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Abstract

Infrared light allows us to measure the inner structure of opaque samples such as a
semi-conductor. In this paper, we propose a method of registering multiple infrared
transmission images obtained from different layers of a sample for 3D reconstruction.
Since an infrared transmission image obtained from one layer is contaminated with
defocused images coming from other layers, registration with a standard similarity
metric such as the squared error and the cross correlation does not perform well.
To cope with this problem, we propose to use the squared-loss mutual information
as an alternative similarity measure for registration, which is more robust against
noise than ordinary mutual information. The practical usefulness of the proposed
method is demonstrated in simulated and actual experiments.
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1 Introduction

Non-destructive inspection of precision instruments such as semi-conductors is one of
the most important manufacturing processes in precision industries, and measuring in-
ner structure of opaque objects by infrared light is a promising means for this purpose.
However, images obtained by infrared light from different layers of a sample often suffer
misalignment because of asynchronous scanning of images from different layers. In this
paper, we therefore consider the problem of registering multiple infrared transmission im-
ages obtained from different layers of a sample, and propose a new practical algorithm for
3D reconstruction. Our proposed method can be used, e.g., for identifying the position of
defects in semi-conductor samples and thus can provide more precise information of the
inner structure for inspection.

Related image registration problems have been explored, e.g., in photolithography
processes for aligning circuit patterns and masks [11] and in pattern and photo-mask in-
spection for comparing target and reference images [12]. On the other hand, the image
registration problem we are tackling in this paper is much more challenging than the
previous works because an infrared transmission image obtained from one layer is con-
taminated with defocused images coming from other layers. For this reason, standard
linear similarity metrics such as the sum of squared differences (SSD) and the normal-
ized cross-correlation (NCC) [1, 2, 3, 4, 5, 6] are not suitable to registration of infrared
transmission images.

Mutual information (MI) [7], which is a quantity of interest in the information theory
community, allows us to capture non-linear variations between two random variables:

MI :=

∫∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy, (1)

where p(x, y) is the joint probability density of x and y, and p(x) and p(y) are the marginal
probability densities of x and y, respectively. MI is always non-negative, and takes zero
if and only if x and y are statistically independent. Thus, MI measures the dependency
between x and y, which describes more precise “relation” than linear correlations. For
example, if y = x2, x and y are uncorrelated but they are still statistically dependent and
thus MI takes a strictly positive value. Note that MI is reduced to a linear correlation
measure when x and y follow the centered Gaussian distributions. Thus, MI can be
regarded as a generalization of linear correlations to non-Gaussian random variables.

Given this superior detectability of statistical dependency, MI should be regarded as
a suitable similarity measure for registration of infrared transmission images. However,
because of the log function included in the definition of MI, which is an extremely steep
function near the origin, MI is highly sensitive to noise and outliers [8].

To overcome the excessive sensitivity of MI, a variant of MI called squared-loss mutual
information (SMI) [9] was introduced:

SMI :=
1

2

∫∫
p(x)p(y)

(
p(x, y)

p(x)p(y)
− 1

)2

dxdy. (2)
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SMI is also always non-negative and takes zero if and only if x and y are statistically
independent. Thus, SMI can be used as an alternative to MI for evaluating statistical
dependency, without suffering the “log” problem. Furthermore, thanks to the simple
squared-difference expression of SMI, it can be analytically approximated from samples
in a statistically optimal way, and this analytic SMI approximator allows explicit com-
putation of its derivative [10]. This is a highly useful property in image registration,
because eventually we want to register images so that SMI is maximized with respect to
some image transformation parameters. For these reasons, we propose to use SMI as our
dependency measure for registration of infrared transmission images.

After reviewing an SMI approximator in Section 2, we describe our SMI-based image
registration method in Section 3. Its performance is experimentally evaluated in Section 4,
and we conclude in Section 5.

2 SMI Approximation

Since SMI defined by (2) contains unknown probability densities p(x, y), p(x), and p(y), its
value cannot be directly computed. In this section, we review how SMI is approximately
computed from paired samples {(xi, yi)}ni=1 independently following p(x, y).

