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Abstract

The objective of change detection is to investigate whether change exists between
two data sets {xi}ni=1 and {x′

i′}n
′

i′=1. In this paper, we explore methods of structural
change detection, which are aimed at analyzing change in the dependency structure
between elements of d-dimensional variable x = (x(1), . . . , x(d))⊤.

1 Sparse Maximum Likelihood Estimation

Let us consider aGaussian Markov network, which is a d-dimensional Gaus-
sian model with expectation zero:

q(x;Θ) =
det(Θ)1/2

(2π)d/2
exp

(
−1

2
x⊤Θx

)
,

where not the variance-covariance matrix, but its inverse called the pre-
cision matrix is parameterized by Θ. If Θ is regarded as an adjacency
matrix, the Gaussian Markov network can be visualized as a graph (see
Figure 1). An advantage of this precision-based parameterization is that
the connectivity governs conditional independence. For example, in the
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Gaussian Markov network illustrated in the left-hand side of Figure 1, x(1)

and x(2) are connected via x(3). This means that x(1) and x(2) are condi-
tionally independent given x(3).

Suppose that {xi}ni=1 and {x′
i′}n

′

i′=1 are drawn independently from the
Gaussian Markov networks with precision matrices Θ and Θ′, respectively.
Then analyzing Θ − Θ′ allows us to identify change in Markov network
structure (see Figure 1 again).

A sparse estimate of Θ may be obtained by maximum likelihood esti-
mation with the ℓ1-constraint :

max
Θ

n∑
i=1

log q(xi;Θ) subject to ∥Θ∥1 ≤ R2,

where R ≥ 0 is the radius of the ℓ1-ball. This method is also referred to as
the graphical lasso [2].

The derivative of log q(x;Θ) with respect to Θ is given by

∂ log q(x;Θ)

∂Θ
=

1

2
Θ−1 − 1

2
xx⊤,

where the following formulas are used for its derivation:

∂ log det(Θ)

∂Θ
= Θ−1 and

∂x⊤Θx

∂Θ
= xx⊤.

A MATLAB code of a gradient-projection algorithm of ℓ1-constraint max-
imum likelihood estimation for Gaussian Markov networks is given in Fig-
ure 2, where projection onto the ℓ1-ball is computed by the method devel-
oped in [1].

For the true precision matrices

Θ =

2 0 1
0 2 0
1 0 2

 and Θ′ =

2 0 0
0 2 0
0 0 2

 ,

sparse maximum likelihood estimation gives

Θ̂ =

1.382 0 0.201
0 1.788 0

0.201 0 1.428

 and Θ̂′ =

1.617 0 0
0 1.711 0
0 0 1.672

 .
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Figure 1: Structural change in Gaussian Markov networks.

Thus, the true sparsity patterns of Θ and Θ′ (in off-diagonal elements) can
be successfully recovered. Since

Θ−Θ′ =

0 0 1
0 0 0
1 0 0

 and Θ̂− Θ̂′ =

−0.235 0 0.201
0 0.077 0
0.201 0 −0.244

 ,

change in sparsity patterns (in off-diagonal elements) can be correctly iden-
tified.

On the other hand, when the true precision matrices are

Θ =

2 1 0
1 2 1
0 1 2

 and Θ′ =

2 0 1
0 2 1
1 1 2

 ,

sparse maximum likelihood estimation gives

Θ̂ =

1.303 0.348 0
0.348 1.157 0.240
0 0.240 1.365

 and Θ̂′ =

1.343 0 0.297
0 1.435 0.236

0.297 0.236 1.156

 .

Thus, the true sparsity patterns of Θ and Θ′ can still be successfully
recovered. However, since

Θ−Θ′ =

 0 1 −1
1 0 0
−1 0 0

 and Θ̂− Θ̂′ =

−0.040 0.348 −0.297
0.348 −0.278 0.004

−0.297 0.004 0.209

 ,

change in sparsity patterns was not correctly identified. This shows that,
when a non-zero unchanged edge exists, say Θk,k′ = Θ′

k,k′ > 0 for some
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� �
TT=[2 0 1; 0 2 0; 1 0 2];

%TT=[2 0 0; 0 2 0; 0 0 2];

%TT=[2 1 0; 1 2 1; 0 1 2];

%TT=[2 0 1; 0 2 1; 1 1 2];

d=3; n=50; x=TT^(-1/2)*randn(d,n); S=x*x’/n;

T0=eye(d); C=5; e=0.1;

for o=1:100000

T=T0+e*(inv(T0)-S);

T(:)=L1BallProjection(T(:),C);

if norm(T-T0)<0.00000001, break, end

T0=T;

end

T, TT� �� �
function w=L1BallProjection(x,C)

u=sort(abs(x),’descend’); s=cumsum(u);

r=find(u>(s-C)./(1:length(u))’,1,’last’);

w=sign(x).*max(0,abs(x)-max(0,(s(r)-C)/r));� �
Figure 2: MATLAB code of a gradient-projection algorithm of ℓ1-constraint maximum
likelihood estimation for Gaussian Markov networks. The bottom function should be
saved as “L1BallProjection.m”.

k and k′, it is difficult to identify this unchanged edge because Θ̂k,k′ ≈
Θ̂′

k,k′ does not necessarily hold by separate sparse maximum likelihood

estimation from {xi}ni=1 and {x′
i′}n

′

i′=1.

