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Abstract

The goal of cross-domain matching (CDM) is to find correspondences between two
sets of objects in different domains in an unsupervised way. CDM has various inter-
esting applications, including photo album summarization where photos are auto-
matically aligned into a designed frame expressed in the Cartesian coordinate sys-
tem, and temporal alignment which aligns sequences such as videos that are poten-
tially expressed using different features. In this paper, we propose an information-
theoretic CDM framework based on squared-loss mutual information (SMI). The
proposed approach can directly handle non-linearly related objects/sequences with
different dimensions, with the ability that hyper-parameters can be objectively op-
timized by cross-validation. We apply the proposed method to several real-world
problems including image matching, unpaired voice conversion, photo album sum-
marization, cross-feature video and cross-domain video-to-mocap alignment, and
Kinect-based action recognition, and experimentally demonstrate that the proposed

method is a promising alternative to state-of-the-art CDM methods.
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1 Introduction

Matching/alignment of objects/time-series from different domains is an important task in
machine learning, data mining, and computer vision communities. Applications include
photo album summarization, cross-feature video and cross-domain video-to-mocap align-
ment, activity recognition, temporal segmentation, and curve matching [1, 2, 3, 4, 5, 6].
In this paper, we propose a general information-theoretic cross-domain matching (CDM)
framework based on squared-loss mutual information [7]. In particular, we address two
CDM problems: cross-domain object matching and cross-domain temporal alignment.
The difference between the two CDM problems is subtle. In object matching the relative
ordering within the sets does not matter, where as in temporal alignment the relative
ordering within each set must be preserved.

Cross-Domain Object Matching (CDOM): The objective of cross-domain object
matching (CDOM) is to match two sets of objects in different domains. For instance,
in photo album summarization, photos are automatically assigned into a designed frame
expressed in the Cartesian coordinate system (see Figure 5(a)). A typical approach of
CDOM is to find a mapping from objects in one domain (photos) to objects in the other
domain (frame) so that the pairwise dependency is maximized. In this scenario, accurately
evaluating the dependence between objects is the key challenge.

Kernelized sorting (KS) [1] tries to find a mapping between two domains that max-
imizes mutual information (MI) [8] under the Gaussian assumption. However, since the
Gaussian assumption may not be fulfilled in practice, this method (which we refer to as
KS-MI) tends to perform poorly. To overcome the limitation of KS-MI, Quadrianto et
al. [2] proposed using the kernel-based dependence measure called the Hilbert-Schmidt
independence criterion (HSIC) [9] for KS. Since HSIC is a distribution-free independence
measure, KS with HSIC (which we refer to as KS-HSIC) is more flexible than KS-MI.
However, HSIC includes the Gaussian kernel width as a tuning parameter, and its choice
is crucial in obtaining desired performance (see also [10]).

In this paper, we propose an alternative CDOM method that can naturally address
the model selection problem. The proposed method, called least-squares object matching
(LSOM), employs squared-loss mutual information (SMI) [7] as the dependence measure.
An advantage of LSOM is that cross-validation (CV) with respect to the SMI criterion
is possible. Thus, all the tuning parameters such as the Gaussian kernel width and the
regularization parameter can be objectively determined by CV. Through experiments on
image matching, unpaired voice conversion, and photo album summarization tasks, LSOM
is shown to be a promising alternative to CDOM, outperforming competing methods.
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Cross-Domain Temporal Alignment (CDTA): Temporal alignment of sequences is
an important problem with many practical applications such as speech recognition [11, 12],
activity recognition [4], temporal segmentation [5], curve matching [6], chromatographic
and micro-array data analysis [13], synthesis of human motion [14], and temporal align-
ment of human motion [3, 15].

Dynamic time warping (DTW) is a classical temporal alignment method that aligns
two sequences by minimizing the pairwise distance [11, 12] between samples (e.g., under
the Euclidean, squared Euclidean, or Manhattan distance measures). An advantage of
DTW is that the minimization can be efficiently carried out by dynamic programming
(DP). [16]. However, due to the typical fixed sample-wise notion of distance, DTW may
not be able to find a good alignment where two signals are related in complex ways (e.g., a
video and negative of the video are perceptually similar but would result in large sample-
to-sample distance and DTW score). Moreover, DTW cannot handle sequences with
different dimensions (e.g., video to audio alignment), which limits the range of applications
significantly. Even if the dimensionality is the same, it is not clear which distance measure
is the most appropriate for a given application.

To overcome the weaknesses of DTW, canonical time warping (CTW) was introduced
in [3]. CTW performs sequence alignment in a common latent space found by canonical
correlation analysis (CCA) [17]. Thus, CTW can naturally handle sequences with differ-
ent dimensions. However, CTW can only deal with linear subspace projections, and it is
difficult to optimize model parameters, such as the regularization parameter used in CCA
and the dimensionality of the common latent space. To handle non-linearity, dynamic
manifold temporal warping (DMTW) was recently proposed in [4]. DMTW first projects
original data onto a one-dimensional non-linear manifold and then finds an alignment on
this manifold using DTW. Although DMTW is highly flexible by construction, its perfor-
mance depends heavily on the choice of the non-linear transformation and, moreover, it
implicitly assumes the smoothness of sequences.

