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Abstract

Many machine learning problems, such as non-stationarity adaptation, outlier de-
tection, dimensionality reduction, and conditional density estimation, can be effec-
tively solved by using the ratio of probability densities. Since the naive two step
procedure of first estimating the probability densities and then taking their ratio
performs poorly, methods to directly estimate the density ratio from two sets of
samples without density estimation have been extensively studied recently. How-
ever, these methods are batch algorithms that use the whole datasets to estimate
the density ratio, and they are inefficient in the online setup where training samples
are provided sequentially and solutions are updated incrementally without storing
previous samples. In this paper, we propose two online density ratio estimators
based on the adaptive regularization of weight vectors. Through experiments on
inlier-based outlier detection, we demonstrate the usefulness of the proposed meth-
ods.
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1 Introduction

Almost all machine learning problems can be solved through density estimation, because
knowing the probability density is equivalent to knowing everything about the data. Thus,
density estimation is the most versatile approach to machine learning, and various meth-
ods have been proposed so far. However, without strong parametric assumptions, density
estimation is hard to perform accurately in high-dimensional problems. Thus, it is desir-
able to solve target machine learning tasks directly without performing density estimation
(Vapnik, 1998).

Following this idea, the machine learning approach based on the ratio of probability
densities has attracted attention recently (Sugiyama et al., 2012b). The rationale behind
density ratio estimation is that many machine learning problems — such as transfer
learning, outlier detection, change detection, and dimension reduction — can be solved
in a unified manner using just the density ratio. By directly estimating this density
ratio, the difficult task of density estimation can be avoided, leading to better empirical
performance.

Due to the the practical utility, several methods for density ratio estimation have been
proposed (Kanamori et al., 2009; Sugiyama et al., 2012a; Izbicki et al., 2014). In Sugiyama
et al. (2012a) it was shown that density-ratio estimation may be performed by matching
the density ratio to a model of the density ratio under a Bregman divergence. This view
of density-ratio estimation is of great interest, since it relates to several existing methods,
and the resulting estimators can be interpreted in terms of the Bregman divergence. The
simplest Bregman divergence corresponds to the squared loss between the density ratio
and its model (Kanamori et al., 2009). The main advantage of the least-squares based
density ratio estimator is that the solution can be analytically obtained. Another choice
for the Bregman divergence is the Kullback-Leibler loss. This Kullback-Leibler based
estimator also appears in the variational estimation of the Kullback-Leibler divergence
(Nguyen et al., 2010). The main disadvantage of the Kullback-Leibler based estimator is
that it does not have a closed-form solution, and optimization is usually performed via
gradient or quasi-Newton methods. Although these estimators have been demonstrated to
work well on many different problems (Sugiyama et al., 2012b; Sugiyama and Kawanabe,
2012), they work only in a batch mode and thus are not efficient in online problems
where training samples are provided sequentially and solutions are updated incrementally
without storing previous samples.

In this paper, we propose online algorithms of the least-squares and Kullback-Leibler
based density ratio estimators in the framework of adaptive regularization of weight vectors
(Crammer et al., 2009), which was originally proposed for regression and classification.
We experimentally demonstrate that, for a fixed computational budget, our proposed
online algorithms achieve greater performance than both the batch solutions and online
solutions via a naive stochastic gradient descent in inlier-based outlier detection.
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2 Batch Density-Ratio Estimation

In this section, we formulate the batch density-ratio estimation problem, and review
density ratio estimation using Bregman divergences.

2.1 Problem Formulation

Suppose that we are given a set of independent and identically distributed (i.i.d.) samples
{xi}ni=1 from a probability distribution with density p(x) and another set of i.i.d. samples
{x′

j}n
′

j=1 from a probability distribution with density p′(x) in the same domain. Under
the assumption that p(x) > 0 for all x, our goal is to estimate the density ratio function,

r(x) :=
p′(x)

p(x)
,

from {xi}ni=1 and {x′
j}n

′
j=1.

A naive approach is to estimate p(x) and p′(x) from {xi}ni=1 and {x′
j}n

′
j=1 separately

and to take the ratio of the estimated densities. However, such a two-step plug-in approach
is not reliable because the first step of density estimation is performed without regards
to the second step of taking the ratio (Sugiyama et al., 2012b). Below, we review a direct
density-ratio estimation method that does not involve density estimation.

