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Abstract

Regression aims at estimating the conditional mean of output given input. How-
ever, regression is not informative enough if the conditional density is multimodal,
heteroscedastic, and asymmetric. In such a case, estimating the conditional den-
sity itself is preferable, but conditional density estimation (CDE) is challenging in
high-dimensional space. A naive approach to coping with high-dimensionality is
to first perform dimensionality reduction (DR) and then execute CDE. However,
such a two-step process does not perform well in practice because the error incurred
in the first DR step can be magnified in the second CDE step. In this paper, we
propose a novel single-shot procedure that performs CDE and DR simultaneously
in an integrated way. Our key idea is to formulate DR as the problem of minimizing
a squared-loss variant of conditional entropy, and this is solved via CDE. Thus,
an additional CDE step is not needed after DR. We demonstrate the usefulness of
the proposed method through extensive experiments on various datasets including
humanoid robot transition and computer art.
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1 Introduction

Analyzing input-output relationship from samples is one of the central challenges in ma-
chine learning. The most common approach is regression, which estimates the conditional
mean of output y given input x. However, just analyzing the conditional mean is not
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informative enough, when the conditional density p(y|x) possesses multimodality, asym-
metry, and heteroscedasticity (i.e., input-dependent variance) as a function of output y.
In such cases, it would be more appropriate to estimate the conditional density itself
(Figure 2).

The most naive approach to conditional density estimation (CDE) would be ϵ-neighbor
kernel density estimation (ϵ-KDE), which performs standard KDE along y only with
nearby samples in the input domain. However, ϵ-KDE do not work well in high-
dimensional problems because the number of nearby samples is too few. To avoid the small
sample problem, KDE may be applied twice to estimate p(x,y) and p(x) separately and
the estimated densities may be plugged into the decomposed form p(y|x) = p(x,y)/p(x)
to estimate the conditional density. However, taking the ratio of two estimated densities
significantly magnifies the estimation error and thus is not reliable. To overcome this
problem, an approach to directly estimating the density ratio p(x,y)/p(x) without sep-
arate estimation of densities p(x,y) and p(x) has been explored (Sugiyama et al., 2010).
This method, called least-squares CDE (LSCDE), was proved to possess the optimal non-
parametric learning rate in the mini-max sense, and its solution can be efficiently and
analytically computed. Nevertheless, estimating conditional densities in high-dimensional
problems is still challenging.

A natural idea to cope with the high-dimensionality is to perform dimensionality
reduction (DR) before CDE. Sufficient DR (Li, 1991; Cook and Ni, 2005) is a framework
of supervised DR aimed at finding the subspace of input x that contains all information
on output y, and a method based on conditional-covariance operators in reproducing
kernel Hilbert spaces has been proposed (Fukumizu et al., 2009). Although this method
possesses superior theoretical properties, it is not easy to use in practice because no
systematic model selection method is available for kernel parameters. To overcome this
problem, an alternative sufficient DR method based on squared-loss mutual information
(SMI) has been proposed recently (Suzuki and Sugiyama, 2013). This method involves
non-parametric estimation of SMI that is theoretically guaranteed to achieve the optimal
estimation rate, and all tuning parameters can be systematically chosen in practice by
cross-validation with respect to the SMI approximation error.

Given such state-of-the-art DR methods, performing DR before LSCDE would be a
promising approach to improving the accuracy of CDE in high-dimensional problems.
However, such a two-step approach is not preferable because DR in the first step is
performed without regard to CDE in the second step and thus small error incurred in the
DR step can be significantly magnified in the CDE step.

In this paper, we propose a single-shot method that integrates DR and CDE. Our key
idea is to formulate the sufficient DR problem in terms of the squared-loss conditional
entropy (SCE) which includes the conditional density in its definition, and LSCDE is
executed when DR is performed. Therefore, when DR is completed, the final conditional
density estimator has already been obtained without an additional CDE step (Figure 1).
We demonstrate the usefulness of the proposed method, named least-squares conditional
entropy (LSCE), through experiments on benchmark datasets, humanoid robot control
simulations, and computer art.
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(a) CDE without DR

(b) CDE after DR

(c) CDE with DR (proposed)

Figure 1: Conditional density estimation (CDE) and dimensionality reduction (DR). (a)
CDE without DR performs poorly in high-dimensional problems. (b) CDE after DR can
magnify the small DR error in the CDE step. (c) CDE with DR (proposed) performs
CDE in the DR process in an integrated manner.

2 Conditional Density Estimation with Dimensional-

ity Reduction

In this section, we describe our proposed method for conditional density estimation with
dimensionality reduction.

2.1 Problem Formulation

Let Dx(⊂ Rdx) and Dy(⊂ Rdy) be the input and output domains with dimensionality dx
and dy, respectively, and let p(x,y) be a joint probability density on Dx × Dy. Assume
that we are given n independent and identically distributed (i.i.d.) training samples from
the joint density:

{(xi,yi)}ni=1
i.i.d.∼ p(x,y).

