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Abstract

Regression is a fundamental problem in statistical data analysis, which aims at es-
timating the conditional mean of output given input. However, regression is not
informative enough if the conditional probability density is multi-modal, asymmet-
ric, and heteroscedastic. To overcome this limitation, various estimators of con-
ditional densities themselves have been developed, and a kernel-based approach
called least-squares conditional density estimation (LS-CDE) was demonstrated to
be promising. However, LS-CDE still suffers from large estimation error if input
contains many irrelevant features. In this paper, we therefore propose an extension
of LS-CDE called sparse additive CDE (SA-CDE), which allows automatic feature
selection in CDE. SA-CDE applies kernel LS-CDE to each input feature in an ad-
ditive manner and penalizes the whole solution by a group-sparse regularizer. We
also give a subgradient-based optimization method for SA-CDE training that scales
well to high-dimensional large data sets. Through experiments with benchmark and
humanoid robot transition datasets, we demonstrate the usefulness of SA-CDE in
noisy CDE problems.
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1 Introduction

Estimating the statistical dependency between input x and output y plays a crucial role
in various real-world applications. For example, in robot transition estimation which is
highly useful in model-based reinforcement learning (Sutton and Barto, 1998), input x
corresponds to the pair of the current state of a robot and an action the robot takes, and
output y corresponds to the destination state after taking the action. Another application
is disease diagnosis, in which input x corresponds to measurements of biomarkers and/or
clinical images and output y corresponds to the presence (or the progression level) of a
disease. Thus, accurately estimating the statistical dependency is an important and fun-
damental problem in statistical data analysis. The most basic approach to this problem is
regression, which estimates the conditional mean of output y given input x. Regression
gives the optimal estimation of output y for additive Gaussian output noise. However,
if the conditional probability density of output y given input x, denoted by p(y|x), pos-
sesses more complex structure such as multi-modality, asymmetry, and heteroscedasticity,
estimating the conditional mean by regression is not necessarily informative.

To overcome the limitation of regression, estimation of conditional densities from
paired samples {(x(n),y(n))}Nn=1 has been investigated. The most naive approach to es-
timating p(y|x = x̃), the conditional density of output y at test input point x = x̃,
is to use the kernel density estimator (KDE) (Silverman, 1986) with samples such that
∥x(n) − x̃∥22 ≤ ϵ. However, this naive method does not work well in high-dimensional
problems. Slightly more sophisticated variants have been proposed that use weighted
KDE (Fan et al, 1996; Wolff et al, 1999), but they still share the same weakness.

The mixture density network (MDN) (Bishop, 2006) uses a mixture of parametric
densities for modeling the conditional density, and the parameters are estimated by a
neural network as functions of input x. MDN was demonstrated to work well, but its
training is time-consuming and only a local optimal solution may be found due to the non-
convexity of neural network training. A similar method based on a mixture of Gaussian
processes was developed (Tresp, 2001), which can be trained in a computationally more
efficient way by the expectation-maximization algorithm (Dempster et al, 1977). However,
due to the non-convexity of the optimization problem, it is difficult to find the global
optimal solution.

Kernel quantile regression (KQR) (Takeuchi et al, 2006; Li et al, 2007) gives non-
parametric percentile estimates of conditional distributions through convex optimization.
KQR can be used for estimating the entire conditional cumulative distribution by solving
KQR for all percentiles. It was shown that the regularization path tracking technique
(Hastie et al, 2004) can be employed for efficiently computing the entire conditional cu-
mulative distribution (Takeuchi et al, 2009). However, KQR is applicable only to one-
dimensional output, which limits the range of applications significantly.

Least-squares conditional density estimation (LS-CDE) allows estimation of multiple-
input-multiple-output conditional densities by directly learning a conditional density
model with least-squares estimation (Sugiyama et al, 2010). For linear-in-parameter mod-
els such as a linear combination of Gaussian kernels, LS-CDE is formulated as a convex
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optimization problem and its solution can be obtained efficiently and analytically just by
solving a system of linear equations. Furthermore, kernel LS-CDE was proved to achieve
the optimal non-parametric convergence rate to the true conditional density in the mini-
max sense, meaning that no method can be better than LS-CDE asymptotically. Through
extensive experiments, LS-CDE was demonstrated to compare favorably with competing
approaches.

However, LS-CDE still suffers from large estimation error when many irrelevant fea-
tures exist in input x. Such irrelevant features are conceivable in many real-world prob-
lems. For example, in gene expression analysis for diseased cells, only a small subset of
biomarker genes (input) affects the disease status (output). A standard way to cope with
high input dimensionality is to select relevant features with forward selection or back-
ward elimination (Guyon and Elisseeff, 2003), but this often leads to a local optimal set
of features.

In this paper, we propose extending LS-CDE to allow simultaneous feature selection
during conditional density estimation. More specifically, we apply kernel LS-CDE to each
input feature in an additive manner and penalize the whole solution by a group-sparse
regularizer (Yuan and Lin, 2006). Our subgradient-based optimization solver allows com-
putationally efficient selection of relevant features that are even non-linearly correlated
with output y. Numerical experiments on noisy conditional density estimation demon-
strate that our proposed method, which we call sparse additive CDE (SA-CDE), compares
favorably with baseline approaches in estimation accuracy and computational efficiency.

The remainder of this paper is structured as follows. In Section 2, we formulate the
problem of conditional density estimation and describe our proposed SA-CDE method.
We experimentally evaluate the performance of SA-CDE in Section 3, and we summarize
our contribution in Section 4.

2 Conditional Density Estimation with Sparse Fea-

ture Selection

In this section, we formulate the problem of conditional density estimation and describe
our proposed SA-CDE method.

