∥x− x̌∥ − Ex′,x̌′∼p′∥x′ − x̌′∥. (4)
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Eq.(4) can be compactly expressed as a function of θ by

J(θ) = −θ⊤Aθ + 2θ⊤s,

where A is the c× c symmetric matrix and s is the c-dimensional vector defined as

Ay,y′ = Ex∼p(x|y),x̌∼p(x|y′)∥x− x̌∥,
sy = Ex∼p(x|y),x′∼p′∥x− x′∥.

To solve min
θ
J(θ), let us begin with rewriting J(θ) using θ̇ = (θ1, . . . , θc−1)

⊤ and θc =

1−
∑c−1

y=1 θ̇y as follows:

J̇(θ̇) = θ̇⊤Bθ̇ − 2θ̇⊤t+ C, (5)

where C is a constant, B is the (c− 1)× (c− 1) symmetric matrix and t is the (c− 1)-
dimensional vector defined as

By,y′ = −Ay,y′ + Ay,c + Ac,y′ − Ac,c (6)

ty = −sy + Ay,c + sc − Ac,c.

For the function J̇(θ̇), we have the following theorem.

Theorem 1. J̇(θ̇) defined by Eq.(5) is convex with respect to θ̇.

The proof of Theorem 1 is given in Appendix A.
Especially in the binary case where c=2, B is not a matrix but a scalar given as

B = −A1,1 + 2A1,2 − A2,2

= ED
(
p(x|y = 1), p(x|y = 2)

)
> 0. (7)

Thus, J̇(θ̇) is strongly convex when c = 2.
On the other hand, for the strong convexity in general multi-class cases where c > 2,

let us express B defined by Eq.(6) as the following block matrix:

B = Bc−1 =

[
Bc−2 bc−2

b⊤c−2 Bc−1,c−1

]
,

where Bc−2 denotes the (c − 2)-th leading principal minor of Bc−1 and bc−2 =
[B1,c−1, . . . , Bc−2,c−1]

⊤. Then we have the following theorem.

Theorem 2. In the multi-class classification cases where c > 2, J̇(θ̇) is strongly convex,
if and only if the following conditions are satisfied.{

B1 > 0,
By,y − b⊤y−1B

−1
y−1by−1 > 0 (y = 2, . . . , c− 1).
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A proof of Theorem 2 is given in Appendix B.
Below, we will explain the intuition of the conditions in Theorem 2, in case of c = 3.

B1 > 0 is derived in the same way as Eq.(7). B2 is defined as

B2 =

[
B1 b1
b⊤1 B2,2

]
=

1

2

[
2d13 d13 + d32 − d12

d23 + d31 − d21 2d23

]
,

where dij = ED
(
p(x|y = i), p(x|y = j)

)
. Let us consider what the following condition

indicates.

B2,2 − b⊤1 B
−1
1 b1 =

1

4d13

{
4d13d32 − (d13 + d32 − d12)

2
}

=
1

4d13

(
2
√
d13d32 + d13 + d32 − d12

)(
2
√
d13d32 − d13 − d32 + d12

)
=

1

4d13

{(√
d13 +

√
d32
)2 − d12

}{
d12 −

(√
d13 −

√
d32
)2}

> 0. (8)

Eq.(8) is equivalent to (√
d13 −

√
d32
)2
< d12 <

(√
d13 +

√
d32
)2
,

which is equivalent to ∣∣√d13 −
√
d32
∣∣ <√d12 <

√
d13 +

√
d32.

This is satisfied if and only if the following three conditions hold:
√
d12 +

√
d23 >

√
d13,√

d21 +
√
d13 >

√
d23,√

d13 +
√
d32 >

√
d12.

Therefore, the condition B2,2−b⊤1 B−1
1 b1 > 0 is equivalent to the triangle inequalities which

consist of the square root of the energy distance.

