Research Institute for Mathematical Sciences Kokyuroku, no.1954, pp.15–22, 2015.

Structural Change Detection by Sparse Density Ratio Estimation

Masashi Sugiyama

Graduate School of Frontier Sciences, The University of Tokyo sugi@cs.titech.ac.jp http://www.ms.k.u-tokyo.ac.jp

Abstract

The objective of change detection is to investigate whether change exists between two data sets $\{\boldsymbol{x}_i\}_{i=1}^n$ and $\{\boldsymbol{x}'_{i'}\}_{i'=1}^{n'}$. In this paper, we explore methods of structural change detection, which are aimed at analyzing change in the dependency structure between elements of d-dimensional variable $\boldsymbol{x} = (x^{(1)}, \ldots, x^{(d)})^{\top}$.

1 Sparse Maximum Likelihood Estimation

Let us consider a *Gaussian Markov network*, which is a *d*-dimensional Gaussian model with expectation zero:

$$q(\boldsymbol{x}; \boldsymbol{\Theta}) = rac{\det(\boldsymbol{\Theta})^{1/2}}{(2\pi)^{d/2}} \exp\left(-rac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{\Theta} \boldsymbol{x}
ight),$$

where not the variance-covariance matrix, but its inverse called the *precision matrix* is parameterized by Θ . If Θ is regarded as an *adjacency matrix*, the Gaussian Markov network can be visualized as a *graph* (see Figure 1). An advantage of this precision-based parameterization is that the connectivity governs conditional independence. For example, in the

Gaussian Markov network illustrated in the left-hand side of Figure 1, $x^{(1)}$ and $x^{(2)}$ are connected via $x^{(3)}$. This means that $x^{(1)}$ and $x^{(2)}$ are conditionally independent given $x^{(3)}$.

Suppose that $\{\boldsymbol{x}_i\}_{i=1}^n$ and $\{\boldsymbol{x}'_{i'}\}_{i'=1}^{n'}$ are drawn independently from the Gaussian Markov networks with precision matrices $\boldsymbol{\Theta}$ and $\boldsymbol{\Theta}'$, respectively. Then analyzing $\boldsymbol{\Theta} - \boldsymbol{\Theta}'$ allows us to identify change in Markov network structure (see Figure 1 again).

A sparse estimate of Θ may be obtained by maximum likelihood estimation with the ℓ_1 -constraint:

$$\max_{\boldsymbol{\Theta}} \sum_{i=1}^{n} \log q(\boldsymbol{x}_i; \boldsymbol{\Theta}) \text{ subject to } \|\boldsymbol{\Theta}\|_1 \leq R^2,$$

where $R \ge 0$ is the radius of the ℓ_1 -ball. This method is also referred to as the graphical lasso [2].

The derivative of $\log q(\boldsymbol{x}; \boldsymbol{\Theta})$ with respect to $\boldsymbol{\Theta}$ is given by

$$\frac{\partial \log q(\boldsymbol{x}; \boldsymbol{\Theta})}{\partial \boldsymbol{\Theta}} = \frac{1}{2} \boldsymbol{\Theta}^{-1} - \frac{1}{2} \boldsymbol{x} \boldsymbol{x}^{\top},$$

where the following formulas are used for its derivation:

$$\frac{\partial \log \det(\boldsymbol{\Theta})}{\partial \boldsymbol{\Theta}} = \boldsymbol{\Theta}^{-1} \quad \text{and} \quad \frac{\partial \boldsymbol{x}^{\top} \boldsymbol{\Theta} \boldsymbol{x}}{\partial \boldsymbol{\Theta}} = \boldsymbol{x} \boldsymbol{x}^{\top}.$$

A MATLAB code of a gradient-projection algorithm of ℓ_1 -constraint maximum likelihood estimation for Gaussian Markov networks is given in Figure 2, where projection onto the ℓ_1 -ball is computed by the method developed in [1].

For the true precision matrices

$$\boldsymbol{\Theta} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix} \quad \text{and} \quad \boldsymbol{\Theta}' = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$

sparse maximum likelihood estimation gives

$$\widehat{\mathbf{\Theta}} = \begin{pmatrix} 1.382 & 0 & 0.201 \\ 0 & 1.788 & 0 \\ 0.201 & 0 & 1.428 \end{pmatrix} \quad \text{and} \quad \widehat{\mathbf{\Theta}}' = \begin{pmatrix} 1.617 & 0 & 0 \\ 0 & 1.711 & 0 \\ 0 & 0 & 1.672 \end{pmatrix}.$$

Figure 1: Structural change in Gaussian Markov networks.

Thus, the true sparsity patterns of Θ and Θ' (in off-diagonal elements) can be successfully recovered. Since

$$\boldsymbol{\Theta} - \boldsymbol{\Theta}' = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \widehat{\boldsymbol{\Theta}} - \widehat{\boldsymbol{\Theta}}' = \begin{pmatrix} -0.235 & 0 & 0.201 \\ 0 & 0.077 & 0 \\ 0.201 & 0 & -0.244 \end{pmatrix},$$

change in sparsity patterns (in off-diagonal elements) can be correctly identified.