2.1 Problem Formulation

Let
x = (x1, . . . , xDx)

T ∈ RDx

be an input vector and y ∈ RDy be an output vector, where R is the set of all real numbers,
Dx is the dimension of the input vector, and Dy is the dimension of the output vector.
We are given i.i.d. input-output paired samples of size N following the joint probability
distribution with density p(x,y):

(x(1),y(1)), . . . , (x(N),y(N)). (1)
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We assume that only some of the input features are relevant to output y. Then, such
relevant features are sufficient for predicting output y (Li, 1991; Cook and Ni, 2005):

p
(
y
∣∣x) = p

(
y
∣∣x+

)
, (2)

where x+ is the sub-vector of x that consists only of relevant features.
Our goal is to estimate the conditional density p(y|x) from the training samples (1)

via sufficient feature selection (2).

2.2 Sparse Additive Conditional Density Estimation

We use an additive conditional density model:

p̂(y|x) :=
Dx∑
d=1

r̂d(y, xd), (3)

where r̂d(y, xd) is an unnormalized estimator with the d-th input feature xd. We use a
linear combination of B basis functions as r̂d(y, x):

r̂d(y, x) :=
B∑
b=1

αd,b

{
ηb
(
y
)
· φd,b

(
x
)}

= αT
d

{
η
(
y
)
◦φd

(
x
)}

, d = 1, . . . , Dx, (4)

where
αd = (αd,1, . . . , αd,B)

T ∈ RB
+

is a parameter vector for the d-th input xd,

η
(
y
)
= (η1

(
y
)
, . . . , ηB

(
y
)
)T

is a vector of basis functions for output y,

φd

(
x
)
= (φd,1

(
x
)
, . . . , φd,B

(
x
)
)T

is a vector of basis functions for the d-th input xd, and ◦ denotes the Hadamard (or
element-wise) product. We use the following Gaussian kernels as the basis functions:

ηb
(
y
)

:= exp

(
−∥y − νb∥2

2σ2

)
, b = 1, . . . , B, (5)

φd,b

(
xd

)
:= exp

(
−(xd − µd,b)

2

2σ2

)
, d = 1, . . . , Dx, b = 1, . . . , B, (6)

where νb and µd,b are the Gaussian centers and σ is the Gaussian width. The Gaussian
centers are fixed at the points chosen randomly from training samples. On the other hand,
the Gaussian width will be optimized by cross-validation (see Section 2.5). For simplicity,
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we assume that input x and output y of the training samples (1) are both normalized
element-wise to have the unit variance in advance and use the common Gaussian width
σ. Note that the magnitude of parameter αd may reflect the relevance between the d-th
feature and output y.

Figures 1 and 2 illustrate two examples of the additive function model (3). The first
example shown in Figure 1 is

r
(A)
1 (y, x1) = N (y| sin(x1),

1

4
) and r

(A)
2 (y, x2) = 0,

while the second example shown in Figure 2 is

r
(B)
1 (y, x1) =

1

2
N (y| sin(x1),

1

4
) and r

(B)
2 (y, x2) =

1

2
N (y|1

4
x2,

1

4
).

Note that r2(y, x2) is only different in these two examples. In the density function
p(A)(y|x1, x2) shown in Figure 1(c), x2 does not affect output y. On the other hand,
in density function p(B)(y|x1, x2) shown in 2(c), output y varies depending on x2. This

illustrates that the magnitude of r
(B)
d (y, xd), which is controlled by αd, may reflect the

relevance between the d-th feature and output y.
Our optimization parameters to be learned in model (3) are

α := (αT
1 , . . . ,α

T
Dx

)T ∈ RB·Dx .

We learn α to minimize the squared error between true conditional density p(y|x) and
our estimator p̂(y|x)

J0(α) :=
1

2

∫ ∫ (
p̂(y|x)− p(y|x)

)2
p(x)dydx. (7)

Substituting our model (3) and p(y,x) = p(y|x)p(x) into (7), we have

J0(α) =
1

2

Dx∑
d1,d2=1

∫ ∫ ∫
r̂d1(y, xd1)r̂d2(y, xd2)p(xd1 , xd2)dydxd1dxd2

−
Dx∑
d=1

∫ ∫
r̂d(y, xd)p(y, xd)dydxd + Const. (8)

Using empirical approximation and ignoring the constant term, we can approximate
the loss function as follows (the detailed derivation is described in Appendix A):

Ĵ0(α) =
1

2N

Dx∑
d1,d2=1

N∑
n=1

∫
r̂d1

(
y, x

(n)
d1

)
r̂d2

(
y, x

(n)
d2

)
dy

− 1

N

Dx∑
d=1

N∑
n=1

r̂d

(
y(n), x

(n)
d

)
(9)

=
1

2
αTHα− hTα, (10)
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Figure 1: Conditional density function in which output y is relevant to only input x1.
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Figure 2: Conditional density function in which output y is relevant to both input x1 and
x2.

where H ∈ RB·Dx×B·Dx and h ∈ RB·Dx are given by

H :=

 H1,1 · · · H1,Dx

...
. . .

...
HDx,1 · · · HDx,Dx

 . (11)

[Hd1,d2 ]b1,b2 :=

(√
πσ
)Dy

N
exp

(
−∥νb1−νb2∥2

4σ2

)
×

N∑
n=1

exp

(
−
(x

(n)
d1
−µd1,b1)

2

2σ2
−

(x
(n)
d2
−µd2,b2)

2

2σ2

)
,

d1, d2 = 1, . . . , Dx, b1, b2 = 1, . . . , B, (12)

h :=
(
hT

1 , . . . ,h
T
Dx

)T
, (13)

hd,b :=
1

N

N∑
n=1

exp

(
−∥y

(n)−νb∥2

2σ2
− (x

(n)
d −µd,b)

2

2σ2

)
,

d = 1, . . . , Dx, b = 1, . . . , B. (14)
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To perform feature selection in our additive CDE model, we introduce an (ℓ1, ℓ2)-mixed
norm:

Ω(α) :=
Dx∑
d=1

∥∥∥αd

∥∥∥
2
. (15)

In the mixed norm Ω(α), the parameter vector α is grouped in the sub-vectors
α1, . . . ,αDx . Minimizing a loss function penalized with Ω(α) tends to produce a group-
wise sparse solution (Yuan and Lin, 2006), which means that the penalized optimization
can be useful for selecting a relevant subset of input variables:

min
α≥0

J(α) := Ĵ0(α) + λ Ω(α), (16)

where λ ≥ 0 is the regularization parameter. Note that empirical squared error Ĵ0(α)
is differentiable and convex because the Hessian matrix H is positive definite. Ω(α) is
also convex but non-differentiable. Overall, (16) is a convex optimization problem and we
develop a fast optimization algorithm below.