In this paper, we propose a novel information-theoretic CDTA method based on de-
pendence maximization. Our method, which we call least-squares dynamic time warping
(LSDTW), employs SMI as a dependency measure. Our method can naturally deal with
non-linearity and non-Gaussianity in data and CV is available for model selection. Fur-
thermore, LSDTW does not require strong assumptions on the topology of the latent
manifold (e.g., smoothness). Thus, LSDTW is expected to perform well in a broader
range of applications. Through experiments on synthetic data, video sequence alignment,
and Kinect action recognition tasks, LSDTW is shown to be a promising alternative to
existing temporal alignment methods.

Preliminary version of this work appeared in [18] which only focused on SMI-based
CDOM. In this journal version, we further explore SMI-based CDTA and provide a more
extensive experimental evaluation.
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2 Squared-Loss Mutual Information

We first review squared-loss mutual information (SMI) [7].
SMI is defined and expressed as

// ( (wmp:l(j _1>2P(w)p(y)dmdy
// ( (33}»? )p@»y)dwdy—%. 0

Note that SMI is the Pearson divergence [19] from p(x,y) to p(x)p(y), while the ordinary
MI is the Kullback-Leibler divergence [20] from p(x,y) to p(x)p(y). SMI is non-negative
and takes zero if and only if & and y are independent, as the ordinary MI.

SMI cannot be directly computed since it contains unknown densities p(x,y), p(x),
and p(y). Here, we briefly review an SMI estimation method called least-squares mutual
information (LSMI) [7].

Suppose that we are given n independent and identically distributed (i.i.d.) paired
samples {(x;,y;)}1, drawn from a joint distribution with density p(x,y). A key idea of
LSMI is to directly estimate the density ratio,

L —

r@,y)
p(@)p(y)’
without going through density estimation of p(x,y), p(x), and p(y).

In LSMI, the density ratio function r(x,y) is directly modeled by the following linear-
in-parameter model:

r(z,y) =

b

Ta(ma y) = Z O%Oé(ma y) = aTgo(:L', y)7 (2)

=1
where b is the number of basis functions, a = (ay,..., ;)" are parameters, p(x,y) =
(o1(x,y),...,0p(xz,y))" are basis functions, and " denotes the transpose. Here, we use

the product kernel of the following form for b = n as basis functions:

ooz, y) = K(z,20) L(Y, yr),

where K(x,x’) and L(y,y’) are reproducing kernels for  and y. In this paper, we use
the Gaussian kernel.
The parameters a are estimated so that the following squared-error J is minimized:

// F(@,y) — Ta(@, 9))*p()p(y)dzdy

/m@ywwwmw

/ / ra(z,y)’p()p(y)dzedy,
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where we use r(x,y)p(x)p(y) = p(x,y) and C' is a constant.
By using an empirical approximation, the parameter a in the model r(, y) is learned
as follows:

N |l = ~ A
a = argmin {iaTH(x ~h'a+ §aTa , (3)

where a regularization term Aa' a/2 is included for avoiding overfitting, and

—~ 1 &
H=—3 ol.y)e(,y)’

1,j=1

%(KKT) o(LL"),

%;So(miayi)

1
— “(KoL)1,,
(KoL)

>
I

where o denotes the Hadamard product (a.k.a. the element-wise product) and 1, =
[1,...,1]" e R™.

Differentiating the objective function in Eq.(3) with respect to v and equating it to
zero, we can obtain an analytic-form solution:

a = (H+\,) 'h.

Given a density ratio estimator 7 = rg, SMI can be simply approximated as

: (4)

—_—

SMI=-a'h—

N | —

1
2
Model selection: In order to determine the kernel parameter and the regularization
parameter A\, cross-validation (CV) is available for the SMI estimator: First, the samples
{(z;,y;)}", are divided into K disjoint subsets {Sk}r_,, Sr = {(®ri, yri) ok, of (ap-
proximately) the same size, where ny is the number of samples in the subset S;. Then,
an estimator ais, is obtained using {S;};4, and the approximation error for the hold-out
samples S is computed as

. ~T 7 ~ TT ~
= — SkHSkagk — hskagk,

Kcv) 1
Tse V=3

Where, fOl" [KSk]ij = K(:ci,zck,j% [LSk]ij = L(’yz, yk,j> 1= 1, Ce ,n,j = 1, coey |Sk|,

—~ 1

Hs, = F(ngng) o (Ls,Lg,),
k

~ 1

hSk T (Ksk © Lsk) 1nk'

ng
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This procedure is repeated for k = 1,..., K, and its average JCV) is taken as

KCV 2: KCV

We compute JECY) for all model candidates, and choose the model that minimizes
J(K—CV)‘

3 Cross-Domain Object Matching with SMI

In this section, we propose a CDOM method called least-squares object matching (LSOM).

3.1 Overview of Least-Squares Object Matching

The goal of CDOM is, given two sets of samples of the same size, {x;}!, and {y;}" ,, to
find a mapping that well “matches” them. Note that the dimensionality of  and y can
be different.

Let m be a permutation function over {1,...,n}, and let II be the corresponding
permutation indicator matrix, i.e.,

me {0,1}™", M1, =1,, and II'1, = 1,

where 1,, is the n-dimensional vector with all ones.
Let us denote the samples matched by a permutation 7 by

{(@i, Yn(i) Y

The optimal permutation, denoted by IT*, can be obtained as the maximizer of the SMI
between the two sets X = [x1,...,x,] and YII = [y (1), ..., Yrn)]:

IT" := argmax SMI(X, YTI). (5)
il

Based on Eq.(5), we develop the following iterative algorithm for optimizing IT:
(i) Initialization: Initialize the alignment matrix IT.

(ii) Dependence estimation: For the current II, obtain an SMI estimator
SMI(X, YTI).