The goal is to estimate the conditional density p(y|x) from the samples.
Our implicit assumption is that the input dimensionality dx is large, but its “intrinsic”

dimensionality, denoted by dz, is rather small. More specifically, let W and W⊥ be dz×dx
and (dx−dz)×dx matrices such that

[
W⊤,W⊤

⊥
]
is an orthogonal matrix. Then we assume

that x can be decomposed into the component z = Wx and its perpendicular component
z⊥ = W⊥x so that y and x are conditionally independent given z:

y ⊥⊥ x|z. (1)
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This means that z is the relevant part of x, and the rest z⊥ does not contain any infor-
mation on y. The problem of finding W is called sufficient dimensionality reduction (Li,
1991; Cook and Ni, 2005).

2.2 Sufficient Dimensionality Reduction with SCE

Let us consider a squared-loss variant of conditional entropy named squared-loss CE
(SCE):

SCE(Y |Z) = −1

2

∫∫ (
p(y|z)− 1

)2
p(z)dzdy. (2)

By expanding the squared term in Eq.(2), we obtained

SCE(Y |Z) = −1

2

∫∫
p(y|z)2p(z)dzdy +

∫∫
p(y|z)p(z)dzdy − 1

2

∫∫
p(z)dzdy

= −1

2

∫∫
p(y|z)2p(z)dzdy + 1− 1

2

∫
dy

= S̃CE(Y |Z) + 1− 1

2

∫
dy, (3)

where S̃CE(Y |Z) is defined as

S̃CE(Y |Z) = −1

2

∫∫
p(y|z)2p(z)dzdy. (4)

Then we have the following theorem (its proof is given in Appendix A), which forms the
basis of our proposed method:

Theorem 1

S̃CE(Y |Z)− S̃CE(Y |X) =
1

2

∫∫ (
p(z⊥,y|z)

p(z⊥|z)p(y|z)
− 1

)2

p(y|z)2p(x)dxdy

≥ 0.

This theorem shows S̃CE(Y |Z) ≥ S̃CE(Y |X), and the equality holds if and only if

p(z⊥,y|z) = p(z⊥|z)p(y|z).

This is equivalent to the conditional independence (1), and therefore sufficient dimension-

ality reduction can be performed by minimizing S̃CE(Y |Z) with respect to W :

W ∗ = argmin
W∈Gdx

dz
(R)

S̃CE(Y |Z = WX). (5)
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Here, Gdx
dz
(R) denotes the Grassmann manifold, which is a set of orthogonal matrices

without overlaps:

Gdx
dz
(R) = {W ∈ Rdz×dx | WW⊤ = Idz}/ ∼,

where I denotes the identity matrix and ∼ represents the equivalence relation: W and
W ′ are written as W ∼ W ′ if their rows span the same subspace.

Since p(y|z) = p(z,y)/p(z), SCE(Y |Z) is equivalent to the negative Pearson diver-
gence (Pearson, 1900) from p(z,y) to p(z), which is a member of the f -divergence class
(Ali and Silvey, 1966; Csiszár, 1967) with the squared-loss function. On the other hand,
ordinary conditional entropy (CE), defined by

CE(Y |Z) = −
∫∫

p(z,y) log p(y|z)dzdy,

is the negative Kullback-Leibler divergence (Kullback and Leibler, 1951) from p(z,y) to
p(z). Since the Kullback-Leibler divergence is also a member of the f -divergence class
(with the log-loss function), CE and SCE have similar properties. Indeed, the above
theorem also holds for ordinary CE. However, the Pearson divergence is shown to be
more robust against outliers (Basu et al., 1998; Sugiyama et al., 2012), since the log
function—which is very sharp near zero—is not included. Furthermore, as shown below,
S̃CE can be approximated analytically and thus its derivative can also be easily computed.
This is a critical property for developing a dimensionality reduction method because we
want to minimize S̃CE with respect to W , where the gradient is highly useful in devising
an optimization algorithm. For this reason, we adopt SCE instead of CE below.

2.3 SCE Approximation

Since S̃CE(Y |Z) in Eq.(5) is unknown in practice, we approximate it using samples
{(zi,yi) | zi = Wxi}ni=1.

The trivial inequality (a− b)2/2 ≥ 0 yields a2/2 ≥ ab− b2/2, and thus we have

a2

2
= max

b

[
ab− b2

2

]
. (6)

If we set a = p(y|z), we have

p(y|z)2

2
≥ max

b

[
p(y|z)b(z,y)− b(z,y)2

2

]
.

If we multiply both sides of the above inequality with −p(z), and integrated over z and
y, we have

S̃CE(Y |Z) ≤ min
b

∫∫ [
b(z,y)2p(z)

2
− b(z,y)p(z,y)

]
dzdy, (7)
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where minimization with respect to b is now performed as a function of z and y. For
more general discussions on divergence bounding, see Keziou (2003) and Nguyen et al.
(2010).