2.3 Optimization Algorithm

We use a proximal method (Sra et al, 2012; Beck and Teboulle, 2009) to solve the opti-
mization problem (16). More specifically, we consider a linear approximation to function
Ĵ0 at the current solution α(t), penalized by a proximal term to keep the update confined
in the neighborhood:

min
α≥0

{
Ĵ0

(
α(t)

)
+∇Ĵ0

(
α(t)

)T(
α−α(t)

)
+ λ · Ω(α) +

L

2

∥∥∥α−α(t)
∥∥∥2
2

}
. (17)

Here, L is the Lipchitz constant1, which is given by the maximum eigenvalue of H in
the current setup. We can describe our update rule analytically as follows (the detailed
derivation is described in Appendix B):

α
(t+1)
d ←

[
1− λ

L · ∥ud∥2

]
+

· ud, d = 1, . . . , Dx, (18)

where ud is the sub-vector of u associated with the d-th feature:

u :=

[
α(t) − 1

L
∇Ĵ0

(
α(t)

)]
+

. (19)

The operator [·]+ rounds up negative values to zero. This update rule follows the standard
proximal method, meaning that it has the global convergence rate of O

(
1
t

)
, where t is the

number of update iterations.

1The Lipchitz constant L for f(x) satisfies ∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2 for arbitrary x and y.
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Algorithm 1 SA-CDE

1: Initialization: t← 0, α(0) = 0, and ϵ > 0.
2: Compute H and h by (11) and (13), respectively.
3: Set L to the maximum eigenvalue of H .
4: repeat

5: u←
[
α(t) − 1

L

(
Hα(t) − h

)]
+

6: α
(t+1)
d ←

[
1− λ

L·∥ud∥2

]
+
· ud, for d = 1 to Dx.

7: until ∥α⃗(t+1) − α⃗(t)∥ < ϵ
8: Normalize the optimized conditional density by (20).

2.4 Post Processing

Because we did not explicitly include the normalization constraint, the optimized con-
ditional density estimator r̂(y,x) =

∑Dx

d=1 r̂d(y, xd) may not be integrated to one with
respect to y. Here, we renormalize the estimator after optimization as

p̂(y|x) =
r̂(y,x)∫
r̂(y′,x)dy′ . (20)

The denominator can be analytically calculated as∫
r̂(y,x)dy =

(√
2πσ

)Dy
Dx∑
d=1

αT
dφd

(
xd,µd

)
. (21)

Algorithm 2.4 summarizes our algorithm, which we call sparse additive CDE (SA-CDE).

2.5 Cross-Validation for Model Selection

Performance of SA-CDE depends on the choice of model parameters such as the Gaus-
sian width σ and the regularization parameter λ. Cross-validation (CV) is available to
systematically choose these model parameters. Throughout this paper, we use 5-fold CV:
we first divide the samples into five subsets, then learn the parameter using four subsets,
and evaluate the test error using the held-out subset. This procedure is iterated five times
with different training-test choice and the error is averaged.

We use the negative log-likelihood (NLL) as our metric for evaluating the test error:

NLL = − 1

|T |
∑
n∈T

log p̂(y(n)|x(n)), (22)

where T is the set of indices of test samples. The smaller the value of NLL is, the
better the performance of the conditional density estimator is. Thus, we chose the model
parameters that minimize the averaged NLL by 5-fold CV.
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3 Numerical Experiments

In this section, we experimentally evaluate the performance of our proposed method,
SA-CDE. Throughout the experiments, the number of basis functions is fixed to B =
min(100, N). The model parameters σ and λ were chosen from the twenty values between
10−2 and 2 at the equal interval in the logarithmic scale by 5-fold CV. We use NLL
(22) for the performance measure of conditional density estimation. NLL is computed
from test samples, which are not used for learning parameters and hyper-parameters. All
experiments were implemented by Matlab 2013b and an HP DL360p Gen8 E5 v2 server
with two CPUs of Xeon E5-2650 v2 2.60GHz (8 Core) and the main memory of 96 GB.

3.1 Compared Methods

We compare SA-CDE with the following methods:

• Sparse additive feature selection LSCDE (SA-LSCDE): SA-LSCDE is a
variation of the proposed SA-CDE, which first runs SA-CDE for feature selection
and then estimates the conditionally density by LS-CDE with only selected features.

• ϵ-neighbor kernel density estimation (eKDE): eKDE estimates a conditional
density by standard kernel density estimation using neighborhood samples in the
domain of input x, denoted by Ix,ϵ := {x(i) : ∥x(i) − x∥22 ≤ ϵ} for threshold ϵ. In
the case of Gaussian kernels, eKDE is given as

p̂(y|x) = 1

|Ix,ϵ|
∑
i∈Ix,ϵ

N (y,y(i), σ2IDy), (23)

where N (y,µ,Σ) denotes the Gaussian density function with respect to y with
mean µ and covariance matrix Σ, and IDx is the identity matrix of size Dx. In
experiments, threshold ϵ and bandwidth σ were chosen based on 5-fold CV with
respect to NLL, where the candidate values of ϵ are the twenty values between 10−2

and 5 at the equal interval in the logarithmic scale.