4.2.2 Class-prior Estimation by Solving an Optimization Problem

In the binary case where c = 2, J̇(θ̇) is strongly convex as shown in 4.2.1. The optimal
solution θ∗ can be obtained analytically by

θ∗1 =


θ̃1 if θ̃1 ∈ [0, 1],

0 if θ̃1 < 0,

1 if θ̃1 > 1,

θ∗2 = 1− θ∗1,
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where

θ̃1 =
−s1 + A1,2 + s2 − A2,2

−A1,1 + 2A1,2 − A2,2

.

In practice, we approximate A and s from samples as

Ây,y′ =
1

nyny′

∑
i:yi=y

∑
j:yj=y′

∥xi − xj∥,

ŝy =
1

nyn′

∑
i:yi=y

n′∑
i′=1

∥xi − x′
i′∥.

Then θ̃1 can be approximately computed as

θ̃1 ≈
−ŝ1 + Â1,2 + ŝ2 − Â2,2

−Â1,1 + 2Â1,2 − Â2,2

.

In multi-class cases where c > 2, the optimal solution θ∗ may be obtained by solving
the following quadratic programming problem:

min
θ̇

J̇(θ̇) subject to ∀y θ̇y ≥ 0,
c−1∑
y=1

θ̇y ≤ 1.

An empirical approximation to ED(pθ, p′) given by Eq.(4) can be expressed as

ÊD(pθ, p′) = 2
c∑

y=1

θy
nyn′

∑
i:yi=y

n′∑
i′=1

∥xi − x′
i′∥

−
c∑

y,y′=1

θyθy′

nyny′

∑
i:yi=y

∑
j:yj=y′

∥xi − xj∥ −
1

n′2

n′∑
i′=1

n′∑
j′=1

∥x′
i′ − x′

j′∥.

Then the empirical solution θ̂ can be obtained by solving the following quadratic pro-
gramming problem:

min
θ̇

θ̇⊤B̂θ̇ − 2θ̇⊤t̂ subject to ∀y θ̇y ≥ 0,
c−1∑
y=1

θ̇y ≤ 1,

where B̂ and t̂ are defined as

B̂y,y′ = −Ây,y′ + Ây,c + Âc,y′ − Âc,c,

t̂y = −ŝy + Ây,c + ŝc − Âc,c.

If
̂̇
θ satisfies

̂̇
θy ≥ 0 for all y and

∑c−1
y=1
̂̇
θy ≤ 1, then we can simply obtain the solution by

̂̇
θ = B̂−1t̂, θ̂c = 1−

c−1∑
y=1

̂̇
θy.
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Table 1: Specification of binary datasets. ♡ indicates artificial data. ♠,♢ and ♣ indicate
datasets taken from Machine Learning Data Set Repository4, LIBSVM Data5 and The
Elements of Statistical Learning6, respectively.

Dataset d n n′ ♯ Class 1 ♯ Class 2
♡ Gauss1 1 200 200 5, 000 5, 000
♡ Gauss2 1 200 200 5, 000 5, 000
♡ Gauss3 1 200 200 5, 000 5, 000
♠ Banana 2 200 200 2, 924 2, 376
♠ Image 18 200 200 898 1, 188
♠ Waveform 21 200 200 3, 353 1, 647
♢ Breast cancer 10 200 100 444 239
♢ SVMguide1 4 200 200 3, 089 4, 000
♣ SAheart 9 100 100 302 160

4http://mldata.org/repository/data/
5http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

6http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/

5 Experiments

In this section, we report experimental results. We compared the performance of the
proposed method, denoted by ED, with the following four methods.

• PE-DR1: The density-ratio method using the PE-divergence estimator [3].

• LSDD2: The density-difference method using the L2 distance estimator [11].

• MMD: The MMD-based method with the single Gaussian kernel [14], where the
median distance of samples is used as the Gaussian kernel width.

• MMD-MKL3: The MMD-based method with multiple kernel learning (MKL) [14].

5.1 Binary Cases

First, we conducted experiments with binary classification data. Table 1 shows the list of
datasets we used, containing the input dimensionality d, the number of training samples
n and the number of test samples n′. The class ratio of training samples was fixed at 1 : 1,
while the class ratios of test samples were set according to the selected true class-priors
θ∗ ∈ {0.1, 0.2, . . . , 0.9}.