Let us consider a linear-in-parameter model for b:

b(z,y) = α⊤φ(z,y),

where α is a parameter vector and φ(z,y) is a vector of basis functions. If the expec-
tations over densities p(z) and p(z,y) are approximated by samples averages and the
ℓ2-regularizer λα

⊤α/2 (λ ≥ 0) is included, the above minimization problem yields

α̂ = argmin
α

[
1

2
α⊤Ĝα− ĥ⊤α+

λ

2
α⊤α

]
,

where

Ĝ =
1

n

n∑
i=1

Φ̄(zi),

ĥ =
1

n

n∑
i=1

φ(zi,yi),

Φ̄(z) =

∫
φ(z,y)φ(z,y)⊤dy. (8)

The solution α̂ is analytically given by

α̂ =
(
Ĝ+ λI

)−1

ĥ,

which yields b̂(z,y) = α̂⊤φ(z,y). Then, from Eq.(7), an approximator of S̃CE(Y |Z) is
obtained analytically as

ŜCE(Y |Z) =
1

2
α̂⊤Ĝα̂− ĥ⊤α̂.

We call this method least-squares conditional entropy (LSCE).

2.4 Model Selection by Cross-Validation

The above S̃CE approximator depends on the choice of models, i.e., the basis function
φ(z,y) and the regularization parameter λ. Such a model can be objectively selected by
cross-validation as follows:

1. The training dataset S = {(xi,yi)}ni=1 is divided into K disjoint subsets {Sj}Kj=1

with (approximately) the same size.

2. For each model M in the candidate set,
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(a) For j = 1, . . . , K,

i. For model M , the LSCE solution b̂(M,j) is computed from S\Sj (i.e., all
samples except Sj).

ii. Evaluate the upper bound of S̃CE obtained by b̂(M,j) using the hold-out
data Sj:

CVj(M) =
1

2|Sj|
∑
z∈Sj

∫
b̂(M,j)(z,y)2dy − 1

|Sj|
∑

(z,y)∈Sj

b̂(M,j)(z,y),

where |Sj| denotes the cardinality of Sj.

(b) The average score is computed as

CV(M) =
1

K

K∑
j=1

CVj(M).

3. The model that minimizes the average score is chosen:

M̂ = argmin
M

CV(M).

4. For the chosen model M̂ , the LSCE solution b̂ is computed from all samples S and
the approximator ŜCE(Y |Z) is computed.

In the experiments, we use K = 5.

2.5 Dimensionality Reduction with SCE

Now we solve the following optimization problem by gradient descent:

argmin
W∈Gdx

dz
(R)

ŜCE(Y |Z = WX). (9)

As shown in Appendix B, the gradient of ŜCE(Y |Z = WX) is given by

∂ŜCE

∂Wl,l′
= α̂⊤ ∂Ĝ

∂Wl,l′

(
3

2
α̂− β̂

)
+

∂ĥ⊤

∂Wl,l′
(β̂ − 2α̂),

where β̂ =
(
Ĝ+ λI

)−1

Ĝα̂.

In the Euclidean space, the above gradient gives the steepest direction. However, on
a manifold, the natural gradient (Amari, 1998) gives the steepest direction.

The natural gradient ∇ŜCE(W ) at W is the projection of the ordinary gradient ∂ŜCE
∂Wl,l′

to the tangent space of Gdx
dz
(R) at W . If the tangent space is equipped with the canonical
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metric ⟨W ,W ′⟩ = 1
2
tr(W⊤W ′), the natural gradient is given as follows (Edelman et al.,

1998):

∇ŜCE =
∂ŜCE

∂W
− ∂ŜCE

∂W
W⊤W =

∂ŜCE

∂W
W⊤

⊥W⊥,

where W⊥ is a (dx − dz)× dx matrix such that
[
W⊤,W⊤

⊥
]
is an orthogonal matrix.

Then the geodesic from W to the direction of the natural gradient ∇ŜCE over Gdx
dz
(R)

can be expressed using t ∈ R as

Wt =
[
Idz Odz,(dx−dz)

]
× exp

(
−t

[
Odz,dz

∂ŜCE
∂W

W⊤
⊥

−W⊥
∂ŜCE
∂W

⊤
Odx−dz,dx−dz

])[
W
W⊥

]
,

where “exp” for a matrix denotes the matrix exponential and Od,d′ denotes the d × d′

zero matrix. Note that the derivative ∂tWt at t = 0 coincides with the natural gradient
∇ŜCE; see (Edelman et al., 1998) for details. Thus, line search along the geodesic in the
natural gradient direction is equivalent to finding the minimizer from {Wt | t ≥ 0}.

Once W is updated, SCE is re-estimated with the new W and gradient descent is
performed again. This entire procedure is repeated until W converges. When SCE
is re-estimated, performing cross-validation in every step is computationally expensive.
In our implementation, we perform cross-validation only once every 5 gradient updates.
Furthermore, to find a better local optimal solution, this gradient descent procedure
is executed 20 times with randomly chosen initial solutions and the one achieving the
smallest value of ŜCE is chosen.