(iii) Dependence maximization: Given an SMI estimator S/\MI(X , YTII), obtain the
maximum alignment IT.

(iv) Convergence check: The above (ii) and (iii) are repeated until IT fulfills a con-
vergence criterion.

We call this approach least-squares object matching (LSOM).
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3.2 Dependence Estimation
In dependence estimation, we compute Eq.(4) with X and YTI:

— 1 1+ 1

where

an = (Hy + M) 'hu,

— 1
Hp=—(KK")o(II'LL'II),
n

~ _1 T
hi = — (K o (II"' LII)) 1,,.

Then, plugging hy into Eq.(6), we get

SMI(X,YTI) = %ag (Ko (II"LII)) 1, — 3
=t (H LHAHK> -5

where A is the diagonal matrix with diagonal elements given by &. Note that we used
Eq.(73) and Eq.(75) in [21] for obtaining the above SMI expression. Note, we use the
model selection presented in Section 2.

3.3 Dependence Maximization

Dependence maximization of LSOM is formulated as follows:
max SMI(X, YTI).

Since this optimization problem is in general NP-hard, we simply use the same optimiza-
tion strategy as kernelized sorting [2] (see also Section 5.1.2), i.e., for the current IT°¢,
the solution is updated as

I = (1= )™ 4 pargmax tr (1 LI Ao K ). (7)
II

where 0 < 1 < 1 is a step size. The second term is a linear assignment problem (LAP)
[22], which can be efficiently solved by using the Hungarian method [22]. In this paper, a
C++ implementation of the Hungarian method provided by Cooper! was used for solving
Eq.(7); then IT is repeatedly updated by Eq.(7) until convergence.

Initialization: In this iterative optimization procedure, the choice of the initial per-
mutation matrix is critical to obtain a good solution. Quadrianto et al. [2] proposed a

thttp://mit.edu/harold /www /code.html
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HSIC-based initialization scheme. HSIC is a kernel-based dependence measure given as
follows [9]: o
HSIC(X,Y) = tr(K L),

where K = T'KT and L = T'LT are the centered kernel matrices for  and y, respectively.
Note that smaller HSIC scores mean that X and Y are closer to be independent. In the
HSIC-based initialization scheme, the alignment that maximizes HSIC between X and Y
is used.

Suppose that the kernel matrices K and L are rank one, i.e., for some f and g, K
and L can be expressed as K = ff" and L = gg'. Then HSIC can be written as

HSIC(X, YII) = || f "'TIg|. (8)

The initial permutation matrix is determined so that Eq.(8) is maximized. According
to Theorems 368 and 369 in [23], the maximum of Eq.(8) is attained when the elements
of f and Ilg are ordered in the same way. That is, if the elements of f are ordered in
the ascending manner (i.e., f; < fo < .-+ < f,,), the maximum of Eq.(8) is attained by
ordering the elements of g in the same ascending way. However, since the kernel matrices
K and L may not be rank one in practice, the principal eigenvectors of K and L were
used as f and g in [2]. We call this eigenvalue-based initialization.

4 Cross Domain Temporal Alignment via SMI

Next, we propose cross-domain temporal alignment (CDTA) based on SMI [7, 24]. The
key difference between temporal alignment and object matching is that sample ordering
within each set must be strictly preserved in temporal alignment, as that accounts for the
temporal order of samples.

4.1 Overview of Least-Squares Dynamic Time Warping (LS-
DTW)

Let X =[xy, 22,..., %, ] and Y = [y, Yo, ..., Yn,]| be sequences, represented by ordered
samples x; € R%* and y;, € R%, from different domains. Our goal is to find tempo-
ral alignment such that the statistical dependency between two sequences of samples is
maximized. Note that ny and dy can, in general, be different from n, and d,.
Let 7#* and 7Y be alignment functions over {1,...,ny} and {1,...,n,}, and let IT be
the corresponding alignment matrix:
IT:= [ w]" € R¥>™,
=[S, )T e {1, n ™
O A L= {1,...,ng 3™

=7y, ..,

where m is the number of indexes needed to align the sequences and ' denotes the
transpose. II needs to satisfy the following constraints:
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T

T =[neny] "

e Boundary condition: [7¥ 7}]" = [1 1]" and [7X 7V ]

e Continuity condition: 7} — 7, € {0,1} and m} —m}_; € {0,1}.

Note that the continuity condition implies monotonicity: t; > ¢, = 7, > 75, 7@'1 > 7Tty2.
Let us denote the aligned sequences by using 7* and 7Y as

Xpx = [:cﬁnf,:zzﬂg, ey T ],
Yo = I:yﬂ'i,7y7’l'%/7 s 7y7r$'n]'

Then, the optimal alignment, denoted by IT*, is defined as the maximizer of SMI between
the two sequences X x and Y, y. The optimization problem of LSDTW is defined as

IT" := argmax SMI( X zx, Yyv ). 9)
II
Based on Eq.(9), we develop the following iterative algorithm for estimating IT:
(i) Initialization: Initialize the alignment matrix IT.

(ii) Dependence estimation: For the current II, obtain an SMI estimator
SMI( X yex, Yarv ).

(iii) Dependence maximization: Given an SMI estimator S/\MI(X,,X, Y.v), obtain the
maximum alignment IT.

(iv) Convergence check: (ii) and (iii) are repeated until II fulfills a convergence cri-
terion.

We call this method as least-squares dynamic time warping (LSDTW).