2 Sparse Density Ratio Estimation

As illustrated above, sparse maximum likelihood estimation can perform
poorly in structural change detection. Another limitation of sparse maxi-
mum likelihood estimation is the Gaussian assumption. A Gaussian Markov
network can be extended to a non-Gaussian model as

q(x;θ) =
q(x;θ)∫
q(x;θ)dx

,
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where, for a feature vector f(x, x′),

q(x;θ) = exp

(∑
k≥k′

θ⊤
k,k′f(x

(k), x(k
′))

)
.

This model is reduced to the Gaussian Markov network if

f(x, x′) = −1

2
xx′,

while higher-order correlations can be captured by considering higher-order
terms in the feature vector. However, applying sparse maximum likeli-
hood estimation to non-Gaussian Markov networks is not straightforward
in practice because the normalization term

∫
q(x;θ)dx is often computa-

tionally intractable.
To cope with these limitations, let us handle the change in parameters,

θk,k′ − θ′
k,k′, directly via the following density ratio function:

q(x;θ)

q(x;θ′)
∝ exp

(∑
k≥k′

(θk,k′ − θ′
k,k′)

⊤f(x(k), x(k
′))

)
.

Based on this expression, let us consider the following density ratio model:

r(x;α) =

exp

(∑
k≥k′

α⊤
k,k′f(x

(k), x(k
′))

)
∫

p′(x) exp

(∑
k≥k′

α⊤
k,k′f(x

(k), x(k
′))

)
dx

,

where αk,k′ is the difference of parameters:

αk,k′ = θk,k′ − θ′
k,k′,

Then let us learn the parameters {αk,k′}k≥k′ by group-sparse maximum
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� �
Tp=[2 0 1; 0 2 0; 1 0 2]; Tq=[2 0 0; 0 2 0; 0 0 2];

Tp=[2 1 0; 1 2 1; 0 1 2]; Tq=[2 0 1; 0 2 1; 1 1 2];

d=3; n=50; xp=Tp^(-1/2)*randn(d,n); Sp=xp*xp’/n;

xq=Tq^(-1/2)*randn(d,n); A0=eye(d); C=1; e=0.1;

for o=1:1000000

U=exp(sum((A0*xq).*xq));

A=A0-e*((repmat(U,[d 1]).*xq)*xq’/sum(U)-Sp);

A(:)=L1BallProjection(A(:),C);

if norm(A-A0)<0.00000001, break, end

A0=A;

end

-2*A, Tp-Tq� �
Figure 3: MATLAB code of a gradient-projection algorithm of ℓ1-constraint Kullback-
Leibler density ratio estimation for Gaussian Markov networks. “L1BallProjection.m”
is given in Figure 2.

likelihood estimation [6, 5, 3]:

min
{αk,k′}k≥k′

log
1

n′

n′∑
i′=1

exp

(∑
k≥k′

α⊤
k,k′f(x

′(k)
i′ , x

′(k′)
i′ )

)

− 1

n

n∑
i=1

∑
k≥k′

α⊤
k,k′f(x

(k)
i , x

(k′)
i )

subject to
∑
k≥k′

∥αk,k′∥ ≤ R2,

where R ≥ 0 controls the sparseness of the solution. Support consistency
of this sparse density ratio estimator has been theoretically investigated in
[4].

A MATLAB code of a gradient-projection algorithm of sparse Kullback-
Leibler density ratio estimation for Gaussian Markov networks is given in
Figure 3. For the true precision matrices

Θ−Θ′ =

2 0 1
0 2 0
1 0 2

−

2 0 0
0 2 0
0 0 2

 =

0 0 1
0 0 0
1 0 0

 ,
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sparse Kullback-Leibler density ratio estimation gives 0 0 1.000
0 0 0

1.000 0 0

 .

This implies that change in sparsity patterns can be correctly identified.
Even when non-zero unchanged edges exist as

Θ−Θ′ =

2 1 0
1 2 1
0 1 2

−

2 0 1
0 2 1
1 1 2

 =

 0 1 −1
1 0 0
−1 0 0

 ,

sparse Kullback-Leibler density ratio estimation gives 0 0.707 −0.293
0.707 0 0

−0.293 0 0

 .

Thus, change in Markov network structure can still be correctly identified.
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