On the other hand, when the true precision matrices are

$$\boldsymbol{\Theta} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \quad \text{and} \quad \boldsymbol{\Theta}' = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix},$$

sparse maximum likelihood estimation gives

$$\widehat{\boldsymbol{\Theta}} = \begin{pmatrix} 1.303 & 0.348 & 0\\ 0.348 & 1.157 & 0.240\\ 0 & 0.240 & 1.365 \end{pmatrix} \quad \text{and} \quad \widehat{\boldsymbol{\Theta}}' = \begin{pmatrix} 1.343 & 0 & 0.297\\ 0 & 1.435 & 0.236\\ 0.297 & 0.236 & 1.156 \end{pmatrix}.$$

Thus, the true sparsity patterns of Θ and Θ' can still be successfully recovered. However, since

$$\boldsymbol{\Theta} - \boldsymbol{\Theta}' = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \text{ and } \widehat{\boldsymbol{\Theta}} - \widehat{\boldsymbol{\Theta}}' = \begin{pmatrix} -0.040 & 0.348 & -0.297 \\ 0.348 & -0.278 & 0.004 \\ -0.297 & 0.004 & 0.209 \end{pmatrix},$$

change in sparsity patterns was not correctly identified. This shows that, when a non-zero unchanged edge exists, say $\Theta_{k,k'} = \Theta'_{k,k'} > 0$ for some

```
TT=[2 0 1; 0 2 0; 1 0 2];
%TT=[2 0 0; 0 2 0; 0 0 2];
%TT=[2 1 0; 1 2 1; 0 1 2];
%TT=[2 0 1; 0 2 1; 1 1 2];
d=3; n=50; x=TT^(-1/2)*randn(d,n); S=x*x'/n;
T0=eye(d); C=5; e=0.1;
for o=1:100000
  T=T0+e*(inv(T0)-S);
  T(:)=L1BallProjection(T(:),C);
  if norm(T-T0)<0.00000001, break, end
  T0=T;
end
T, TT
```

```
function w=L1BallProjection(x,C)
```

```
u=sort(abs(x),'descend'); s=cumsum(u);
r=find(u>(s-C)./(1:length(u))',1,'last');
w=sign(x).*max(0,abs(x)-max(0,(s(r)-C)/r));
```

Figure 2: MATLAB code of a gradient-projection algorithm of ℓ_1 -constraint maximum likelihood estimation for Gaussian Markov networks. The bottom function should be saved as "L1BallProjection.m".

k and k', it is difficult to identify this unchanged edge because $\widehat{\Theta}_{k,k'} \approx \widehat{\Theta}'_{k,k'}$ does not necessarily hold by separate sparse maximum likelihood estimation from $\{\boldsymbol{x}_i\}_{i=1}^n$ and $\{\boldsymbol{x}'_{i'}\}_{i'=1}^{n'}$.

2 Sparse Density Ratio Estimation

As illustrated above, sparse maximum likelihood estimation can perform poorly in structural change detection. Another limitation of sparse maximum likelihood estimation is the Gaussian assumption. A Gaussian Markov network can be extended to a non-Gaussian model as

$$q(\boldsymbol{x}; \boldsymbol{\theta}) = rac{\overline{q}(\boldsymbol{x}; \boldsymbol{\theta})}{\int \overline{q}(\boldsymbol{x}; \boldsymbol{\theta}) \mathrm{d} \boldsymbol{x}}$$

where, for a *feature vector* f(x, x'),

$$\overline{q}(\boldsymbol{x}; \boldsymbol{\theta}) = \exp\left(\sum_{k \geq k'} \boldsymbol{\theta}_{k,k'}^{\top} \boldsymbol{f}(x^{(k)}, x^{(k')})\right).$$

This model is reduced to the Gaussian Markov network if

$$\boldsymbol{f}(x,x') = -\frac{1}{2}xx',$$

while higher-order correlations can be captured by considering higher-order terms in the feature vector. However, applying sparse maximum likelihood estimation to non-Gaussian Markov networks is not straightforward in practice because the normalization term $\int \bar{q}(\boldsymbol{x}; \boldsymbol{\theta}) d\boldsymbol{x}$ is often computationally intractable.

To cope with these limitations, let us handle the change in parameters, $\boldsymbol{\theta}_{k,k'} - \boldsymbol{\theta}'_{k,k'}$, directly via the following density ratio function:

$$\frac{q(\boldsymbol{x};\boldsymbol{\theta})}{q(\boldsymbol{x};\boldsymbol{\theta}')} \propto \exp\left(\sum_{k\geq k'} (\boldsymbol{\theta}_{k,k'} - \boldsymbol{\theta}'_{k,k'})^{\top} \boldsymbol{f}(x^{(k)}, x^{(k')})\right).$$