4.2 Dependence Estimation

In dependence estimation of LSDTW, we compute Eq.(4) from X, x and Yy as

MI( X, Yoy ) = —a@phn — =
SMI( ) 5omhn — 5
1 «— 1
= % ;Tan(mw;ﬂwa) - 57 (1())

where
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p(x,y) is the basis function (See Eq.(2) for details). We select model parameters of SMI
using the approach in Section 2.

4.3 Dependence Maximization

Based on the empirical estimate of SMI given by Eq.(10), the dependence maximization
problem is given as

max S/\MI(X,TX, Y.v).

We here provide a computationally efficient approximation algorithm based on dynamic
programming (DP) [16].

Given the empirical estimate of SMI computed at the dependence estimation step, the
dependence maximization problem is given from Eq.(10) as

ml_%X S/\M(Xﬂ-x,Yﬂ-y)
1 m Mold
- mr?x % Z; Zz: O%K(mﬂ'f? mﬂ?old)L(yﬂ'Zy7 yﬂ'?old).
i=1 =1
Based on the constraints on the alignment functions IT described in Section 4.1, this
optimal alignment can be computed by DP [16]. In order to verify this, we define the prefix
sequences X,, := [&1,T2,...,%,) and Yy = [y1,Y2,..., Y], with n < n, and n’ < ng,
and -
SMI(X,,,Y,,) =: SMI(n,n’) = A(n,n")/M(n,n').
This denotes the optimal SMI for the aligned prefix sequences X, and Y, where
A(n,n') =370 ran, (Trx, Yry) and M(n,n') = m.
Based on the continuity and monotonicity conditions, the optimal SMI for the aligned
prefix sequences X,, and Y, is computed as

SMI(n,n") = A(n,n")/M(n,n’),

’ A(nr nl71)+7n,n/» (MZSMI(TL, nlfl))
A(n,n')=4¢ An—1,7)+7mmn, (p=SMI(n—1,n')) ,
A(n_L n' — 1)+’7n,n’) (,LL = SMI(?"L—L n' — 1))

, M(n,n'—1)+1, (p=SMI(n,n’ —1))
M(n7n ): M(n—1,n")+1, (u=SMI(n—1,n)) ,
M(n—-1,n"-1)+1, (g = SMI(n — 1,n’ — 1))

p= max{SMI(n —1,n'—1),SMI(n — 1,7'), SMI(n,n" = 1)}, Yuw = Tan, (Tn,Yw), for
1 <n <ngand 1 <n' <ny, where the boundary conditions of the alignment functions
is given as follows:

SMI(1,1) = ray_ (®1,91),
A(1,1) = SMI(1, 1),
M(1,1) = 1.

)
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Therefore, the optimal S/\MI(X,,X, Yoy ) = 2A(ng,ny)/M(n,n') — 3 can be computed in
time complexity O(ngny). Given the accumulated cost matrix B, ,» = SMI(n,n’), we can

compute the optimal alignment II using backtracking.

Initialization: Due to the greedy nature of the algorithms, using a good initial alignment
is highly important for the success of LSDTW. Here, from the alignment obtained using
CTW [3] and the simple uniform initialization,

7 =[1, [1 +ny/m], |1+ 2n/m], ... ,ng]" € R™*
™ =[1,[1+ny/m], |1 +2ny/m],...,n,]" € R™
where m = min(ny, ny) and |c| denotes the largest integer not greater than c¢. Out of the

two resulting alignments, one for each initialization, we choose the one with the larger
cross-validation score as the final result of LSDTW.

5 Related Methods

In this section, we review related methods for CDOM and CDTA.

5.1 Cross-Domain Object Matching

First, we review relevant CDOM methods and point out their potential weaknesses.

5.1.1 Kernelized Sorting with Mutual Information

Kernelized sorting with mutual information (KS-MI) [1] matches objects in different do-
mains so that MI between matched pairs is maximized. We review KS-MI following the
alternative derivation provided in [2].

MI is one of the popular dependence measures between random variables. For random
variables X and Y, MI is defined as follows [8]:

_ p(z,y)
MI(X,Y) : //p(:c,y) log p(:c)p(y)dwdy’
where p(x,y) denotes the joint density of  and y, and p(x) and p(y) are the marginal
densities of « and vy, respectively.
Now, let us assume that  and y are jointly normal in some reproducing Kernel Hilbert
Spaces (RKHSs) endowed with joint kernel K (x,z')L(y,y’), where K (x, ') and L(y,y’)
are reproducing kernels for  and y, respectively. Then KS-MI is formulated as follows:

min log [T'(K o (IT" LII))T|, (11)

where K = {K (x;, ¢;)}};_, and L = {L(y;,y;)}},—, are kernel matrices, I' = I, —+1,1,
is the centering matrix, and I,, is the n-dimensional identity matrix.

A critical weakness of KS-MI is the Gaussian assumption, which may not be fulfilled
in practice.
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5.1.2 Kernelized Sorting with Hilbert-Schmidt Independence Criterion

Kernelized sorting with Hilbert-Schmidt independence criterion (KS-HSIC) matches ob-
jects in different domains so that HSIC between matched pairs is maximized.
HSIC is a kernel-based dependence measure given as follows [9]:

HSIC(X,Y) = (K L),

where K = T'KT and L = T'LT are the centered kernel matrices for & and y, respectively.
Note that the smaller the HSIC score is, the closer X and Y are to be independent.
KS-HSIC is formulated as follows [2]:

max HSIC(X,YTII), (12)

where
HSIC(X,YTI) = tr(KTII' LII). (13)

This optimization problem is called the quadratic assignment problem (QAP) [25], and
it is known to be NP-hard. There exists several QAP solvers based on, e.g., simulated
annealing, tabu search, and genetic algorithms. However, those QAP solvers are not easy
to use in practice since they contain various tuning parameters.