2.6 Conditional Density Estimation with SCE

Since the maximum of Eq.(6) is attained at b = a and a = p(y|z) in the current derivation,
the optimal b(z,y) is actually the conditional density p(y|z) itself. Therefore, α̂⊤φ(z,y)
obtained by LSCE is a conditional density estimator. This actually implies that the
upper-bound minimization procedure described in Section 2.3 is equivalent to least-squares
conditional density estimation (LSCDE) (Sugiyama et al., 2010), which minimizes the
squared error:

1

2

∫∫ (
b(z,y)− p(y|z)

)2
p(z)dzdy.

Then, in the same way as the original LSCDE, we may post-process the solution α̂ to
make the conditional density estimator non-negative and normalized as

p̂(y|z = z̃) =
α̃⊤φ(z̃,y)∫
α̃⊤φ(z̃,y′)dy′ , (10)

where α̃l = max (α̂l, 0). Note that, even if the solution is post-processed as Eq.(10), the
optimal estimation rate of the LSCDE solution is still maintained (Sugiyama et al., 2010).
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2.7 Basis Function Design

In practice, we use the following Gaussian function as the k-th basis:

φk(z,y) = exp

(
−∥z − uk∥2 + ∥y − vk∥2

2σ2

)
, (11)

where (uk,vk) denotes the k-th Gaussian center located at (zk,yk). When the sample
size n is too large, we may use only a subset of samples as Gaussian centers. σ denotes
the Gaussian bandwidth, which is chosen by cross-validation as explained in Section 2.4.
We may use different bandwidths for z and y, but this will increase the computation time
for model selection. In our implementation, we normalize each element of z and y to have
the unit variance in advance and then use the common bandwidth for z and y.

A notable advantage of using the Gaussian function is that the integral over y appeared
in Φ̄(z) (see Eq.(8)) can be computed analytically as

Φ̄k,k′(z) = (
√
πσ)dy exp

(
−2∥z − uk∥2 + 2∥z − uk′∥2 + ∥vk − vk′∥2

4σ2

)
.

Similarly, the normalization term in Eq.(10) can also be computed analytically as∫
α̃⊤φ(z,y)dy = (

√
2πσ)dy

∑
k

α̃k exp

(
−∥z − uk∥2

2σ2

)
.

2.8 Discussions

We have proposed to minimize SCE for dimensionality reduction:

SCE(Y |Z) = −1

2

∫∫ (
p(z,y)

p(z)
− 1

)2

p(z)dzdy.

On the other hand, in the previous work (Suzuki and Sugiyama, 2013), squared-loss mutual
information (SMI) was maximized for dimensionality reduction:

SMI(Y ,Z) =
1

2

∫∫ (
p(z,y)

p(z)p(y)
− 1

)2

p(z)p(y)dzdy.

This shows that the essential difference is whether p(y) is included in the denominator
of the density ratio. Thus, if p(y) is uniform, the proposed dimensionality reduction
method using SCE is reduced to the existing method using SMI. However, if p(y) is not

uniform, the density ratio function p(z,y)
p(z)p(y)

included in SMI may be more fluctuated than
p(z,y)
p(z)

included in SCE. Since a smoother function can be more accurately estimated from
a small number of samples in general, the proposed method using SCE is expected to
work better than the existing method using SMI. We will experimentally demonstrate
this effect in Section 3.
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Sufficient dimension reduction based on the conditional density p(y|z) has also
been studied in statistic literatures. The density-minimum average variance estimation
(dMAVE) method (Xia, 2007) finds a dimension reduction subspace using local linear
regression for the conditional density in a semi-parametric manner. A similar approach
has also been taken in the sliced regression for dimension reduction method (Wang and
Xia, 2008), where the cumulative conditional density is used instead of the conditional
density. A Bayesian approach to sufficient dimension reduction called the Bayesian di-
mension reduction (BDR) method (Reich et al., 2011) has been proposed recently. This
method models the conditional density as a Gaussian mixture model and obtains a di-
mension reduction subspace through sampling from the learned prior distribution of low-
dimensional input. These methods have shown to work well for dimension reduction in
real-world datasets, although they are applicable only to univariate output data where
dy = 1.

In regression, learning with the squared-loss is not robust against outliers (Huber,
1981). However, density estimation (Basu et al., 1998) and density ratio estimation
(Sugiyama et al., 2012) under the Pearson divergence is known to be robust against
outliers. Thus, in the same sense, the proposed LSCE estimator would also be robust
against outliers. We will experimentally investigate the robustness in Section 3.

3 Experiments

In this section, we experimentally investigate the practical usefulness of the proposed
method. We consider the following dimensionality reduction schemes:

None: No dimensionality reduction is performed.

dMAVE: The density-minimum average variance estimation method where dimension
reduction is performed through local linear regression for the conditional density1

(Xia, 2007).

BDR: The Bayesian dimension reduction method where the conditional density is mod-
eled by a Gaussian mixture model and dimension reduction is performed by sampling
from the prior distribution of low-dimensional input2 (Reich et al., 2011).