1We used the code available from “http://www.ms.k.u-tokyo.ac.jp/~christo/pages/
classprior-pearson-page.html”.

2We used the code available from “http://www.ms.k.u-tokyo.ac.jp/~christo/pages/
classprior-L2-page.html”.

3We used the code personally provided by the authors. As a quadratic program solver, we used
“Gurobi” instead of “quadprog” in the original code.
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Figure 1: The average and standard deviation of the squared error between estimated
and true class-priors. We applied t-test at significance level 5%, and the best method and
methods that do not have significant difference from the best one are marked with‘◦’.

Gauss1, Gauss2 and Gauss3 are artificial datasets. Samples in class 1 of Gauss1,
Gauss2 and Gauss3 follow N(0, 1), the normal distribution with mean 0 and variance
1. While samples in class 2 of Gauss1, Gauss2 and Gauss3 follow N(1, 1), N(2, 1) and
N(3, 1) respectively. Other datasets in Table 1 are benchmark datasets. For each dataset,
all methods were run 100 times with random selection of data samples from the original
datasets.

The average and standard deviation of the squared error between estimated and true
class-priors are shown in Figure 1. This shows that ED works well as a whole and has
a stable performance over a wide range of datasets. MMD uses a fixed parameter which
coincidentally worked well with the Banana dataset, but failed for other datasets. This is
in contrast to the proposed method which scored well with all datasets.
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Table 2: Computation time (sec). a{b} def
= a× 10b. We used Intel Xeon E5− 2667 CPU,

equipped with 64 GB of memory. B-cancer⋆ and SVMg1⋆⋆ indicate Breast cancer and
SVMguide1.

Dataset ED
MMD
-MKL MMD PE-DR LSDD

Gauss1 3.7{−3} 7.0{2} 4.9{−2} 1.2{2} 1.7{2}
Gauss2 3.7{−3} 8.2{2} 4.9{−2} 9.2{1} 1.7{2}
Gauss3 6.0{−3} 5.9{2} 4.9{−2} 9.1{1} 1.7{2}
Banana 3.5{−3} 7.2{2} 4.9{−2} 8.3{1} 1.7{2}
Image 4.4{−3} 1.2{3} 4.7{−2} 9.6{1} 4.5{1}

Waveform 4.5{−3} 1.2{3} 4.9{−2} 1.2{2} 4.5{1}
B-cancer⋆ 4.0{−3} 3.7{3} 3.7{−2} 1.0{2} 1.8{2}
SVMg1⋆⋆ 4.0{−3} 8.0{2} 4.7{−2} 9.4{1} 4.4{1}
SAheart 3.3{−3} 1.4{2} 4.7{−2} 9.4{1} 4.4{1}
Average 4.1{−3} 8.0{2} 4.7{−2} 1.0{2} 1.2{2}

Table 2 summarizes the computation time of all methods, showing that the proposed
method ED is faster than other methods in orders of magnitude. MMD is also relatively
fast, but compared with ED, the computation of Gaussian kernels themselves is expensive.
PE-DR and LSDD are slow due to cross-validation, and MKL requires a huge amount of
computation time for learning kernel combinations.

The summary of the experiments for binary cases is as follows. In most cases ED is
on par with other methods, though the estimation error of ED is not always lower than
that of LSDD and MMD-MKL, such as in the case of SVMguide1 and SAheart. However,
the performance of ED is always close to that of LSDD and MMD-MKL in spite of its
shortest computation time. Thus we can say that the performances of those methods
depend on the datasets while ED is always much faster than LSDD and MMD-MKL.

Next, we trained a Gaussian-kernel support vector machine (SVM) [19] with instance
weights based on the estimated class-priors:

min
w,δ

[
θ̂1
∑
i:yi=1

max
(
0, 1− (w⊤ψ(xi) + δ)

)
+ (1− θ̂1)

∑
i:yi=2

max
(
0, 1 + (w⊤ψ(xi) + δ)

)
+ λ∥w∥2

]
,

where θ̂1 is an estimated class-prior for class 1, w denotes a coefficient vector, ψ(x)
denotes a feature vector in the Gaussian reproducing kernel Hilbert space and δ is a bias
term. We solved this optimization problem in the dual using LIBSVM [25]. All the hyper-
parameters (regularization parameter λ and the Gaussian kernel width σ) were selected
via 5-fold weighted cross-validation [26] in terms of the 0/1 loss.