Another approach to solving Eq.(12) based on a linear assignment problem (LAP)
[22] was proposed in [2], which is explained below. Let us relax the permutation indicator
matrix IT to take real values:

Imelo 1" Ml,=1,, and 11, = 1,,. (14)
Then, the update formula of KS-HSIC can be given as [2]

ey = (1 - n)HOId + nargmax tr (HTEHOMK) ) (15)
0}

where 0 < 1 < 1 is a step size. The second term is an LAP subproblem, which can be
efficiently solved by using the Hungarian method [22].

In the original KS-HSIC paper [2], a C++ implementation of the Hungarian method
provided by Cooper! was used for solving Eq.(15); then II is kept updated by Eq.(15)
until convergence.

Since HSIC is a distribution-free dependence measure, KS-HSIC is more flexible than
KS-MI. However, a critical weakness of HSIC is that its performance is sensitive to the
choice of kernels [10]. A practical heuristic is to use the Gaussian kernel with width set to
the median distance between samples [26], but this does not always work well in practice.

thttp://mit.edu/harold /www /code.html
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5.1.3 Kernelized Sorting with Normalized Cross-Covariance Operator

The kernel-based dependence measure based on the normalized cross-covariance operator
(NOCCO) [27] is given as follows [27]:

Drocco(Z) = tr(ff/i)»

where K = K(K +nel,)"!, L = L(L+nel,)"", and € > 0 is a regularization parameter.
Dnocco was shown to be asymptotically independent of the choice of kernels. Thus, KS
with Dyocco (KS-NOCCO) is expected to be less sensitive to the kernel parameter choice
than KS-HSIC [18].

The dependency measure for Z(II) can be written as [18]

DNOCCO (Z(H)) = tI‘(KHT.’EH) .

Since this is essentially the same form as HSIC, a local optimal solution may be
obtained in the same way as KS-HSIC:
™" = (1 — )T + pargmax tr (HTI}H"ld%) . (16)
ui
However, the property that Dxocco is independent of the kernel choice holds only asymp-
totically. Thus, with finite samples, Dnocco does still depend on the choice of kernels as
well as the regularization parameter e which needs to be manually tuned.

5.2 Cross-Domain Temporal Alignment

Next, we review relevant temporal alignment methods which are based on pairwise dis-
tance minimization (not dependence maximization) and point out their potential weak-
nesses.

5.2.1 Dynamic Time Warping (DTW)

The goal of dynamic time warping (DTW) is, given two sequences of the same dimension-
ality with different lengths, X and Y, to find an alignment such that the sum of pairwise
distances between two sequences is minimized [11, 12]:

min [|XW, =YWy [lfrop,
where || - ||gob is the Frobenius norm, Wy € {0,1}"*™ and W, € {0, 1}"*"™ are binary
selection matrices that need to be estimated to align X and Y. The above DTW opti-
mization problem can be efficiently solved by DP with time complexity O(nyny). However,
DTW tends to fail if the magnitude of two sequences are different. To deal with this issue,
the Derivative dynamic time warping (DDTW) [28], which aligns the first order derivative
of sequences, is useful.
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Potential weaknesses of DTW and DDTW are that they cannot handle sequences
with different dimensionalities such as image-to-audio alignment. Moreover, even when
the dimensionality of the sequences is the same, DTW and DDTW may not be able to
find a good alignment of sequences with different characteristics such as sequences with
different amplitudes. These drawbacks highly limit the applicability of DTW and DDTW.

5.2.2 Iterative Motion Warping (IMW)

The optimization problem of the iterative motion warping (IWM) [29] is given as

AI,IE?/VH(X @) Ax + BX)WXT - (Y o Ay + By)WyTH]%‘rob

+ R(AX7 Ay> BX7 By)>

where A, € R¥>™ and A, € R*™ are the scaling matrices, B, € R and B, €
R are the translation matrices, o is the Hadamard product, R(Ay, Ay, By, By) is the
regularization term to avoid overfitting.

IMW can successfully deal with sequences with different characteristics, e.g., hav-
ing different amplitudes. However, similarly to the original DTW, IMW cannot handle
sequences with different dimensionalities.

5.2.3 Canonical Time Warping (CTW)

Canonical time warping (CTW) can align sequences with different dimensionalities by
considering a common latent space [3, 15].
The CTW optimization problem is given as

min [V, XW, = V'YW, [[fop, (17)

Wi, Wy, Vi,V

where V; € R%*? and V, € R¥*? (b < min(dy,d,)) are linear projection matrices of
and y onto a common latent space, respectively. The above optimization problem can be
efficiently solved by alternately performing CCA and DTW, where the alignment matrix
obtained using DTW is usually used as an initial alignment matrix.

Generalized time warping (GTW) [15] can be regarded as CTW if we align two se-
quences and use the dynamic programming to obtain an alignment.

A limitation of CTW is that, since CTW finds a common latent space using CCA,
it can only deal with linear and Gaussian temporal alignment problems. Thus, CTW
cannot properly deal with multi-modal and non-Gaussian data. Another limitation of
CTW is that comparing the alignment quality over different model parameters is not
straightforward. This is because, for different model parameters, common latent spaces
found by CCA are generally different and thus the metrics of the pairwise distance (17) are
also different. For this reason, a systematic model selection method for the regularization
parameter, the dimensionality of the common latent space, and the initial alignment
matrix has not been properly addressed so far, to the best of our knowledge.