LSMI: Dimension reduction is performed by maximizing an SMI approximator called
least-squares MI (LSMI) using natural gradients over the Grassmann manifold
(Suzuki and Sugiyama, 2013).

LSCE (proposed): Dimension reduction is performed by minimizing the proposed
LSCE using natural gradients over the Grassmann manifold.

True (reference) The “true” subspace is used (only for artificial data).

1We use the program code provided by the author.
2We use the program code available at “http://www4.stat.ncsu.edu/~reich/code/BayesSDR.R”.
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After dimension reduction, we execute the following conditional density estimators:

ϵ-KDE: ϵ-neighbor kernel density estimation, where ϵ is chosen by least-squares cross-
validation.

LSCDE: Least-squares conditional density estimation (Sugiyama et al., 2010).

Note that the proposed method, which is the combination of LSCE and LSCDE, does not
explicitly require the post-LSCDE step because LSCDE is executed inside LSCE. Since
the dMAVE and BDR methods are applicable only to univariate output, they are not
included in experiments with multivariate output data.

3.1 Illustration

First, we illustrate the behavior of the plain LSCDE (None/LSCDE) and the proposed
method (LSCE/LSCDE). The datasets illustrated in Figure 2 have dx = 5, dy = 1, and
dz = 1. The first dimension of input x and output y of the samples are plotted in the
graphs, and other 4 dimensions of x are just standard normal noise. The results show
that the plain LSCDE does not perform well due to the irrelevant noise dimensions of x,
while the proposed method gives much better estimates.

3.2 Artificial Datasets

Next, we compare the proposed method with the existing dimensionality reduction meth-
ods on conditional density estimation by LSCDE in artificial datasets.

For dx = 5, dy = 1, x ∼ N (x|0, I5), and ϵ ∼ N (ϵ|0, 0.252), where N (·|µ,Σ) denotes
the normal distribution with mean µ and covariance matrix Σ, we consider the following
artificial datasets:

(a) dz = 2 and y = (x(1))2 + (x(2))2 + ϵ.

(b) dz = 1 and y = x(2) + (x(2))2 + (x(2))3 + ϵ.

(c) dz = 1 and y =

{
(x(1))2 + ϵ with 0.85 probability,

2ϵ− 4 with 0.15 probability.

The first row of Figure 3 shows the dimensionality reduction error between true W ∗

and its estimate Ŵ for different sample size n, measured by

ErrorDR = ∥Ŵ⊤Ŵ −W ∗⊤W ∗∥Frobenius,

where ∥ · ∥Frobenius denotes the Frobenius norm. All methods perform similarly for the
dataset (a), and the dMAVE and BDRmethods outperform LSCE and LSMI when n = 50.

In the dataset (b), LSMI does not work well compare to other methods especially
when n ≥ 250. To explain this behavior, we plot the histograms of {y}400i=1 in the left
column of Figure 4. They show that the profile of the histogram (which is a sample
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Figure 2: Examples of conditional density estimation by plain LSCDE (None/LSCDE)
and the proposed method (LSCE/LSCDE).

approximation of p(y)) in the dataset (b) is much sharper than that in the dataset (a).

As discussed in Section 2.8, the density ratio p(z,y)
p(z)p(y)

used in LSMI contains p(y). Thus,

for the dataset (b), the density ratio p(z,y)
p(z)p(y)

would be highly non-smooth and thus is hard
to approximate. On the other hand, the conditional density used in other methods is
p(z,y)
p(z)

, where p(y) is not included. Therefore, p(z,y)
p(z)

would be smoother than p(z,y)
p(z)p(y)

and
p(z,y)
p(z)

is easier to estimate than p(z,y)
p(z)p(y)

.

For the dataset (c), we consider the situation where {yi}ni=1 contain outliers which are
not related to x. The data profile of dataset (c) in the right column of Figure 4 illustrates
such a situation. The result on dataset (c) shows that the proposed LSCE method is
robust against outliers and gives the best subspace estimation accuracy, while the BDR
method performs unreliably with large standard errors.

The right column of Figure 3 plots the conditional density estimation error between
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true p(y|x) and its estimate p̂(y|x), evaluated by the squared-loss:

ErrorCDE =
1

2n′

n′∑
i=1

∫
p̂(y|x̃i)

2dy − 1

n′

n′∑
i=1

p̂(ỹi|x̃i),

where {(x̃i, ỹi)}n
′

i=1 is a set of test samples that have not been used for training. We set
n′ = 1000. For the dataset (a) and (c), all methods with dimension reduction perform
equally well, which are much better than no dimension reduction (None/LSCDE) and are
comparable to the method with the true subspace (True/LSCDE). For the dataset (b), all
method except LSMI/LSCDE perform well overall and comparable to the method with
the true subspace.