2.2 Batch Algorithm

Here, let us review batch density ratio estimation algorithms using Bregman divergences.

2.2.1 General Framework with Bregman Divergences

The density ratio can be estimated by minimizing the Bregman divergence between the
true density ratio r∗(x) and a parameterized model of the density ratio, rθ(x) (Sugiyama
et al., 2012a). The Bregman divergence from t∗ to t is defined as follows (Bregman, 1967):

BRf (t
∗∥t) = f(t∗)− f(t)− ∂f(t)(t∗ − t), (1)

where f(t) is a strictly convex function. The above is minimized with respect to t when
t = t∗. The above distance is useful, since t∗ occurs linearly in all terms that include both
t∗ and t. Minimizing the Bregman divergence between the true density ratio r∗(x) and a
model of the density ratio rθ(x), weighted by p(x), gives

BRf (r
∗, r) =

∫
BRf

(
r∗(x), rθ(x)

)
p(x)dx

=

∫
p(x)

(
∂f
(
rθ(x)

)
rθ(x)− f

(
rθ(x)

))
dx

−
∫

p′(x)∂f
(
rθ(x)

)
+ C,
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where C =
∫
f
(
r∗(x)

)
p(x)dx is constant w.r.t. θ. The empirical version for the above

problem is therefore

min
θ

1

n

n∑
i=1

∂f
(
rθ(xi)

)
rθ(xi)− f

(
r(xi)

)
+

1

n′

n′∑
j=1

∂f
(
rθ(x

′
j)
)
+

1

2
λθ⊤θ,

where we included a regularization term with regularization parameter λ > 0.
Let us consider the following linear-in-parameter model for density ratios:

rθ(x) :=
b∑

ℓ=1

θℓϕℓ(x) = θ⊤ϕ(x),

where b is the number of basis functions,

ϕ(x) := (ϕ1(x), . . . , ϕb(x))
⊤

is the vector of basis functions,
θ := (θ1, . . . , θb)

⊤

is the vector of parameters, and ⊤ denotes the transpose.
A final consideration is choosing a suitable Bregman divergence by defining the func-

tion f(t). Below we discuss two such choices for f(t).

2.2.2 Kullback-Leibler Approach

Choosing the Bregman divergence as f(t) = t log t−t results in the Kullback-Leibler (KL)
divergence:

KL(t∗∥t) = t− t∗ log t+ t∗ log t∗ − t∗.

The empirical and regularized optimization problem is given by

min
θ

1

n

n∑
i=1

θ⊤ϕ(xi)−
1

n′

n′∑
j=1

log θ⊤ϕ(x′
j) +

λ

2
θ⊤θ,

where λ > 0 is the regularization parameter.
Since the objective function is smooth and convex, we may find the globally optimal

solution by a standard optimization technique such as gradient descent or quasi-Newton
methods. The gradient of the above objective function with respect to θ is given by

1

n

n∑
i=1

ϕ(xi)−
1

n′

n′∑
j=1

1

θ⊤ϕ(x′
j)
ϕ(x′

j) + λθ.

The regularization parameter λ and hyper-parameters included in the basis function ϕ(x)
can be objectively selected via cross-validation with respect to the objective function.
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2.2.3 Least-Squares Approach

Choosing the Bregman divergence as f(t) = 1
2
t2 gives the squared loss:

LS (t∗∥t) = 1

2
t∗ − 1

2
t2 − tt∗ + t2 =

1

2
(t∗ − t)2 .

This corresponds to a least-squares fitting of the density ratio model to the true density
ratio (Kanamori et al., 2009). The objective function can then be expressed as

min
θ

1

2n

n∑
i=1

rθ(xi)
2 − 1

n′

n′∑
j=1

r(x′
j) +

λ

2
θ⊤θ.

By substituting the linear model for g(x), this is simplified as a quadratic problem:

min
θ

1

2
θ⊤Ĥθ − θ⊤ĥ+

λ

2
θ⊤θ,

where Ĥ is a b× b matrix and ĥ is a b× 1 vector given as

Ĥℓ,ℓ′ =
1

n

n∑
i=1

ϕℓ(xi)ϕℓ′(xi) and ĥℓ =
1

n′

n′∑
j=1

ϕℓ(x
′
j).