• Least-squares conditional density estimation (LS-CDE): The original LS-
CDE method. This corresponds to a multi-dimensional non-sparse version of SA-
CDE where, instead of the group-sparse penalty and an additive model, an ℓ2-
penalty λ∥α∥22 and a multi-dimensional linear-in-parameter model,

p̂(y|x) := r̂(y,x)

=
B∑
b=1

αb

{
ηb
(
y
)
· φb

(
x
)}

, (24)

is used. We use the Gaussian kernels for both ηb(·) and φb(·), where the bandwidth
σ and the regularization parameter λ are chosen based on 5-fold CV with respect
to NLL.
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Table 1: Computational complexities of our methods and existing CDEs.

Method SA-CDE SA-LSCDE LS-CDE e-KDE NW-CDE
Time O(N3D3

x) O(N3D3
x) O(N3) O(N2Dx) O(N2Dx)

Space O(N2D2
x) O(N2D2

x) O(N2) O(N2) O(N2)

Table 2: Computational complexities of our methods and existing CDEs with forward
feature selection

Method SA-CDE SA-LSCDE FW-LSCDE FW-eKDE FW-NWCDE
Time O(N3D3

x) O(N3D3
x) O(Dx!N

3) O(Dx!N
2) O(Dx!N

2)
Space O(N2D2

x) O(N2D2
x) O(N2) O(N2) O(N2)

• Nadaraya-Watson CDE (NW-CDE): This corresponds to a simple version of
LS-CDE, which fixes weights of basis functions to 1

B
:

p̂(y|x) :=
p̂(y,x)

p̂(x)

=

∑B
b=1 ηb

(
y
)
· φb

(
x
)∑B

b=1 φb

(
x
) . (25)

We use the Gaussian kernels for both ηb(·) and φb(·), where the bandwidth σ is
chosen based on leave-one-out CV for the exact likelihood formulated in Holmes
et al (2007). To directly employ the method in Holmes et al (2007), we only use B
samples in this CV procedure.

• Forward feature selection + eKDE (FW-eKDE): Forward feature selection is
performed based on 5-fold CV with respect to NLL. That is, the most useful feature
that maximally reduces the cross-validated NLL by eKDE is selected one by one
until the cross-validated NLL no longer decreases.

• Forward feature selection + LS-CDE (FW-LSCDE): Similarly, forward fea-
ture selection is performed for LS-CDE.

• Forward feature selection + NW-CDE (FW-NWCDE): Similarly, forward
feature selection is performed for NW-CDE.

Tables 1 and 2 summarize the time and space complexities of our proposed method
(SA-CDE and SA-LSCDE) and compared methods for a fixed hyper-parameter, under the
assumption of N ≫ Dx ≫ Dy and O(N) = O(B). All time complexities for T candidates
of hyper-parameters are T times larger than those in Tables 1 and 2, while all space
complexities does not depend on T . The time complexities of e-KDE and NW-CDE are the
smallest, while CDEs with forward feature selections require larger computational costs.
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Especially, FW-LSCDE is worst in terms of the computational complexity. Thanks to the
single-shot procedure of feature selection, SA-CDE and SA-LSCDE are computationally
much more efficient than FW-LSCDE. The space complexities of all methods except
for SA-CDE and SA-LSCDE are O(N2), while those of SA-CDE and SA-LSCDE are
O(N2D2

x), which increases with Dx. Overall, the time complexities of SA-CDE and SA-
LSCDE are much smaller than CDEs with forward selection procedures in return for
increasing the space complexity.

3.2 Illustrative Examples

We first illustrate the behavior of our proposed method, SA-CDE, using toy and bench-
mark datasets having one relevant feature x1 and five irrelevant features x2, . . . , x6,

• Toy data 1: x1 is independently generated following the uniform distribution on
[−1, 1], while each of x2, . . . , x6 is generated by x1 + ϵc where ϵc is a noise variable
following the normal distribution with mean 0 and standard deviation 3σ̂, and σ̂ is
the standard deviation of x1. Output y is generated as a function of x1 as

y|x1 ∼ sinc

(
3

4
πx1

)
+

1

8
exp

(
1− x1

)
· ε, (26)

where ε is standard normal noise. We generate N = 300 samples for estimating the
conditional density.

• Old Faithful Geyser: A benchmark dataset with Dx = Dy = 1 that consists of
durations of N = 299 eruptions of the Old Faithful Geyser (Weisberg, 1985). We
add five irrelevant features x2, . . . , x6 in a similar manner to Toy data 1.

• Bone Mineral Density: A benchmark dataset with Dx = Dy = 1 that consists
of relative spinal bone mineral density measurements on N = 485 North American
adolescents (Hastie et al, 2001). We add five irrelevant features x2, . . . , x6 in a
similar manner to Toy data 1.

Figures 3 and 4 show estimation results for these three datasets. Figure 3 shows
estimated conditional densities: the black circles denote training samples, and the red
solid and green dashed lines denote the estimates obtained by the proposed SA-CDE and
the plain LS-CDE, respectively. Figure 3(a) also contains the true conditional density
drawn by the blue dashed line. Figure 4 shows the regularization paths of SA-CDE,
i.e. the magnitude of each learned parameter ∥αd∥2 as a function of the regularization
parameter (Hastie et al, 2004). The blue line denotes the path of the relevant feature,
x1, while lines with other colors denote the paths of irrelevant features x2, . . . , x6. The
vertical black dashed line indicates the value of λ selected by 5-fold CV.

The regularization paths in Figure 4 show that, in (a) Toy data 1 and (b) Old Faithful
Geyser, the parameters corresponding to the irrelevant feature are zero and that corre-
sponding to the relevant feature is non-zero for the cross-validated solution, which means
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that SA-CDE optimally performs feature selection. In Figure 4(c) Bone Mineral Density,
some of irrelevant features are non-zero because features with the skewed distribution are
strongly correlated with the relevant feature despite additive Gaussian noise. Thus these
features may still contain some information on the output value.