3.3 Benchmark Datasets

Next, we use the UCI benchmark datasets (Bache and Lichman, 2013). We randomly se-
lect n samples from each dataset for training, and the rest are used to measure the condi-
tional density estimation error in the test phase. Since the dimensionality of the subspace
dz is unknown, we chose it by cross-validation. More specifically, 5-fold cross-validation is
performed for each combination of the dimensionality reduction and conditional density
estimation methods to choose subspace dimensionalities dz such that the conditional den-
sity estimation error is minimized. Note that tuning parameters λ and σ are also chosen
based on cross-validation for each method. Since the conditional density estimation error
is equivalent to SCE, choosing the subspace dimensionalities by the conditional density
estimation error in LSCE is equivalent to choosing subspace dimensionalities which gives
the minimum SCE value.

The results of univariate output benchmark datasets averaged over 10 runs are sum-
marized in Table 1, showing that LSCDE tends to outperform ϵ-KDE and the proposed
LSCE/LSCDE method works well overall. Both LSMI/LSCDE and dMAVE/LSCDE
methods also perform well in all datasets, while BDR/LSCDE does not work well in the
datasets containing outliers such as “Red Wine”, “White Wine”, and “Forest Fires”. Ta-
ble 2 describes the subspace dimensionalities chosen by cross-validation averaged over 10
runs. It shows that all dimensionality reduction methods reduce the input dimension sig-
nificantly, especially for “Yacht”, “Red Wine”, and “White Wine” where the best method
always chooses dz = 1 in all runs.

The result of multivariate output “Stock” and “Energy” benchmark datasets are sum-
marized in Table 3, showing that the proposed LSCE/LSCDE method also works well for
multivariate output datasets and significantly outperforms methods without dimensional-
ity reduction. Table 4 describes the subspace dimensionalities selected by cross-validation,
showing that LSMI/LSCDE tends to more aggressively reduce the dimensionality than
LSCE/LSCDE.
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Figure 3: Left column: The mean and standard error of the dimensionality reduction
error over 20 runs. Right column: The mean and standard error of the conditional
density estimation error over 20 runs.
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Figure 4: Left column: Example histograms of {yi}400i=1 on the artificial datasets. Right
column: Example data plot of relevant features of x against y when n = 400 on the
artificial datasets. The left distribution in the histogram of dataset (c) is regarded as
outliers.
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Figure 5: Simulator of the upper-body part of the humanoid robot CB-i.

3.4 Humanoid Robot

We evaluate the performance of the proposed method on humanoid robot transition esti-
mation. We use a simulator of the upper-body part of the humanoid robot CB-i (Cheng
et al., 2007) (see Figure 5). The robot has 9 controllable joints: shoulder pitch, shoulder
roll, elbow pitch of the right arm, shoulder pitch, shoulder roll, elbow pitch of the left
arm, waist yaw, torso roll, and torso pitch joints.

Posture of the robot is described by 18-dimensional real-valued state vector s, which
corresponds to the angle and angular velocity of each joint in radians and radians per
seconds, respectively. We can control the robot by sending the action command a to the
system. The action command a is a 9-dimensional real-valued vector, which corresponds
to the target angle of each joint. When the robot is currently at state s and receives
action a, the physical control system of the simulator calculates the amount of torques
to be applied to each joint. These torques are calculated by the proportional-derivative
(PD) controller as

τi = Kpi(ai − si)−Kdi ṡi,

where si, ṡi, and ai denote the current angle, the current angular velocity, and the received
target angle of the i-th joint, respectively. Kpi and Kdi denote the position and velocity
gains for the i-th joint, respectively. We set Kpi = 2000 and Kdi = 100 for all joints
except that Kpi = 200 and Kdi = 10 for the elbow pitch joints. After the torques are
applied to the joints, the physical control system update the state of the robot to s′.

In the experiment, we randomly choose the action vector a and simulate a noisy control
system by adding a bimodal Gaussian noise vector. More specifically, the action ai of the
i-th joint is first drawn from uniform distribution on [si − 0.087, si + 0.087]. The drawn
action is then contaminated by Gaussian noise with mean 0 and standard deviation 0.034
with probability 0.6 and Gaussian noise with mean -0.087 and standard deviation 0.034
with probability 0.4. By repeatedly control the robot n times, we obtain the transition
samples {(sj,aj, s

′
j)}nj=1. Our goal is to learn the system dynamic as a state transition
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Figure 6: Three actions of the brush, which is modeled as the footprint on a paper canvas.

probability p(s′|s,a) from these samples. Thus, as the conditional density estimation
problem, the state-action pair (s⊤,a⊤)⊤ is regarded as input variable x, while the next
state s′ is regarded as output variable y. Such state-transition probabilities are highly
useful in model-based reinforcement learning (Sutton and Barto, 1998).