Cross-Domain Matching with Squared-Loss Mutual Information 15

5.2.4 Kernelized Canonical Time Warping (KCTW)

Let us transform X and Y to higher dimensional matrices ® and ¥ and define V = <I>‘7;(
and V; = WV,. Then, we have a nonlinear version of CTW (Eq.(17)) as

min ~ H‘/;(TKXW:: - ‘/;/TKyWyTHI%‘rom (18>

Wi, Wy, ViV,

where K, = ®'® and K, = W TW are the Gram matrices.

Using this formulation, one can handle nonlinearity in the CTW framework. However,
it is not clear how to objectively select model parameters such as kernel parameters. That
is, the KCCA-based approach works well only when appropriate model parameters are
used. However, if the parameters are not chosen carefully, KCTW can perform poorly.

6 Experiments

In this section, we report experimental results.

6.1 Cross-Domain Object Matching

First, we experimentally evaluate the performance of our proposed CDOM method in
image matching, unpaired voice conversion, and photo album summarization.

6.1.1 Setup

In all the methods, we use the Gaussian kernels:

|12
K(z,®') = exp (_M) 7

2
202

y—vy|?
L(y,y') = exp (—u) :

2
20y

and we experimentally set the maximum number of iterations for updating permutation
matrices to 20 and the step size n to 1. To avoid falling into undesirable local optima,
optimization is carried out 10 times with different initial permutation matrices, which are
determined by the eigenvalue-based initialization heuristic with Gaussian kernel widths

(0x,0y) = ¢ X (Mg, my),
where ¢ = 1/2,21/2 .. 10'/2, and

My = 2_1/2median({||a:i — azj||}2j:1),

my = 2 median({]ly; — yill}7j=).
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In KS-HSIC and KS-NOCCO, we use the Gaussian kernel with the following widths:
(0x,0y) = ¢ x (mx, my),
where ¢ = 1/2,10%/2. In KS-NOCCO, we use the following regularization parameters:
¢ = 0.01,0.05.

In KS-HSIC (CV), we choose the model parameters of HSIC, oy and oy by 2-fold CV
from

(0x,0y) = ¢ X (My, my),

where we use the cross-validation approach proposed in [30].
In LSOM, we choose the model parameters of LSMI, oy, oy, and A by 2-fold CV! from

(0x, 0y) = ¢ X (My, my),
A=10"110"21073.

6.1.2 Image Matching

Let us consider a toy image matching problem. In this experiment, we use images with the
RGB format used in [2], which were originally extracted from Flickr?. We first convert
the images from the RGB space to the Lab space and resize them to 40 x 40 pixels.
Then, we vertically divide the images in the middle, and make two sets of half-images
of 40 x 20 pixels. We denote the vectorized images by {x;}7, and {y;}!",, which are
2400-dimensional vectors (2400 = 40 x 20 x 3). We then decouple them by randomly
permuting {y;}";, and try to recover the correct correspondence by a CDOM method.

Figure 1 summarizes the average correct matching rate over 100 runs as functions of
the number of images, showing that the proposed LSOM method tends to outperform
the optimally tuned KS-HSIC, KS-HSIC (CV), and KS-NOCCO methods. Moreover,
through experiments, we observed that the optimally tuned KS-HSIC compares favorably
with KS-HSIC (CV). Figure 2 depicts an example of image matching results obtained by
LSOM, showing that most of the images are correctly matched. Moreover, we plot the
learning curve of LSOM in Figure 1(c) and it converges in 10 steps. Note that the tuning
parameters of LSOM (oy, oy, and \) are automatically tuned by CV.

6.1.3 Unpaired Voice Conversion

Next, we consider an unpaired voice conversion task, which is aimed at matching the voice
of a source speaker with that of a target speaker.

In this experiment, we use 200 short utterance samples recorded from two male speak-
ers in French, with sampling rate 44.1kHz. We first convert the utterance samples to

'We choose 2-fold cross validation to reduce the computational cost.
http:/ /www.flickr.com
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50-dimensional line spectral frequency (LSF) vectors [31]. We denote the source and tar-
get LSF vectors by  and y, respectively. Then the voice conversion task can be regarded
as a multi-dimensional regression problem of learning a function from x to y. How-
ever, different from a standard regression setup, paired training samples are not available;
instead, only unpaired samples {x;}"_; and {y;}!, are given.

By CDOM, we first match {«;}? ; and {y;}!,, and then we train a multi-dimensional
kernel regression model [32] using the matched samples {(@¢), ¥i)}iz; as

- 5
. o T 22 T
nvuvn§l ly: = W k(2a)[* + Ste(WTW),

where
k(x) = (K(z, x-1)), ..., K(x, a:,r(n)))T,
|2
K(x,x') = exp <_||:c—:1:||) :

272

Here, 7 is a Gaussian kernel width and ¢ is a regularization parameter; they are chosen
by 2-fold CV.

We repeat the experiments 100 times by randomly shuffling training and test samples,
and evaluate the voice convergence performance by log-spectral distance called the spectral
distortion [33] for 8000 test samples. Note that the smaller the spectral distortion is, the
better the quality of voice conversion is. Figure 4 shows the true spectral envelope and
their estimates, and Figure 3 shows the average performance over 100 runs as functions
of the number of training samples. These results show that the proposed LSOM tends to
outperform KS-NOCCO and KS-HSIC.