The estimation results in Figure 3(a) show that, SA-CDE gives more accurate esti-
mates than the plain LS-CDE. In Figures 3(b) and 3(c), SA-CDE tends to give sharper
conditional density estimates than the plain LS-CDE. This is because relatively large
Gaussian kernel widths are chosen in LS-CDE to incorporate irrelevant noisy features.
This indicates that LS-CDE with many irrelevant features tend to produce too flat con-
ditional densities which are not informative, while SA-CDE can avoid this problem by
automatically eliminating irrelevant features.
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3.3 Comparison of Performance and Computation Time for Dif-
ferent Numbers of Samples

We compare the estimation performance and computation time of our proposed
methods with existing CDEs for different numbers of training samples, N =
200, 500, 1000, 2500, 5000. Performance evaluation measures are NLL and MSE (Mean
Squared Error) in (7), both of which are computed from 104 test samples. The integral
in MSE (7) is computed based on the test sample average. Datasets in this experiments
are

• Toy data 1: The generation procedure is the same as the one in the previous
section, in which both dimensions of relevant feature (input) and output are one.

• Toy data 2: Each irrelevant x1, x2, x4, x5, . . . , xDx−2, xDx−1 is independently gener-
ated following the uniform distribution on [−1, 1]. Relevant features are generated
by x3d = x3d−2+x3d−1, and the d-th dimension of output y is generated as a function
of x3d, d = 1, 2, . . . , Dx/3 as

yd|x3d ∼ sinc

(
3

4
πx3d

)
+

1

8
exp

(
1− x3d

)
· ε, (27)

where ε is standard normal noise. This dataset has multi-dimensional relevant
features and outputs.

Figures 5 and 6 show NLL and MSE on Toy data 1, and Figures 7 and 8 NLL and MSE on
Toy data 2. These figures show that CDEs with feature selection except for FW-NWCDE,
i.e. SA-CDE, SA-LSCDE, and FW-LSCDE, decrease both NLL and MSE with increasing
the number of samples. However FW-NWCDE cannot decrease estimation errors even
when the number of samples is increased. This is because NW-CDE does not optimize
weight values of basis functions, resulting in poor performance. For Toy data 1 which
has only single relevant input and output, the performance of SA-CDE and SA-LSCDE is
almost the same. However, for Toy data 2 which has multiple relevant inputs and outputs,
SA-LSCDE is much better than SA-CDE. This is because SA-LSCDE can represent more
complex conditional densities than SA-CDE which is limited to additive models.

The computation time on Toy data 1 and Toy data 2, which is actual run-time in-
cluding both 5-fold CV to optimize hyper-parameters and conditional density estimation
for test data, are shown in Figures 9 and 10, respectively. These figures show that the
computation time of FW-LSCDE is much longer than others when the number of input
features is larger than 2 because of the time consuming procedure of forward feature
selection. This weakness becomes more critical when the number of training samples is
increasing. These results show that our proposed methods, SA-CDE and SA-LSCDE, are
much faster than the existing feature selection methods, and our methods tend to improve
the performance by feature selection.
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Figure 5: Negative log likelihood on Toy data 1 (Dy = 1).
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Figure 6: Mean squared error on Toy data 1 (Dy = 1).

3.4 Hyper-Parameter Selection

Our proposed methods (SA-CDE and SA-LSCDE) need to optimize hyper-parameters
based on CV, which is a time consuming procedure. Thus it is a bottleneck of their
computational time. Here, we compare the performance and computation time when
the number of hyper-parameter candidates is changed. We keep choosing the hyper-
parameters σ and λ between 10−2 and 2 at the equal interval in the logarithmic scale,
and we only change the number of hyper-parameter candidates: ng = 5, 10, 20. ng = 20
is the default setting for all other experiments. Datasets and evaluation measures we use
in this experiments are the same as Section 3.3. These experimental results are shown
in Figures 11–16. All performance results in Figure 11–14 show that SA-CDE and SA-
LSCDE with ng = 20 are the best. On the other hand, those with ng = 5, which cannot
improve the performance even when the number of samples increases, are the worst.
On the other hand, in terms of the computation time, Figures 15 and 16 show that the
ng = 5 is the best, while ng = 20 is the worst. This demonstrates the tradeoff between the
performance and computation time on optimizing hyper-parameters using CV. We note
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Figure 7: Negative log likelihood on Toy data 2.
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Figure 8: Mean squared error on Toy data 2.

that the computation time of SA-CDE and SA-LSCDE with ng = 20 is the worst, but
they are still much faster than FW-LSCDE. Thus we keep using ng = 20 in all numerical
experiments of later sections.

3.5 Performance Comparison for Different Numbers of Irrele-
vant Features

Next, we compare the performance of SA-CDE with LS-CDE, eKDE, FW-LSCDE, and
FW-eKDE for different numbers of irrelevant features. We use three datasets: (a) the
same Toy data 1 (N = 300 and Dx = 1) used in the previous experiments, (b) the
same Old Faithful Geyser benchmark dataset (N = 299 and Dx = 1), and (c) the crabs
benchmark dataset (N = 200 and Dx = 6) taken from the R package2. For each dataset,
we add m (= 0, 1, . . . , 10) irrelevant features by copying x1 and adding Gaussian noise
in a similar manner to the previous experiments. We randomly choose a half of samples

2http://www.r-project.org/.
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Figure 9: Computational time on Toy data 1 (Dy = 1).
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Figure 10: Computational time on Toy data 2.

as training samples to estimate conditional densities and use the rest as test samples to
compute the test NLL. This procedure is repeated 100 times and the averaged test NLL
is computed. The experimental results are summarized in Figure 17.