Based on this expression, let us consider the following density ratio model:

$$r(\boldsymbol{x}; \boldsymbol{lpha}) = rac{\exp\left(\sum_{k \ge k'} \boldsymbol{lpha}_{k,k'}^{ op} \boldsymbol{f}(x^{(k)}, x^{(k')})
ight)}{\int p'(\boldsymbol{x}) \exp\left(\sum_{k \ge k'} \boldsymbol{lpha}_{k,k'}^{ op} \boldsymbol{f}(x^{(k)}, x^{(k')})
ight) \mathrm{d}\boldsymbol{x}},$$

where $\boldsymbol{\alpha}_{k,k'}$ is the difference of parameters:

$$\boldsymbol{\alpha}_{k,k'} = \boldsymbol{\theta}_{k,k'} - \boldsymbol{\theta}'_{k,k'},$$

Then let us learn the parameters $\{ \boldsymbol{\alpha}_{k,k'} \}_{k \geq k'}$ by group-sparse maximum

```
Tp=[2 0 1; 0 2 0; 1 0 2]; Tq=[2 0 0; 0 2 0; 0 0 2];
Tp=[2 1 0; 1 2 1; 0 1 2]; Tq=[2 0 1; 0 2 1; 1 1 2];
d=3; n=50; xp=Tp^(-1/2)*randn(d,n); Sp=xp*xp'/n;
xq=Tq^(-1/2)*randn(d,n); A0=eye(d); C=1; e=0.1;
for o=1:100000
  U=exp(sum((A0*xq).*xq));
  A=A0-e*((repmat(U,[d 1]).*xq)*xq'/sum(U)-Sp);
  A(:)=L1BallProjection(A(:),C);
  if norm(A-A0)<0.0000001, break, end
  A0=A;
end
-2*A, Tp-Tq
```

Figure 3: MATLAB code of a gradient-projection algorithm of ℓ_1 -constraint Kullback-Leibler density ratio estimation for Gaussian Markov networks. "L1BallProjection.m" is given in Figure 2.

likelihood estimation |6, 5, 3|:

$$\min_{\{\boldsymbol{\alpha}_{k,k'}\}_{k\geq k'}} \log \frac{1}{n'} \sum_{i'=1}^{n'} \exp\left(\sum_{k\geq k'} \boldsymbol{\alpha}_{k,k'}^{\top} \boldsymbol{f}(x_{i'}^{\prime(k)}, x_{i'}^{\prime(k')})\right) - \frac{1}{n} \sum_{i=1}^{n} \sum_{k\geq k'} \boldsymbol{\alpha}_{k,k'}^{\top} \boldsymbol{f}(x_{i}^{(k)}, x_{i}^{(k')}) \text{ subject to } \sum_{k\geq k'} \|\boldsymbol{\alpha}_{k,k'}\| \leq R^2,$$

where $R \ge 0$ controls the sparseness of the solution. Support consistency of this sparse density ratio estimator has been theoretically investigated in [4].

A MATLAB code of a gradient-projection algorithm of sparse Kullback-Leibler density ratio estimation for Gaussian Markov networks is given in Figure 3. For the true precision matrices

$$\boldsymbol{\Theta} - \boldsymbol{\Theta}' = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix} - \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

sparse Kullback-Leibler density ratio estimation gives

$$\begin{pmatrix} 0 & 0 & 1.000 \\ 0 & 0 & 0 \\ 1.000 & 0 & 0 \end{pmatrix}.$$

This implies that change in sparsity patterns can be correctly identified.

Even when non-zero unchanged edges exist as

$$\boldsymbol{\Theta} - \boldsymbol{\Theta}' = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} - \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix},$$

sparse Kullback-Leibler density ratio estimation gives

$$\begin{pmatrix} 0 & 0.707 & -0.293 \\ 0.707 & 0 & 0 \\ -0.293 & 0 & 0 \end{pmatrix}.$$

Thus, change in Markov network structure can still be correctly identified.

References

- J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the l₁-ball for learning in high dimensions. In A. McCallum and S. Roweis, editors, *Proceedings of the 25th Annual International Conference on Machine Learning (ICML 2008)*, pages 272–279. Omnipress, 2008.
- [2] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. *Biostatistics*, 9(3):432–441, 2008.
- [3] S. Liu, J. Quinn, M. U. Gutmann, and M. Sugiyama. Direct learning of sparse changes in Markov networks by density ratio estimation. *Neural Computation*, 26(6):1169–1197, 2014.
- [4] S. Liu, T. Suzuki, and M. Sugiyama. Support consistency of direct sparse-change learning in Markov networks. In *Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI2015)*, pages 2785–2791, Austin, Texas, USA, Jan. 25–29 2015. The AAAI Press.

- [5] X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating divergence functionals and the likelihood ratio by convex risk minimization. *IEEE Transactions on Information Theory*, 56(11):5847–5861, 2010.
- [6] M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. von Bünau, and M. Kawanabe. Direct importance estimation for covariate shift adaptation. Annals of the Institute of Statistical Mathematics, 60(4):699–746, 2008.

Graduate School of Frontier Sciences, The University of Tokyo Tokyo 113-0033 JAPAN E-mail address: sugi@k.u-tokyo.ac.jp

東京大学·大学院新領域創成科学研究科 杉山 将