6.1.4 Photo Album Summarization

Finally, we apply the proposed LSOM method to a photo album summarization problem,
where photos are automatically aligned into a designed frame expressed in the Cartesian
coordinate system.

We align the Flickr?, Frey face[34], and USPS images [35] into complex frames—a
Japanese/Chinese character ‘mountain’, a smiley-face shape, and a ‘777" digit shape. The
results depicted in Figure 5 show that images with similar profiles are located in nearby
grid-coordinate cells.

6.2 Cross-Domain Temporal Alignment

Next, we experimentally evaluate the performance of our proposed CDTA method on
synthetic, video sequence alignment, and Kinect action recognition tasks.

http:/ /www.flickr.com
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(a) Layout of 120 images into a Japanese (b) Layout of 153 facial images into ‘smiley’
character ‘mountain’ by LSOM. by LSOM.
[TV 777777272 77177
W
773 ’7; 7y % %
A 777 77 7
N\ ;7 7;7 77';; 77 ] 7;
79
777 ;;; 17
7 7 1
777 / ']
7 777 N
(¢) Layout of 199 digit ‘7’ into ‘777" by
LSOM.

Figure 5: Images are automatically aligned into complex grid frames expressed in the
Cartesian coordinate system.

6.2.1 Setup
In LSDTW, we use the Gaussian kernels:

|12
K(z,x') = exp (_—Hw | ) :

2
202

a2
Liy.y') = exp <_|Iy Y| )

202
where oy, oy, and the regularization parameter A are chosen by 3-fold CV from
(0x,0y) = ¢ X (Mmyx, my),
c=2"Y21871Y2 02712
A=10"110"2,
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and

—-1/2

my = 27 median({||z; — = }75_,),

my = 2 Pmedian({ly; — y;[1}-1)-

Comparisons: We compare the performance of LSDTW with DTW and CTW. For DTW
and CTW, we use the publicly available implementations provided by the authors of the
original papers [3, 15]2. For CTW, we choose the dimensionality of CCA to preserve
90% of the total correlation, and we fix the regularization parameter at 0.01. We use
the alignment given by DTW as the initial alignment for CTW. In the video sequence
alignment and the real-world Kinect action recognition experiments, we also compare
LSDTW to kernel CTW (KCTW), derivative DTW (DDTW) [28], and iterative motion
warping (IMW) [29]. In KCTW, we use the Gaussian kernel and set the kernel width at
m, and m,,, which is a common heuristic [32]. For existing methods, we use the same
parameters as those used in [15].

Evaluation: To evaluate the alignment results, we use the following standard alignment

error [15]:

dist(IT*, IT) + dist(IT, IT%)
m* +m

Error = ,

where

dist(I1y, I1,) me {HT‘H _7"2 H 1)

IT* and II are true and estimated alignment matrices, and 71'{ , 7T (j ) € R2*! are the i-th
and j-th columns of IT; and I, respectively.

6.2.2 Synthetic Dataset

We first illustrate the behavior of the proposed LSDTW method on aligning two non-
linearly related non-stationary sequences using a synthetic dataset.
We use the following function:

x; = 1/200 + 0.4sin(7i/100) +¢;, i = 1,...,200,
Yy =((j—1)x2+1)/200+¢;, j=1,...,100,
where e; and e; are randomly generated additive Gaussian noise with standard deviation

0.01 (see Figure 6(a) and (b)). Note that, sample-wise, for a given value of z; there may
be multiple y;’s

2yww.f-zhou.com/ta_code.html.
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Figure 6(c) shows the alignment path obtained using LSDTW, CTW, and DTW,
respectively. In this experiment, we initialize CTW and DTW with the true alignment
matrix and check whether the corresponding methods perform well. On the other hand,
we use the CTW and uniform initialization (true alignment) for LSDTW and choose the
one that has the highest SMI score. As can be observed, LSDTW can find a better
alignment in the middle region (i.e., a highly non-linear region) than DTW and CTW.
This shows that the LSDTW objective is more appropriate than alternatives when it
comes to more complex data (with noise), due to its use of more universal information-
theoretic metric that is sensitive to statistical dependence (not absolute distance) and
is insensitive to noise. Figure 6(d) depicts the SMI score with respect to the number of
iterations in LSDTW, showing that SMI score does not change after 5 iterations. LSDTW
took 14.1 seconds on 16 core Intel Xeon 2.4GHz CPU with 24G memory vs. CTW that
took 2.4 seconds on the same machine.

6.2.3 Sequence Alignment

Videos with Different Features: In this experiment, we align two video sequences
taken from the Weizmann database [36], which consists of 10 motion sequences performed
by 9 people. Each video sequence is encoded with two different visual features; we align
sequences of pairs of subjects each encoded by different feature representation. Based on
[15] we extract two feature representations based on silhouettes obtained with background
subtraction: (i) Euclidean distance transform [37] and (ii) solution of Poisson equation
as features [38] (2450 dimensional). To reduce the dimensionality of inputs, we used the
top M principal components that preserve 99.9% of the total energy of the features®. For
evaluation, we randomly pick two walking sequences from different subjects and compute
the error between the estimated alignment and the ground-truth alignment. Note that
the ground-truth alignment is computed using DTW applied to the same features (see
[15] for further experimental details). For competing methods, we use the same parameter
setting as that used in [15]. Figure 7(a) shows the mean and variance of alignment error
for different methods. LSDTW gives the smallest alignment error (with CTW and KCTW
the next best).