The average of the misclassification rate are shown in Figure 2, showing that all the
weighted methods tend to outperform the non-weighted counterparts and are comparable



Class-Prior Estimation under Class Balance Change 15

θ
∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
is

cl
as

si
fic

at
io

n 
R

at
e

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Gauss1

ED
MMD-MKL
MMD
PE-DR
LSDD
No weight

θ
∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
is

cl
as

si
fic

at
io

n 
R

at
e

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17
Gauss2

θ
∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
is

cl
as

si
fic

at
io

n 
R

at
e

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08
Gauss3

θ
∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
is

cl
as

si
fic

at
io

n 
R

at
e

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22
Banana

θ
∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
is

cl
as

si
fic

at
io

n 
R

at
e

0.05

0.06

0.07

0.08

0.09

0.1

0.11
Image

θ
∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
is

cl
as

si
fic

at
io

n 
R

at
e

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15
Waveform

θ
∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
is

cl
as

si
fic

at
io

n 
R

at
e

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055
Breast cancer

θ
∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
is

cl
as

si
fic

at
io

n 
R

at
e

0.025

0.03

0.035

0.04

0.045

0.05
SVMguide1

θ
∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
is

cl
as

si
fic

at
io

n 
R

at
e

0.2

0.25

0.3

0.35

0.4

0.45
SAheart

Figure 2: The average and standard deviation of the misclassification rates. SVM was used
for the classification. We applied t-test at significance level 5%, and the best method and
significant methods that do not have significant difference from the best one are marked
with‘◦’.

overall.
In case of Image, SVMguide1 and SAheart, there are low correlations between the

squared error of class-prior estimation and the misclassification rate. This may be at-
tributed to the fact that p(x|y = 1) and p(x|y = 2) are somewhat distant. If the two
densities have almost no overlap, small differences in the estimated class-prior estimation
does not strongly affect the misclassification rate. For example, since the densities of class
1 and class 2 in Gauss3 are more distant than those in Gauss1, the squared error and the
misclassification rate of Gauss3 are less correlated than those of Gauss1.
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Table 3: Specification of three-class datasets. All the datasets are taken from LIBSVM
Data.

Dataset d ♯ Class 1 ♯ Class 2 ♯ Class 3
Combined 100 39, 455 18, 300 21, 068

DNA 180 1, 051 464 485
SVMguide2 20 221 53 117

5.2 Multi-Class Cases

Next, we applied class-prior estimation to multi-class classification. Since the compared
methods, with the exception of MMD, is prohibitively slow for a large number of classes,
we used only three-class datasets for multi-class experiments. Table 3 shows the list of
datasets we used.

As training data, n samples were drawn from each of the classes (i.e. the class ratio
of training samples was fixed at 1 : 1 : 1), while as the test data, 100 samples were drawn
following the probabilities 0.6, 0.1 and 0.3 from each of the classes.

We computed the L2 distance between the estimated and true class-priors, and trained
a L2 regularized kernel logistic regression [27] with instance weights based on the estimated
class-priors:

min
w

[ c∑
y=1

θ̂y
∑
i:yi=y

g(xi, yi,w
(y)) + λ∥w(y)∥2

]
,

where θ̂y is an estimated class-prior for class y. g(xi, yi,w
(y)) indicates the logistic loss

function defined as

g(xi, yi,w
(y)) = log

exp
(
yi
∑n

j=1w
(y)
j ψj(xi)

)∑c
y′=1 exp

(
yi
∑n

j=1w
(y′)
j ψj(xi)

) ,
where w = (w

(1)
1 , . . . , w

(1)
n , . . . , w

(c)
1 , . . . , w

(c)
n )⊤. All the hyper-parameters (regularization

parameter λ and the Gaussian kernel width σ) were selected via 5-fold weighted cross-
validation [26] in terms of the logistic loss.