In all three cases, the NLL values of LS-CDE, NW-CDE, and eKDE (without feature
selection) grow as the number of irrelevant features increases. On the other hand, the NLL
values of SA-CDE, SA-LSCDE, FW-LSCDE, FW-NWCDE, and FW-eKDE do not grow
that much when the number of irrelevant features increases. This clearly demonstrates
an advantage of performing feature selection.

The total computation time of each method, i.e. run-time including 5-fold CV to
optimize hyper-parameters and conditional density estimation for test data, is plotted in
Figure 18. This shows that all methods require more computation costs as the number of
features increases. The computation time of FW-eKDE, FW-LSCDE, and FW-NWCDE
is much longer than the plain eKDE, LS-CDE, and NW-CDE, implying that forward
feature selection is highly time-consuming. Indeed, forward feature selection involves
repetitious conditional density estimation to find the best feature to add, which is com-
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Figure 11: Negative log likelihood on Toy data 1 (Dy = 1).
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Figure 12: Mean squared error on Toy data 1 (Dy = 1).

putationally highly demanding. On the other hand, the computation time of SA-CDE
and SA-LSCDE grows less sharply than FW-LSCDE, thanks to the single-shot procedure
of feature selection and conditional density estimation.

3.6 Benchmark Datasets

We further compare the performance of the proposed SA-CDE with other methods on
twelve benchmark datasets accompanied with the R package. All of these datasets have
one-dimensional output, i.e., Dy = 1. The number of features |F| and the number of
samples N are listed in Table 3. For all datasets, five irrelevant features are added which
are the copy of the relevant variable or a linear combination of two relevant variables
contaminated with Gaussian noise. The type of noise and relevant variables are chosen
at random. Gaussian noise is generated in a similar manner to the previous experiments.
In this experiment, we randomly choose a half of samples as training data for estimating
conditional densities, and the rest is used as test data for computing the test NLL. The
experimental results are summarized in Table 3. The values described in the table are
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Figure 13: Negative log likelihood on Toy data 2.

10
2

10
3

0.02

0.04

0.06

0.08

0.1

The number of samples

M
ea

n 
sq

ua
re

d 
er

ro
r

 

 
SA−CDE(20)
SA−CDE(10)
SA−CDE(5)
SA−LSCDE(20)
SA−LSCDE(10)
SA−LSCDE(5)

10
2

10
3

0.07

0.08

0.09

0.1

0.11

The number of samples

M
ea

n 
sq

ua
re

d 
er

ro
r

 

 
SA−CDE(20)
SA−CDE(10)
SA−CDE(5)
SA−LSCDE(20)
SA−LSCDE(10)
SA−LSCDE(5)

10
2

10
3

0.06

0.07

0.08

0.09

0.1

The number of samples

M
ea

n 
sq

ua
re

d 
er

ro
r

 

 
SA−CDE(20)
SA−CDE(10)
SA−CDE(5)
SA−LSCDE(20)
SA−LSCDE(10)
SA−LSCDE(5)

(a) Dx = 3, Dy = 1 (b) Dx = 6, Dy = 2 (c) Dx = 9, Dy = 3

Figure 14: Mean squared error on Toy data 2.

averaged NLL values and standard deviations over one hundred runs with different random
seeds. The bold letter means the best NLL and comparable results that could not be
rejected by the two-sided paired t-test at significance level 5%. The bottom row shows
the averaged normalized computation time.

Table 3 shows that the performance of our methods (SA-CDE and SA-LSCDE) is
best on nine datasets. For high-dimensional datasets, especially when |F| is seven or
more, SA-CDE tends to outperform other methods with statistical significance. For low-
dimensional datasets with large N , the performance of SA-LSCDE outperforms SA-CDE
because of their expressive power of functions. For low-dimensional datasets with small
N , FW-NWCDE performs the best because all other methods optimizing weights of basis
functions cause overfitting. LSCDE, eKDE, NW-CDE, and FW-eKDE are computa-
tionally much more efficient than SA-CDE and SA-LSCDE, but these methods tend to
perform poorly for high-dimensional relevant features with noisy dimensions.
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Figure 15: Computational time on Toy data 1 (Dy = 1).
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Figure 16: Computational time on Toy data 2.

3.7 Humanoid Robot Transition Dataset

Finally, we evaluate the performance of the proposed method on humanoid robot tran-
sition estimation with multiple inputs and multiple outputs. The dataset was generated
from a simulator of the upper-body part of the humanoid robot CB-i (Cheng et al, 2007).
The robot has 9 controllable joints: shoulder pitch, shoulder roll and elbow pitch of the
right arm, shoulder pitch, shoulder roll and elbow pitch of the left arm, wait yaw, torso
roll, and torso pitch joints.

Posture of the robot is described by 18-dimensional real-valued state vector s, which
corresponds to the angle and angular velocity of each joint in radians and radians per
seconds, respectively. We can control the robot by sending the action command a to the
system. The action command a is a 9-dimensional real-valued vector, which corresponds
to the target angle of each joint. When the robot is currently at state s and receive action
a, the physical control system of the simulator calculates the amount of torques to be
applied to each joint. These torques are calculated by the Proportional-Derivative (PD)



Direct Conditional Probability Density Estimation with Sparse Feature Selection 20

0 5 10

1

1.2

1.4

1.6

1.8

2

2.2

The number of irrelevant features

N
eg

at
iv

e 
lo

g 
lik

el
ih

oo
d

 

 
SA−CDE
SA−LSCDE
LS−CDE
NW−CDE
eKDE
FW−LSCDE
FW−NWCDE
FW−eKDE

0 5 10

0.8

1

1.2

1.4

1.6

1.8

2

2.2

The number of irrelevant features

N
eg

at
iv

e 
lo

g 
lik

el
ih

oo
d

 