A naive way to approximately compute SMI is to separately estimate the densities
p(x, y), p(x), and p(y) from samples {(xi, yi)}ni=1, and plug the estimated densities p̂(x, y),
p̂(x), and p̂(y) in the definition of SMI. However, such a plug-in approach is known to
perform poorly, because the first step of estimating densities is performed without regards
to the second step of plugging them in SMI. More specifically, dividing p̂(x, y) by p̂(x)
and p̂(y) can significantly magnify the estimation error of p̂(x, y) when p̂(x) and p̂(y) take
a small value [13].

To cope with this problem, the direct SMI approximator called least-squares mutual
information (LSMI) [9, 8] was proposed. LSMI directly estimates the density ratio func-
tion,

r(x, y) :=
p(x, y)

p(x)p(y)
, (3)

without individually estimating each density. More specifically, the density ratio r(x, y)
is modeled by the following multiplicative kernel model [14]:

rΘ(x, y) :=
n∑

i,j=1

Θi,jK(x, xi)L(y, yj), (4)

where K(x, x′) and L(y, y′) are kernel functions for x and y, and Θ is a parameter matrix
whose (i, j)-element is Θi,j. Below, we focus on the Gaussian kernel for K(x, x′) and
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L(y, y′):

K(x, x′) := exp

(
−(x− x′)2

2σ2

)
, (5)

L(y, y′) := exp

(
−(y − y′)2

2σ2

)
, (6)

where σ denotes the Gaussian bandwidth. When the sample size n is too large, we may
reduce the number of kernel bases in the model (4) by, e.g., randomly selecting a subset.
In our experiments, we randomly choose 100 kernel bases.

The parameter Θ is determined so that the following squared error J is minimized:

J(Θ) :=
1

2

∫∫
p(x)p(y)

(
rΘ(x, y)− r(x, y)

)2

dxdy

=
1

2

∫∫
p(x)p(y)rΘ(x, y)

2dxdy −
∫∫

p(x, y)rΘ(x, y)dxdy + C, (7)

where C is a constant independent of Θ. By ignoring the irrelevant constant C, approxi-
mating the expectations with the empirical averages, and including the ℓ2-regularizer for
avoiding overfitting, the LSMI solution Θ̂ was shown to satisfy the following equation
[14]:

1

n2
K2Θ̂L2 + λΘ̂ =

1

n
KL, (8)

where Ki,j = K(xi, xj), Li,j = L(yi, yj), and λ ≥ 0 denotes the regularization parameter
that is determined by cross-validation with respect to J [9]. The above equation is called
the discrete-time Sylvester equation [15], and is known to be solved in O(n3) time, e.g.,
via eigendecomposition.

Finally, based on another expression of SMI,

SMI =
1

2

∫∫
p(x, y)r(x, y)dxdy − 1

2
, (9)

the LSMI estimator is given as

LSMI :=
1

2n
tr(KΘ̂L)− 1

2
. (10)

3 Image Registration with LSMI

Let us consider the problem of registering images X and Y : we transform image X to
X̃ (for example, by rotation or translation), so that X̃ “matches” Y as much as possible.

As the matching score, we use LSMI between X̃ and Y . We regard x̃ as a pixel value of
image X̃ and y as a pixel value of image Y , and we generate paired samples {(x̃i, yi)}ni=1

by coupling pixel values at corresponding points in the images.
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More specifically, our goal is to maximize LSMI with respect to an image transforma-
tion parameter from X to X̃. Here, we use a gradient-based method, such as a gradient
ascent method and a quasi-Newton method, to find a (local) maximizer of LSMI. The
gradient of LSMI is given by

∇LSMI =
1

n2σ2
tr(Θ̂⊤K̃QΘ̂L2)− 1

nσ2
tr(QΘ̂L), (11)

where

K̃i,j := K(x̃i, x̃j), (12)

Qi,j := K̃i,j(x̃i − x̃j)∇x̃i, (13)

and ∇x̃i denotes the gradient of the pixel value at x̃i.
Below, for simplicity, we focus on translation as image transformation1. Then, the

pixel values of the transformed image X̃ are given by

x̃(u, v) := x(u− wu, v − wv), (14)

where (u, v) denotes the coordinates on the image X̃, and w = (wu, wv)
⊤ denotes the

amount of translation. The gradient ∇x̃ is expressed as

∇x̃ = −


∂x̃(u, v)