The solution can then be analytically calculated as

θ =
(
Ĥ + λI

)−1

ĥ,

where I is the b×b identity matrix. All hyper-parameters in the model can be objectively
set via cross-validation.

3 Online Density-Ratio Estimation

In this section, we consider an online learning setup where samples xt and x′
t following

p(x) and p′(x) are given sequentially at time step t. We first propose an online KL-based
density ratio estimator and then an LS-based online density-ratio estimator.

3.1 Online KL Density Ratio Estimation

Given the current parameter θt that has been estimated using {xi}t−1
i=1

i.i.d.∼ p(x) and{
x′
j

}t−1

j=1

i.i.d.∼ p′(x), the basic idea for the online method is to update the parameter to

minimize the error for the next samples xt and x′
t:

θ⊤ϕ(xt)− log θ⊤ϕ(x′
t).
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We employ the idea of adaptive regularization of weight vectors (AROW) (Crammer
et al., 2009): for parameter vector θ, the normal distribution N(θ,Σ) with the mean
vector θ and the covariance matrix Σ is considered, and the update of parameters is
penalized by the KL divergence. More specifically, the AROWKL-based training criterion
to be minimized is

L(θ,Σ) = θ⊤ϕ(xt)− log θ⊤ϕ(x′
t)

+
γ

2

(
tr
(
Σ−1

t Σ
)
+ (θt − θ)⊤ Σ−1

t (θt − θ)− b− log
det(Σ)

det(Σt)

)
+

1

2

(
ϕ(xt)

⊤Σϕ(xt) + ϕ(x′
t)

⊤Σϕ(x′
t)
)
, (2)

where γ > 0 is the passiveness parameter. The first two terms in the right-hand side of
Eq.(2) correspond to the KL error for the next samples xt and x′

t, the third term is the
KL penalty for parameter updates, and the fourth term is the regularizer for covariance
matrix Σ.

The optimality condition w.r.t. the mean θ is

∂L

∂θ
= ϕ(xt)−

ϕ(x′
t)

θ⊤ϕ(x′
t)

− γΣ−1
t (θt − θ) = 0.

Note that, since the domain of log(t) is t > 0, in the above we should take into account
the constraint θ⊤ϕ(x′

t) > 0. We can simplify the above by making the substitution

η := θ⊤ϕ(x′
t),

and multiplying the entire equation with η:

ηϕ(xt)− ϕ(x′
t)− γηΣ−1

t θt + γηΣ−1
t θ = 0. (3)

Multiplying this with Σt from the left of Eq.(3), we have

ηΣtϕ(xt)−Σtϕ(x
′
t)− γηθt + γηθ = 0. (4)

Again multiplying with ϕ(x′
t)

⊤ from the left gives

ηϕ(x′
t)

⊤Σtϕ(xt)− ϕ(x′
t)

⊤Σtϕ(x
′
t)− ηγϕ(x′

t)
⊤θt + γη2 = 0,

and collecting the terms gives:

γη2 + η
[
ϕ(x′

t)
⊤Σtϕ(xt)− γϕ(x′

t)
⊤θt

]
− ϕ(x′

t)
⊤Σtϕ(x

′
t) = 0.

By defining

β = ϕ(x′
t)

⊤Σtϕ(xt)− γϕ(x′
t)

⊤θt,

c = −ϕ(x′
t)

⊤Σtϕ(x
′
t),
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we can solve it for η as

η =
−β ±

√
β2 − 4γc

2γ
.

Note that this quadratic has two solutions. However, since η = θ⊤ϕ(x′
t) > 0 because the

domain of the logarithm is positive, the solution η+ is given by

η+ =
−β +

√
β2 − 4γc

2γ
.

This is then substituted in Eq.(4) to obtain the update rule:

θt+1 = θt −
1

γ
Σtϕ(xt) +

1

γη+
Σtϕ(x

′
t). (5)

Next, we equate the derivative of L(θ,Σ) with respect to Σ to zero:

∂L

∂Σ
=

1

2

(
γΣ−1

t − γΣ−1 + ϕ(xt)ϕ(xt)
⊤ + ϕ(x′

t)ϕ(x
′
t)

⊤
)
= O.