 
SA−CDE
SA−LSCDE
LS−CDE
NW−CDE
eKDE
FW−LSCDE
FW−NWCDE
FW−eKDE

0 5 10
−0.5

0

0.5

1

1.5

2

The number of irrelevant features

N
eg

at
iv

e 
lo

g 
lik

el
ih

oo
d

 

 
SA−CDE
SA−LSCDE
LS−CDE
NW−CDE
eKDE
FW−LSCDE
FW−NWCDE
FW−eKDE

(a) Toy data 1 (b) Old Faithful Geyser (c) Crabs

Figure 17: Negative log likelihood with increasing noise dimensions
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Figure 18: Computation time

controller as

τi = Kpi(ai − si)−Kdi ṡi, (28)

where si, ṡi, and ai denote the current angle, the current angular velocity, and the received
target angle of the i-th joint, respectively. Kpi and Kdi denote the position and velocity
gains for the i-th joint, respectively. We set Kpi = 200 and Kdi = 10 for the elbow pitch
joints and Kpi = 2000 and Kdi = 100 for the other joints. After the torques are applied
to the joints, the physical system updates the state of the robot to s′. We simulate a
noisy control system by perturbing action vectors with independent bi-modal Gaussian
noise. More specifically, for each action element, we add Gaussian noise with mean 0 and
standard deviation 0.052 with probability 0.6, and Gaussian noise with mean −0.087 and
standard deviation 0.052 with probability 0.4.

To generate transition samples, we first generated the initial posture of the robot
s(1) at random and then simulated a trajectory with 100 steps, i.e. s(2), . . . , s(100). For
each step, we additionally generated m irrelevant input features z(n) ∈ Rm by copying
a relevant variable or by linearly combining two relevant variables contaminated with
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Table 3: NLL for benchmark datasets with five dimensional irrelevant features.

Name |F| N SA-CDE SA-LSCDE LS-CDE eKDE NW-CDE

caution 2 100 1.34± 0.6 1.24± 0.4 1.38± 0.3 24.25± 3.4 1.36± 0.2
CobarOre 2 38 1.71± 0.5 1.70± 0.4 1.62± 0.2 31.81± 2.9 1.62± 0.2
snowgeese 2 45 1.80± 2.0 1.76± 1.8 1.85± 1.3 22.04± 6.1 1.59± 1.0
topo 2 52 1.17± 0.3 1.14± 0.3 1.22± 0.2 29.30± 3.0 1.21± 0.1
sniffer 4 125 0.70± 0.6 0.60± 0.7 0.85± 0.2 16.91± 3.2 0.83± 0.2
crabs 6 200 −0.44± 0.1 −0.47± 0.3 0.53± 0.1 26.03± 3.1 0.58± 0.1
UN3 6 125 1.27± 0.2 1.35± 0.4 1.57± 0.6 33.36± 1.6 1.54± 0.6
birthwt 7 189 1.49± 0.2 1.52± 0.1 1.51± 0.1 31.77± 1.6 1.67± 0.2
cpus 7 209 0.36± 0.6 0.80± 0.7 1.19± 0.5 22.29± 3.4 1.17± 0.6
gilgais 8 365 0.70± 0.2 0.89± 0.2 1.16± 0.2 27.77± 2.2 1.11± 0.2
BigMac 9 69 1.33± 0.8 1.37± 0.7 1.42± 0.7 35.79± 0.5 1.34± 0.5
highway 11 39 1.38± 0.7 1.60± 0.7 1.71± 0.8 36.04± 0.0 1.74± 0.7

Time 1.00 0.00 0.06 0.02 0.00

(Continuation of Table 3)

Name FW-LSCDE FW-eKDE FW-NWCDE

caution 1.33± 0.6 1.35± 0.6 1.30± 0.5
CobarOre 1.95± 0.6 2.45± 1.9 1.65± 0.4
snowgeese 2.09± 1.9 3.03± 2.4 1.82± 1.8
topo 1.19± 0.4 1.73± 1.2 1.07± 0.2
sniffer 0.74± 0.8 0.96± 0.8 0.96± 1.1
crabs −0.37± 0.3 0.08± 0.6 −0.12± 0.8
UN3 1.27± 0.3 1.60± 0.6 1.34± 0.3
birthwt 1.67± 0.2 1.75± 0.5 3.85± 2.1
cpus 0.70± 0.8 1.00± 0.9 0.76± 0.9
gilgais 0.76± 0.2 0.97± 0.3 1.20± 0.3
BigMac 1.45± 0.9 2.54± 1.7 1.23± 0.8
highway 2.06± 1.0 3.17± 1.9 2.18± 1.8

Time 2.73 0.54 0.01

Gaussian noise in a similar manner to the previous experiments. By iterating these
procedures, we obtained the transition samples {(s(n),a(n), z(n), s′(n))}10000n=1 .

Our goal is to learn the system dynamics as state transition probability p(s′|s,a,z)
from these samples. Thus, as the conditional density estimation problem, the state-action
pair (sT,aT,zT)T is regarded as input variable x, while the next state s′ is regarded as
output variable y. Note that an accurate estimate of the state transition probability is
highly useful in model-based reinforcement learning (Sutton and Barto, 1998).

From the transition samples, we randomly picked up 5000 samples as training data
and used the other 5000 samples as test data to calculate NLL. We compare our proposed
method SA-CDE with LS-CDE, NW-CDE, FW-LSCDE, and FW-NWCDE, as well as
parametric conditional density estimation by the Gaussian process regression (GP-CDE)
(Rasmussen and Williams, 2005). In this experiment, the candidate values of regular-
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ization parameter λ are the twenty values between 10−3 and 10−1 at the equal interval
in the logarithmic scale, while the candidate values of other parameters are the same as
the previous setting. We consider three datasets with J = 2, 4, 9 joints, and change the
number of irrelevant features as m = 0, 5, 10, 15, 20. Thus, the input dimensionality is
3J + m, while the output dimensionality is 2J . For each J and m, we evaluated the
performance of conditional density estimation methods by averaged NLL and averaged
computational time over 20 runs.