Since MKL is prohibitively slow, it was only run 50 times on the datasets. All other
methods were run 100 times. Figure 3 indicates that the performance of all methods
roughly improves as the number of training samples increases, and ED works stably. ED
is not the best method on every datasets, however it is not much worse than the best
performing algorithm.

Table 4 shows the computation time of each dataset with the largest number of labeled
samples. ED is much faster than the other methods. MMD is also fast, however it is not
stable especially in the case of DNA. This is an example which indicates that MMD with
a fixed parameter does not work well.

Through both binary and multi-class experiments, we conclude that the proposed
method can be a computationally efficient alternative to the existing class-prior estimation
methods.
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Figure 3: The upper row: The average and standard deviation of the squared error
between estimated and true class-priors. The lower row: The average and standard
deviation of the misclassification rates. We applied t-test at significance level 5%, and
the best method and methods that do not have significant difference from the best one
are marked with‘◦’.

Table 4: Computation time (sec). a{b} def
= a× 10b. We used Intel Xeon E5− 2667 CPU,

equipped with 64 GB of memory. SVMg2⋆⋆⋆ indicate Breast cancer and SVMguide2.

Dataset ED
MMD
-MKL MMD PE-DR LSDD

Combined 1.3{−2} 5.3{3} 7.1{−2} 6.7{1} 2.7{3}
DNA 1.4{−2} 7.1{3} 8.1{−2} 6.8{1} 2.7{3}

SVMg2⋆⋆⋆ 5.1{−3} 4.7{3} 2.9{−2} 2.3{1} 8.9{2}
Average 1.1{−2} 5.7{3} 6.0{−2} 5.3{1} 2.1{3}

6 Conclusion

In this paper, we proposed a simple and computationally efficient class-prior estimator
based on the energy distance, and proved the convexity of the optimization problem of
the proposed method. We conducted experiments for both binary and multi-class cases,
and the results showed that the proposed method worked well and is stable over a wide
range of datasets. Furthermore, the computation time of the proposed method was much
faster than the compared method significantly.
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A Proof of Theorem 1

If the matrix B is positive semi-definite, J̇(θ̇) is convex with respect to θ̇. So we prove
the positive semi-definiteness of B below.

Let X be the domain of input vector x, Hk be an RKHS, K be a positive-semidefinite
kernel K : X × X → R defined as

K(x, x̌) = −∥x− x̌∥+ ∥x∥+ ∥x̌∥.

K is called the distance kernel [17]. The map φ : X → Hk, φ(x) : x 7→ K(·,x) is the
canonical feature map. Let φy be the true mean of the feature vectors of the y-th class:

φy = Ex∼p(x|y)φ(x).

Since φy
⊤φy′ = Ex∼p(x|y),x̌∼p(x|y′)K(x, x̌), Ay,y′ can be expressed as

Ay,y′ = Ex∼p(x|y),x̌∼p(x|y′)
[
−K(x, x̌) + ∥x∥+ ∥x̌∥

]
= −φ⊤

y φy′ + Ex∼p(x|y)∥x∥+ Ex̌∼p(x|y′)∥x̌∥.

Then we can rewrite By,y′ as follows:

By,y′ = φ⊤
y φy′ − φ⊤

y φc − φ⊤
c φy′ + φ⊤

c φc

= (φy − φc)
⊤(φy′ − φc)

= (B̃⊤B̃)y,y′ ,

where B̃ = [φ1 − φc, · · · , φc−1 − φc]. Since B is a positive-semidefinite matrix, J̇(θ̇) is
convex.

B Proof of Theorem 2

If the matrix B is strictly positive definite, J̇(θ̇) is strongly convex with respect to θ̇. So
we prove that B is strictly positive definite below.

B1 = −A1,1 + 2A1,c − Ac,c

= ED
(
p(x|y = 1), p(x|y = c)

)
> 0.

Then we can immediately prove that B is strictly positive definite, from the Schur com-
plement condition for positive definiteness [28].
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