Using the Sherman-Morrison formula1 gives

Σt+1 =

(
Σ−1

t +
ϕ(xt)ϕ(xt)

⊤

γ
+

ϕ(x′
t)ϕ(x

′
t)

⊤

γ

)−1

= Σ′
t −

Σ′
tϕ(x

′
t)ϕ(x

′
t)

⊤Σ′
t

γ + ϕ(x′
t)

⊤Σ′
tϕ(x

′
t)
, (6)

where we put

Σ′
t := Σt −

Σtϕ(xt)ϕ(xt)
⊤Σt

γ + ϕ(xt)⊤Σtϕ(xt)
.

3.2 Online LS Density Ratio Estimation

Given the current parameter θt that has been estimated using {xi}t−1
i=1

i.i.d.∼ p(x) and{
x′
j

}t−1

j=1

i.i.d.∼ p′(x), the basic idea for the online method is to update the parameter to

minimize the error for the next samples xt and x′
t:

1

2
rθ(xt)

2 − rθ(x
′
t).

1For matrix A and vector b, it holds that

(
A+ bb⊤

)−1
= A−1 − A−1bb⊤A−1

1 + b⊤A−1b
.
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Then, the AROW-type update rule, derived just as in Section 3.1, is

θt+1 =
(
ϕ(xt)ϕ(xt)

⊤ + γΣ−1
t

)−1

(ϕ(x′
t) + γΣ−1

t θt)

= θ′
t −

ϕ(xt)
⊤θ′

t

ϕ(xt)⊤Σtϕ(xt) + γ
Σtϕ(xt),

where the second line follows from the application of the Sherman-Morrison formula and
θ′
t is defined as

θ′
t := θt +

Σtϕ(x
′
t)

γ
.

The update rule for Σt+1 is exactly the same as that for the KL method (see (6)).
Note that the above online LS density ratio estimator can be regarded as an application

of classical recursive least-squares (Haykin, 2002) to density ratio estimation.

4 Experiments

In this section, we experimentally investigate the performance of the proposed online
density-ratio estimators on the problem of online inlier-based outlier detection (Hido et al.,
2011).

4.1 Setup

Following Hido et al. (2011), we formulate the inlier-based outlier detection problem as the
problem of estimating the density ratio r(x) = p′(x)/p(x), where p′(x) is the density of
inliers and p(x) is the density of unlabeled samples (i.e., a mixture of inliers and outliers).
Samples for which the density ratio r(x) is low, tend to be outliers (see Fig. 1). This
is due to the fact that the probability that a sample is an inlier is proportional to the
density ratio. To see this, assume that inliers are labeled as y = 1 an outliers are labeled
as y = −1. Then the probability that sample x is an inlier is

p(y = 1|x) ∝ p(x|y = 1)

p(y = 1)p(x|y = 1) + p(y = −1)p(x|y = −1)
=

p′(x)

p(x)
.

To identify outliers, we are therefore interested in areas where the density ratio is low.
Note that traditional outlier detection methods assume that outliers occur in areas where
the inlier density is low. Inlier-based outlier detection is however not constrained by such
an assumption and can identify outliers that occur in high-density areas (cf. Fig. 1 and
Fig. 2).

In the experiments below, we first prepare training and test sets which both contain
inliers and outliers. Then we form the inlier set {x′

j}n
′

j=1 from the inliers contained in the
training set and form the unlabeled set {xi}ni=1 from both the inliers and outliers in the
training set.
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(a) The density of inliers p′(x) and un-
labeled samples p(x).
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(b) The density ratio r(x) = p′(x)
p(x) .

Figure 1: An example of density ratio based outlier detection. Densities for a dataset
consisting of inliers p′(x) and a corrupted dataset consisting of both inliers and outliers
p(x) are given in Fig 1(a). We see in Fig. 1(b) that the density ratio r(x) = p′(x)/p(x)
takes a small value in the region where p(x) significantly differs from p′(x). It is in this
region where outliers occur.
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(a) The density of inliers p′(x) and un-
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(b) The density ratio r(x) = p′(x)
p(x) .