∂u

∂x̃(u, v)

∂v

 , (15)

which is numerically computed by bilinear interpolation in our implementation.
The entire procedure of our LSMI-based image registration method is summarized as

follows:

1. Initialize the image transformation parameter w to zero.

2. Determine σ and λ in LSMI by cross-validation.

3. Find a local maximizer ŵ of LSMI by a quasi-Newton method.

4 Experiments

In this section, we experimentally demonstrate the performance of our proposed method.
We obtained infrared transmission images of size 2336 × 1632 using the surface pro-

filer SP500 by Toray Engineering Co., Ltd., equipped with an infrared light source (see
Figure 1). We took 71 images from a semi-conductor sample, which were captured in the

1Note that our framework can handle any transformation as long as it is smooth with respect to
transformation parameters.
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Figure 1: The surface profiler SP500 equipped with an infrared light source.

Target Region

Figure 2: The target region used for registration.

layer-by-layer manner and small misalignments were incurred due to mechanical move-
ments. We compared the performance of the proposed LSMI-based method with two
conventional methods based on normalized cross-correlation (NCC) [3] and mutual infor-
mation (MI) [16], where kernel density estimators for p(x), p(y), and p(x, y) were used
when computing the gradient of MI.

We selected the small region of size 50×50 pixels for registration (Figure 2). Examples
of images extracted from the target region are shown in Figure 3, where the 1st layer is
the closest to the surface and the 71st layer is the closest to the bottom.

4.1 Image Registration under Artificial Noise

First, we illustrate the behavior of the existing and proposed methods using images with
artificial noise. More specifically, we first duplicated the original image in the 1st layer.
Then we added the following noise to the images:

• Gaussian noise with mean zero and standard deviation τ = 0.01, 0.02, and 0.03,
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(a) 1st layer (b) 11th layer (c) 21st layer (d) 31st layer

(e) 41st layer (f) 51st layer (g) 61st layer (h) 71st layer

Figure 3: Examples of images extracted from the target region.

respectively.

• Gaussian blurring with standard deviation η = 1, 2, and 3, respectively.

• Impulse noise to relegate a pixel value to either black (the minimum value) or white
(the maximum value) with probability p = 0.001, 0.002, and 0.003, respectively.

Note that the above Gaussian and impulse noise were added to both images, but Gaussian
blurring was applied only to one of the images due to its deterministic nature. We then
translated one image byw∗ = (w∗

u, w
∗
v)

⊤, where each element was drawn from the standard
normal distribution. Figure 4 shows examples of images with artificial noise.

Table 1 summarizes the estimation error of registration:

∥ŵ −w∗∥, (16)

where w∗ is the ground-truth translation and ŵ is its estimate by a registration method.
This shows that the LSMI-based method outperforms the correlation-based and MI-based
methods with statistical significance. The poor performance of the correlation-based
method is due to local optima caused by intrinsic non-smoothness, while the MI-based
method is heavily affected by the impulse noise. On the other hand, the proposed method
seems not to suffer those problem too much, thanks to data-driven Gaussian width choice
by cross-validation and its robustness property to noise and outliers.

Next, we investigate the effect of changing the number of kernel bases in the proposed
method. Figure 5 depicts the means and the standard deviations of estimation error and
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(a) Gaussian noise (τ = 0.01) (b) Gaussian noise (τ = 0.02) (c) Gaussian noise (τ = 0.03)

(d) Gaussian blurring (η = 1) (e) Gaussian blurring (η = 2) (f) Gaussian blurring (η = 3)

(g) Impulse noise (p = 0.001) (h) Impulse noise (p = 0.002) (i) Impulse noise (p = 0.003)

Figure 4: Examples of images with artificial noise. τ denotes the standard deviation of
the Gaussian noise, η denotes the standard deviation of the Gaussian blurring, and p
denotes the probability of having impulse noise.
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Table 1: Means and standard deviations of estimation error over 100 runs. For each setup,
the best method in terms of the mean error and comparable ones according to the t-test
at the significance level 1% are specified by boldface.