Figure 19 shows the experimental results, where the solid lines denote the averaged
values and the dashed lines denote the averaged values with one standard deviation. From
the plots, we can confirm that the NLL values of LS-CDE, NW-CDE, and GP-CDE grow
sharply as the number of irrelevant features m is increased. On the other hand, the NLL
values of SA-CDE, FW-LSCDE, FW-NWCDE, and SA-LSCDE do not increase even if
the number of irrelevant features is increased. Among them, SA-CDE cannot outperform
FW-LSCDE and SA-LSCDE, because the additive-model assumption of SA-CDE caused
large estimation bias. However, feature selection by SA-CDE itself performs well and
SA-LSCDE performs comparably to FW-LSCDE.

Figure 20 plots the computation time. LS-CDE, NW-CDE, and GP-CDE are very fast
because no feature selection process is involved. NW-CDE and FW-NWCDE are also very
fast because no optimization of weight parameters is involved. Among SA-CDE, FW-
LSCDE, and SA-LSCDE, SA-CDE and SA-LSCDE are much faster than FW-LSCDE.

Overall, in this challenging task of robot transition estimation, SA-LSCDE, the com-
bination of SA-CDE and LS-CDE, was shown to be the most promising approach.

4 Conclusions

We proposed a direct estimator of conditional probability densities that is equipped with
feature selection. Our feature selection strategy is based on the ℓ1/ℓ2 mixed-norm, which
tends to produce a group-sparse solution. An optimization algorithm based on a proximal
method was presented that is guaranteed to possess fast convergence. The numerical
experiments on benchmark and robot transition datasets demonstrated that the proposed
method is promising.

SA-CDE assumes the additive structure for feature selection. However, this causes
linear increase of the time and space complexities, resulting in high computation costs for
datasets with a large number of features. Improving the scalability issue is future work.
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Figure 19: Negative log likelihood on humanoid robot data.
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Figure 20: Computation time on humanoid robot data.

A Derivation of Equation (10)

Substituting (4) into (9), we can transform the term associated with d1, d2, and n in the
above equation as∫

r̂d1

(
y, x

(n)
d1

)
r̂d2

(
y, x

(n)
d2

)
dy

=

∫ ∏
d=d1,d2

{
B∑
b=1

αd,b · η
(
y,νb

)
· φd

(
x
(n)
d , µd,b

)}
dy

=
B∑

b1=1

B∑
b2=1

{∫
η
(
y,νb1

)
· η
(
y,νb2

)
dy × φd1

(
x
(n)
d1

, µd1,b1

)
· φd2

(
x
(n)
d2

, µd2,b2

)}
.(29)
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The integral with respect to y in the above equation can be analytically computed as∫
η
(
y,νb1

)
· η
(
y,νb2

)
dy =

∫
exp

(
−∥y − νb1∥2 + ∥y − νb2∥2

2σ2

)
dy

=
(√

πσ
)Dy

exp

(
−∥νb1 − νb2∥22

4σ2

)
. (30)

Using (5), (6) and (30), we can derive (10).

B Derivation of Update Rule (18)

By some simple algebra, the optimization problem (17) can be transformed into

min
α≥0

{
1

2

∥∥α− u
∥∥2
2
+

λ

L
Ω(α)

}
, (31)

where u is defined as (19). Because the optimization problem (31) is strongly convex,
update of α by (31) can be regarded as an operator that maps u to a unique value. This
is called a proximal operator associated with λ

L
Ω. Denoting the proximal operator by

Prox λ
L
Ω(·), we can write our update rule as

α(t+1) ← Prox λ
L
Ω(u)

:= argmin
α≥0

{
1

2

∥∥α− u
∥∥2
2
+

λ

L
Ω(α)

}
. (32)

Next we describe the solution of this proximal operation by transforming the operator
into the dual form. By using the Fenchel conjugate of function Ĵ0 and the dual norm of
Ω, the dual problem of (31) can be obtained as

max
v

{
− sup

α

[
αT(−v)− 1

2

∥∥α− u
∥∥2
2

]}
subject to ∥vd∥2 ≤

λ

L
, d = 1, . . . , Dx,(33)

where v is the dual of α and vd is the sub-vector associated with the d-th feature. The
objective function can be transformed into

− sup
α

[
αT(−v)− 1

2

∥∥α− u
∥∥2
2

]
= inf

α

[1
2

∥∥α− u
∥∥2
2
+αTv

]
.

(34)

Since the above function is quadratic with respect to α, its minimum is achieved at the
point where the derivative is zero: from this, we have α = u− v. Substituting this back
into (34), we have

inf
α

[1
2

∥∥α− u
∥∥2
2
+αTv

]
=

1

2

∥∥u− v − u
∥∥2
2
+(u− v)Tv

= −1

2

(∥∥v − u
∥∥2
2
−
∥∥u∥∥2

2

)
.

(35)
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Further substituting (35) into (33), we can express the dual of the proximal operator for
optimizing dual vector v, denoted by Proj λ

L
Ω, as

v(t+1) ← Proj λ
L
Ω(u)

:= argmin
v

[
1

2

∥∥v − u
∥∥2
2

]
subject to ∥vd∥2 ≤

λ

L
, d = 1, . . . , Dx. (36)

Given that the solution for each sub-vector vd can be obtained separately, it is easy
to confirm that the solution of the above proximal operation is given by[

Proj λ
L
Ω(u)

]
d

=

(
1−

[
1− λ

L∥ud∥2

]
+

)
ud, d = 1, . . . , Dx. (37)

Since α = u− v, we have

Prox λ
L
Ω(u) = u− Proj λ

L
Ω(u). (38)

Using the above equation, we can describe our update rule analytically as (18).
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