Figure 2: An example of density ratio-based outlier detection when the inlier and out-
lier distributions overlap. We see that even when outliers occur in high-density areas
(Fig. 2(a)), they can be identified via the density ratio (Fig. 2(b)).
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We initially give to outlier detectors 150 inlier samples and 150 unlabeled samples
randomly chosen from the inlier and unlabeled sets, respectively. Then, a pair of randomly
chosen inlier and unlabeled samples is given to outlier detectors in an online manner over
iterations. In practice, the class prior of the mixture dataset is unknown. Therefore, the
score calculated by r(x) can not be appropriately thresholded2. Therefore, instead of the
classification accuracy, the performance of outlier detectors is evaluated by the area under
the receiver operating characteristic curve (AUC) for the test set. The AUC is used since
it is independent of the particular class prior of the unlabeled dataset or threshold.

For density ratio estimation, we use 150 Gaussian kernels as basis functions {ϕℓ(x)}150ℓ=1:

ϕℓ(x) := exp

(
−∥x− cℓ∥2

2σ2

)
,

where ∥ ·∥ denotes the Euclidean norm, σ is the Gaussian bandwidth, and {cℓ}150ℓ=1 are the
Gaussian centers chosen from the initial numerator (inlier) samples. The density ratio
was estimated using five methods:

• The batch KL method (Batch-KL) described in Section 2

• The online KL method (AROW-KL) proposed in Section 3.

• The online KL method with naive stochastic gradient descent (SGD-KL).

• The batch LS method (Batch-LS) described in Section 2.

• The online LS method (AROW-LS), described in Section 3.

• The online LS method with naive stochastic gradient descent (SGD-LS).

Density ratio estimators contain unknown hyper-parameters. Cross-validation is the
most standard way to select these hyper-parameter values. However, previous samples
are not stored in the online methods, and therefore cross-validation cannot be directly
employed. Here, we maintain all models with different hyper-parameter values throughout
the online learning process, and use newer samples for validation to choose the best model
at each time step. More specifically, at time t+400, estimation is carried out using samples
only up to time t, and the latest 400 samples are used for computing the validation error
with respect to the objective function. For fair comparison, we also use the same hyper-
parameter selection scheme for the batch method.s

The Gaussian kernel model for all density ratio estimators contains a hyper-parameter
for the kernel width, which was selected from the following candidates:

σ ∈ {0.3, 0.3 + 4− 0.3

10
, . . . , 4} ×median({∥cℓ − cℓ′∥}150ℓ,ℓ′=1).

2In practice, a common strategy is to rank the unlabeled samples according to the score then remove
a percentage of the samples with the lowest score. This percentage is specified by the practitioner based
on domain knowledge.
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In addition to the kernel width, each method contains one additional hyper-parameter.
The regularization parameter λ for the batch density ratio estimators are selected from

λ ∈ {10−3, 10−
5
2 , . . . , 101},

the passiveness parameter γ for the AROW based density ratio estimators are selected
from

γ ∈ {10−1, 10−
1
2 , . . . , 10

5
2 , 103}.

For the stochastic gradient descent methods, the step size η was treated as a hyper-
parameter and selected from

η ∈
{
10−6, 10−5.5, . . . , 10−2

}
.

4.2 Spambase Dataset

First, we perform experiments using the Spambase dataset3, which contains 4061 e-mail
samples with 57 attributes. There are 1813 spam samples in the dataset. Among 57
attributes, we only use 48 attributes (the percentage of words in an e-mail) for outlier
detection. 25% of the dataset is used for evaluation and the remaining 75% is training
data. It is assumed that all the positive samples are inliers. The probability that an
outlier occurs is set to 20%.

Fig. 3(a) (left) depicts the AUC values as a function of the sample size. This figure
shows that the batch methods are generally more accurate than their online counterparts.
This is expected since the batch methods have access to all samples. The proposed online
methods are not much worse than their batch counterparts and much better than naive
stochastic gradient descent based online methods.