Noise type Noise level Correlation MI LSMI

τ = 0.01 0.89 (0.62) 0.27 (0.43) 0.12 (0.10)
Gaussian noise τ = 0.02 0.94 (0.61) 0.56 (0.57) 0.16 (0.11)

τ = 0.03 0.89 (0.57) 0.78 (0.57) 0.30 (0.32)
η = 1 0.96 (0.55) 0.27 (0.48) 0.08 (0.12)

Gaussian blurring η = 2 1.07 (0.66) 0.42 (0.61) 0.17 (0.29)
η = 3 0.98 (0.58) 0.42 (0.60) 0.12 (0.10)

p = 0.001 1.13 (0.70) 0.85 (0.77) 0.05 (0.20)
Impulse noise p = 0.002 1.02 (0.71) 0.98 (0.71) 0.05 (0.18)

p = 0.003 0.96 (0.66) 1.01 (0.70) 0.05 (0.10)
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(a) Gaussian noise: τ = 0.01
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(b) Gaussian blurring: η = 1
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(c) Impulse noise: p = 0.001

Figure 5: Means and standard deviations of estimation error (upper) and computation
time (lower) over 1000 runs as functions of the number of basis functions in LSMI.
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Table 2: Estimation error over all layers and the amount of translation between the 1st
and 71st layers.

Translation
Methods Estimation error u-axis v-axis

Ground truth 0 −10.9 −9.9
No registration 0.58 0 0
Correlation 0.45 −1.2 −7.4

MI 0.30 −6.9 −9.9
LSMI 0.23 −10.4 −13.4

computation time as functions of the number of kernel bases. The results show that the
estimation error is not strongly affected by changing the number of kernel bases, but the
computation time tends to grow as the number of kernel bases increases. This results
show that, even if the number of kernel bases is reduced from 100 to 20–30, we can still
obtain comparable estimation results only with about one third of computation time.

4.2 Multi-Layer Image Registration on Real Data

Finally, we apply our proposed image registration method to multi-layer image registration
for all 71 images. More specifically, we align the 2nd image to the 1st image, then the 3rd
image to the 2nd image, and this is continued until the 71st image is aligned to the 70th
image.

Figure 6 illustrates the registration results, and Table 2 describes the estimation error
over all layers evaluated by

1

70

70∑
i=1

∥ŵi,i+1 −w∗
i,i+1∥, (17)

where w∗
i,i+1 is the manually annotated ground-truth of translation between the i-th and

(i + 1)-th layers, and ŵi,i+1 is its estimate by a registration method. From the results,
we can confirm that the propose LSMI-based method is a promising alternative to the
existing correlation-based and MI-based approaches.

5 Conclusion

In this paper, we proposed a novel image registration method that uses squared-loss
mutual information (SMI) as a similarity measure. We experimentally demonstrated
that the proposed method, in which an approximator of SMI called least-squares mutual
information (LSMI) is used, outperforms the existing methods. We also investigated the
effect of the number of kernel bases used in LSMI, and experimentally confirmed that even
when the number of kernel bases is reduced, the proposed LSMI-based method still works
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Figure 6: Results of multi-layer image registration.
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well, with much less computation costs. In our future work, we will further investigate
possible reduction in computation costs, e.g., by a coarse-to-fine approach.

In our current implementation for multi-layer image registration, images are registered
one by one from top to bottom. Although this is simple, estimation error in the early
layers can be cumulated in the latter layers. A potential advantage of the proposed
method is that, unlike the cross correlation, SMI (and also its approximator LSMI) can
be easily extended to more than two variables [17]: SMI for m variables x(1), . . . , x(m) is
defined as

SMI :=
1

2

∫
· · ·

∫
p(x(1)) · · · p(x(m))

(
p(x(1), . . . , x(m))

p(x(1)) · · · p(x(m))
− 1

)2

dx(1) · · · dx(m). (18)

Thus, in principle, it is possible to simultaneously handle similarities among all images.
However, naive implementation of simultaneous registration of many images will be com-
putationally too expensive. Our future challenge is to address this computational issue.
Borrowing the idea from coordinate-wise ascent in optimization theory is expected to be
promising.
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