We consider three scenarios: Using only 2 joints (right shoulder pitch and right elbow
pitch), only 4 joints (in addition, right shoulder roll and waist yaw), and all 9 joints.
Thus, dx = 6 and dy = 4 for the 2-joint case, dx = 12 and dy = 8 for the 4-joint case,
and dx = 27 and dy = 18 for the 9-joint case. We generate 500, 1000, and 1500 transition
samples for the 2-joint, 4-joint, and 9-joint cases. We then randomly choose n = 100,
200, and 500 samples for training, and use the rest for evaluating the test error. The
results are summarized also in Table 3, showing that the proposed method performs well
for the all three cases. Table 4 describes the dimensionalities selected by cross-validation,
showing that the humanoid robot’s transition is highly redundant.

3.5 Computer Art

Finally, we consider the transition estimation problem in sumi-e style brush drawings for
non-photorealistic rendering (Xie et al., 2012). Our aim is to learn the brush dynamics
as state transition probability p(s′|s,a) from the real artists’ stroke-drawing samples.

From a video of real brush strokes, we extract footprints and identify corresponding
3-dimensional actions (see Figure 6). The state vector consists of six measurements: the
angle of the velocity vector and the heading direction of the footprint relative to the
medial axis of the drawing shape, the ratio of the offset distance from the center of the
footprint to the nearest point on the medial axis over the radius of the footprint, the
relative curvatures of the nearest current point and the next point on the medial axis,
and the binary signal of the reverse driving or not. Thus, the state transition probability
p(s′|s,a) has 9-dimensional input and 6-dimensional output. We collect 722 transition
samples in total. We randomly choose n = 200, 250, and 300 for training and use the rest
for testing.

The estimation results summarized at the bottom of Table 3 and Table 4. These tables
show that there exists a low-dimensional sufficient subspace and the proposed method can
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successfully find it.

4 Conclusion

We proposed a new method for conditional density estimation in high-dimension problems.
The key idea of the proposed method is to perform sufficient dimensionality reduction by
minimizing the square-loss conditional entropy (SCE), which can be estimated by least-
squares conditional density estimation. Thus, dimensionality reduction and conditional
density estimation are carried out simultaneously in an integrated manner.

We have shown that SCE and the squared-loss mutual information (SMI) are similar
but different in that the output density is included in the denominator of the density
ratio in SMI. This means that estimation of SMI is hard when the output density is
fluctuated, while the proposed method using SCE does not suffer from this problem.
The proposed method is also robust against outliers since minimization of the Pearson
divergence automatically weights down effects of outlier points. Moreover, the proposed
method is applicable to multivariate output data, which is not straightforward to handle
in other dimensionality reduction methods based on conditional probability density. The
effectiveness of the proposed method was demonstrated through extensive experiments
including humanoid robot transition and computer art.
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A Proof of Theorem 1

The S̃CE is defined as

S̃CE(Y |Z) = −1

2

∫∫
p(y|z)2p(z)dzdy.

Then we have

S̃CE(Y |Z)− S̃CE(Y |X) =
1

2

∫∫
p(y|x)2p(x)dydx− 1

2

∫∫
p(y|z)2p(z)dzdy

=
1

2

∫∫
p(y|x)2p(x)dxdy +

1

2

∫∫
p(y|z)2p(z)dzdy

−
∫∫

p(y|z)2p(z)dzdy.

Let p(x) = p(z, z⊥), and dx = dzdz⊥. Then the final term can be expressed as∫∫
p(y|z)2p(z)dzdy =

∫∫
p(z,y)

p(z)

p(z,y)

p(z)
p(z)dzdy

=

∫∫
p(z,y)

p(z)
p(z,y)dzdy

=

∫∫
p(z,y)

p(z)
p(z⊥|z,y)p(z,y)dzdz⊥dy

=

∫∫
p(z,y)

p(z)
p(z,z⊥,y)dzdz⊥dy

=

∫∫
p(z,y)

p(z)
p(x,y)dxdy

=

∫∫
p(z,y)

p(z)

p(x,y)

p(x)
p(x)dxdy

=

∫∫
p(y|z)p(y|x)p(x)dxdy,
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where p(z, z⊥,y) = p(x,y), and dzdz⊥ = dx are used. Therefore,

S̃CE(Y |Z)− S̃CE(Y |X) =
1

2

∫∫
p(y|x)2p(x)dxdy +

1

2

∫∫
p(y|z)2p(z)dzdy

−
∫∫

p(y|z)p(y|x)p(x)dxdy

=
1

2

∫∫
(p(y|x)− p(y|z))2 p(x)dxdy

We can also express p(y|x) in term of p(y|z) as

p(y|x) = p(x,y)

p(x)

=
p(x,y)

p(x)

p(z,y)

p(z,y)

=
p(x,y)p(z,y)

p(z⊥|z)p(z)p(y|z)p(z)

=
p(z,z⊥,y)p(z,y)

p(z⊥|z)p(z)p(y|z)p(z)

=
p(z⊥,y|z)p(z,y)
p(z⊥|z)p(y|z)p(z)

=
p(z⊥,y|z)

p(z⊥|z)p(y|z)
p(y|z)

Finally, we obtain

S̃CE(Y |Z)− S̃CE(Y |X) =
1

2

∫∫
(p(y|x)− p(y|z))2 p(x)dxdy

=
1

2

∫∫ (
p(z⊥,y|z)

p(z⊥|z)p(y|z)
p(y|z)− p(y|z)

)2

p(x)dxdy

=
1

2

∫∫ (
p(z⊥,y|z)

p(z⊥|z)p(y|z)
− 1

)2

p(y|z)2p(x)dxdy

≥ 0,

which concludes the proof.