Another interesting thing to note is that the batch KL method is generally better than
the batch LS method. Fig. 1 shows that outliers occur in areas where the density ratio
is small. In Fig. 4 the KL divergence and squared loss is plotted. From these plots, we
can confirm that the KL divergence penalizes error more severely when the density ratio
is small. This may contribute to the greater accuracy in identifying outliers.

Fig. 3(b) (left) depicts the cumulative computation time as a function of the sample
size, showing that the computation time of the online methods is significantly lower than
the batch methods. Stochastic gradient descent based online methods are faster than the
proposed AROW based online methods, perhaps since the proposed methods contain b×b
matrix Σ that is updated at each time step. This may be mitigated by approximating Σ
by a diagonal matrix, as in the original AROW paper (Crammer et al., 2009). Due to the
fact that the LS method has an analytic solution, the batch LS method is much faster
than the batch KL method. This aspect of the LS method is a major motivation why it
is often preferred over the KL method. However, we see that in the online setup, both
the KL and LS methods are about the same speed.

3The dataset was obtained from http://archive.ics.uci.edu/ml/.
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Figure 3: Experimental results for the Spambase (left column) and MNIST (right col-
umn) datasets. The standard error is given as error bars. “Batch-KL” and “Batch-LS”
use all the samples in a batch setup, “AROW-KL” and “AROW-LS” are the proposed
AROW-based online methods. “SGD-KL” and “SGD-LS” are the naive stochastic gradi-
ent descent based online methods.
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Figure 4: The squared loss LS (t∗∥t∗ + ϵ) and the KL loss KL (t∗∥t∗ + ϵ) for different
values of t∗. The KL loss penalizes errors when t∗ is small much more strongly.

In Fig. 3(c) (left), we plot the cumulative computation time against the AUC values.
From this, we see that, with a limited computational budget, the proposed online methods
significantly outperform both their batch and the stochastic gradient descent counterparts.

4.3 MNIST Dataset

Next, we use the MNIST dataset4, which contains images of hand-written digits of size
28× 28 pixels. Each image is represented by a 784-dimensional feature vector which is of
much higher dimensional than the previous Spambase dataset. Each pixel in the images
are normalized to [0, 1] representing its gray-scale intensity level.

For the first experiment, we use the images of “4”or “9” in the datasets, and regard “4”
as inliers and “9” as outliers. 25% of the dataset is used for evaluation and the remaining
75% is training data. The probability that an outlier is drawn in the unlabeled dataset
was set to 20%.

The experimental results are given in the right-hand column of Fig. 3. From the
graphs, we see that the results show similar tendencies to the previous results. That is, the
proposed online methods are significantly faster than their batch versions. Furthermore,
due to the better estimate of the density ratio, the outlier detection accuracy is much
higher than the online stochastic gradient methods. With a limited computational budget,
the proposed methods also give higher classification accuracy than all other methods.

For the second experiment, we choose one digit as an inlier class, and regard all other
digits as outliers. The initial inlier datarset contained 150 samples and the unlabeled
dataset 150 samples. The probabilty that an outlier occurs in the unlabeled dataset
was set to 20%. This experiment was performed by selecting “1”–”9” in turn as inliers
(i.e., 9 separate experiments). The AUC versus cumulative computation time is plotted
in Fig. 5. From the graphs, we again see that for a limited computational budget, the
proposed online KL divergence gives more accurate results.

4The dataset was obtained from http://yann.lecun.com/exdb/mnist/.
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Figure 5: Computational time vs. accuracy when a single digit is considered an inlier and
the rest are considered outliers.

5 Conclusion

Various machine learning problems can be solved via density ratio estimation, which can
be performed by matching the density ratio to a model under a Bregman divergence. Two
popular approaches is to use the Kullback-Leibler loss and the squared loss. In this paper,
we extended the original batch density ratio estimators to an online learning scenario
based on the idea of adaptive regularization of weight vectors, which has been successfully
used in regression and classification (Crammer et al., 2009). Through experiments on
inlier-based outlier detection (Hido et al., 2011), we demonstrated the usefulness of the
proposed methods. We showed that, for a given computational budget, online AROW
based methods outperform both online stochastic gradient descent and batch methods.
We also showed that the KL divergence based loss may be more suited to the outlier
detection problem.
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