Cross-Domain Sequence Alignment: To illustrate the capability of our method in
dealing with sequences with different dimensionalities in alignment, we align sequences
of different people performing a similar activity but recorded with different sensors. We
use one motion capture sequence from the CMU motion capture database and one video
sequence from the Weizmann database [36]. For the mocap data, we use 60-dimensional
feature (the imaginary portion of a unit quaternion computed for each of the 20 joints)
vectors to describe body configuration, while we use the solution of Poisson equation
as features (2450 dimensional) for video. Again, to reduce the dimensionality, we apply
PCA to each modality preserving 95% of total energy, resulting in the final representation

3We set M = min(My, M) where M, is the dimensionality of distance transform features and M, is
dimensionality of Poisson features that preserve 99.9% of the total energy respectively.
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for mocap x; € R and image features y; € R*. See [15] for the detail of the feature
extraction procedure. Figure 7(b) shows key frames after alignment by LSDTW. It can be
seen that LSDTW can align two sequences well, despite the fact that they are represented
by signals with different dimensionalities.

6.2.4 Kinect Action Recognition

We also evaluate the proposed LSDTW method on the publicly available Kinect action
recognition dataset* [39]. This dataset consists of human skeleton data (15 joints) ob-
tained using a Kinect sensor, and there are 16 subjects and 16 actions with 5 trials.
Instead of using the raw skeleton data, we compute a 105-dimensional feature vector for
each pose, where each element of the feature vector is the Euclidean distance between
joint pairs.

We carry out unsupervised action recognition experiments and evaluate the perfor-
mance of each alignment, looking at the classification accuracy. More specifically, we first
divide the action recognition dataset into two disjoint subsets: 8 subjects (#9-#16) for
training database (640 sequences), and the remaining 8 subjects (#1-#8) for testing (640
sequences). At test time, we retrieve N < 10 similar sequences for each test action from
the training database using DTW, KCTW, CTW, DDTW, IMW, and LSDTW; we use
the pairwise Euclidean distance based on the estimated alignment to measure the sim-
ilarity between sequences. We consider retrieval /classification as being correct if one of
the retrieved nearest neighbor sequences has a correct action label.

Figure 8 shows the mean classification accuracy as functions of the number of retrieved
sequences, N, where three different database sizes are tested. The graphs clearly show
that LSDTW compares favorably with existing methods in terms of classification accuracy
across all settings. For example in Figure 8(a), the proposed method achieves more than
70% classification accuracy (the number of extracted actions is 2) while best existing
methods give about 65% classification accuracy.

7 Conclusion

In this paper, we first proposed least-squares object matching (LSOM) for the cross-
domain object matching (CDOM) problem. LSOM adopts squared-loss mutual informa-
tion as a dependence measure, and it is estimated by the method of least-squares mutual
information (LSMI). A notable advantage of LSOM is that it is equipped with a natu-
ral cross-validation procedure that allows us to objectively optimize tuning parameters
such as the Gaussian kernel width and the regularization parameter in a data-dependent
fashion.

Moreover, we proposed a novel cross-domain temporal alignment framework, based on
SMI maximization, that we call least-squares dynamic time warping (LSDTW). Similarly
to LSOM, LSDTW includes its natural ability to deal with non-linearly related sequences

dwww.cs.ucf.edu/~smasood/datasets/UCFKinect.zip



Cross-Domain Matching with Squared-Loss Mutual Information 23

! 1 500 p 3
038 0.8 400 : 025
0.6 0.6 S
N 30 g,
04 04 200 —— TRUE 3
02 —x1 1w it
o —Y g amer DTW 1
% 0z o2 os o8 1 O 50 100 150 200 T200 400 600 800 1000 5 10 15 20
X Time X Number of iterations
(a) Synthetic data  (b) Synthetic data (c) Alignment path (d) SMI score
(X vs. Y) (X and Y vs. t)

Figure 6: Results of synthetic experiments. (a) Synthetic data (X vs. Y). (b) Synthetic
temporal signals as a function of time. (¢) Alignment paths. Here, the alignment error
of LSDTW, CTW, and DTW are 31.8, 69.3, and 73.9, respectively. (d) SMI score as a

function of the number of iterations.
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Figure 7: Results of video sequence alignment. (a) The mean and variance of alignment
error (lower is better) for different methods. (b) The key frames after alignment using
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with different dimensionalities (with non-Gaussian noise) and its ability to optimize model
parameters, such as the Gaussian kernel width and the regularization parameter, by cross-
validation.

We applied the proposed methods to various problems including image matching,
unpaired voice conversion, photo album summarization, cross-feature video alignment,
cross-domain video-to-mocap alignment, and Kinect action recognition, and quantita-
tively showed that LSOM and LSDTW are promising alternatives to state-of-the-art
cross-domain matching methods.

There are several remaining issues that we leave for future work. For example, match-
ing/alignment of multiple objects/sequences, similar to [15], can be addressed by com-
puting squared-loss mutual information for more than two variables [40]. Moreover, one
can integrate dimensionality reduction into SMI estimation [41], potentially further im-
proving the temporal alignment performance. Finally, CDOM methods cannot handle
the matching problem more than 10K samples. Recently, several efficient graph match-
ing algorithms including a path following algorithm [42] and deformable graph matching
[43] are proposed. Thus, scaling up the KS and LSOM using the state-of-the-art graph
matching algorithms is also an interesting problem.
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