B Derivatives of SCE

Here we show the formula of derivatives of ŜCE(Y |Z) using LSCE estimator. SCE ap-
proximation by LSCE estimator is

ŜCE(Y |Z) =
1

2
α̂⊤Ĝα̂− ĥ⊤α̂.
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Taking its partial derivatives with respect to W and we obtain

∂ŜCE

∂Wl,l′
= −1

2

∂α̂⊤Ĝα̂

∂Wl,l′
− ∂ĥ⊤α̂

∂Wl,l′

=
1

2

(
∂α̂⊤

∂Wl,l′
Ĝα̂+

(Ĝα̂)⊤

∂Wl,l′
α̂

)
− ∂α̂⊤

∂Wl,l′
ĥ− ∂ĥ⊤

∂Wl,l′
α̂

=
1

2

∂α̂⊤

∂Wl,l′
Ĝα̂+

1

2

∂α̂⊤

∂Wl,l′
Ĝα̂+

1

2
α̂⊤ ∂Ĝ

∂Wl,l′
α̂− ∂α̂⊤

∂Wl,l′
ĥ− ∂ĥ⊤

∂Wl,l′
α̂

=
∂α̂⊤

∂Wl,l′
Ĝα̂+

1

2
α̂⊤ ∂Ĝ

∂Wl,l′
α̂− ∂α̂⊤

∂Wl,l′
ĥ− ∂ĥ⊤

∂Wl,l′
α̂. (12)

Next we consider the partial derivatives of α̂ as follows

∂α̂

∂Wl,l′
=

∂(Ĝ+ λI)−1ĥ

∂Wl,l′

=
∂(Ĝ+ λI)−1

∂Wl,l′
ĥ+ (Ĝ+ λI)−1 ∂ĥ

∂Wl,l′

∂α̂⊤

∂Wl,l′
= (

∂(Ĝ+ λI)−1

∂Wl,l′
ĥ)⊤ +

∂ĥ⊤

∂Wl,l′
(Ĝ+ λI)−1. (13)

Using ∂X−1

∂t
= −X−1 ∂X

∂t
X−1, we obtain

∂(Ĝ+ λI)−1

∂Wl,l′
ĥ = −(Ĝ+ λI)−1 ∂Ĝ

∂Wl,l′
(Ĝ+ λI)−1ĥ− (Ĝ+ λI)−1 ∂λI

∂Wl,l′
(Ĝ+ λI)−1ĥ

= −(Ĝ+ λI)−1 ∂Ĝ

∂Wl,l′
α̂− 0

(
∂(Ĝ+ λI)−1

∂Wl,l′
ĥ)⊤ = −α̂⊤ ∂Ĝ

∂Wl,l′
(Ĝ+ λI)−1. (14)

Substitute Eq.(14) into Eq.(13) to obtain

∂α̂⊤

∂Wl,l′
= −α̂⊤ ∂Ĝ

∂Wl,l′
(Ĝ+ λI)−1 +

∂ĥ⊤

∂Wl,l′
(Ĝ+ λI)−1. (15)

Finally, by substitute Eq.(15) into Eq.(12) and use (Ĝ+ λI)−1Ĝα̂ = β̂, we have

∂ŜCE

∂Wl,l′
= −α̂⊤ ∂Ĝ

∂Wl,l′
β̂ +

∂ĥ⊤

∂Wl,l′
β̂ +

1

2
α̂⊤ ∂Ĝ

∂Wl,l′
α̂

+ α̂⊤ ∂Ĝ

∂Wl,l′
α̂− ∂ĥ⊤

∂Wl,l′
α̂− ∂ĥ⊤

∂Wl,l′
α̂

= α̂⊤ ∂Ĝ

∂Wl,l′
(
3

2
α̂− β̂) +

∂ĥ⊤

∂Wl,l′
(β̂ − 2α̂),
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where the partial derivatives of Ĝ and ĥ depend on the choice of basis function.
Here we consider the Gaussian basis function described in Section 2.4. Their partial

derivatives are given by

∂Ĝk,k′

∂Wl,l′
= − 1

σ2n

n∑
i=1

Φ̄k,k′(zi)
(
(z

(l)
i − u

(l)
k )(x

(l′)
i − ũ

(l′)
k ) + (z

(l)
i − u

(l)
k′ )(x

(l′)
i − ũ

(l′)
k′ )
)

∂ĥk

∂Wl,l′
= − 1

σ2n

n∑
i=1

φk(zi,yi)
(
(z

(l)
i − u

(l)
k )(x

(l′)
i − ũ

(l′)
k )
)
.


