
1IEICE Transactions on Information and Systems,

vol.E98-D, no.5, pp.xxx–xxx, 2015.

Direct Density Ratio Estimation

with Convolutional Neural Networks

with Application in Outlier Detection

Hyunha Nam

Tokyo Institute of Technology
hyunha@sg.cs.titech.ac.jp

Masashi Sugiyama
The University of Tokyo

sugi@k.u-tokyo.ac.jp

http://www.ms.k.u-tokyo.ac.jp

Abstract

Recently, the ratio of probability density functions was demonstrated to be useful

in solving various machine learning tasks such as outlier detection, non-stationarity

adaptation, feature selection, and clustering. The key idea of this density ratio

approach is that the ratio is directly estimated so that difficult density estimation is

avoided. So far, parametric and non-parametric direct density ratio estimators with

various loss functions have been developed, and the kernel least-squares method

was demonstrated to be highly useful both in terms of accuracy and computational

efficiency. On the other hand, recent study in pattern recognition exhibited that deep

architectures such as a convolutional neural network can significantly outperform

kernel methods. In this paper, we propose to use the convolutional neural network

in density ratio estimation, and experimentally show that the proposed method

tends to outperform the kernel-based method in outlying image detection.
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1 Introduction

Recently, it was shown [1] that, through the ratio of probability density functions, various
statistical data analysis paradigms such as outlier detection, non-stationarity adaptation,
mutual information estimation, and conditional probability estimation can be efficiently
handled in a unified manner. The key idea of this density ratio approach is that, by
directly estimating the density ratio, a difficult task of density estimation can be avoided.
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So far, various density ratio estimators have been proposed. The simplest approach
is to use logistic regression to discriminate samples from two distributions [2]. Kernel

mean matching [3] uses the Hilbert-space embedding of probability distributions to di-
rectly approximate the values of the density ratio at data points. The Kullback-Leibler

importance estimation procedure (KLIEP) fits a density ratio model to data under the
log-loss [4, 5]. Least-squares importance fitting (LSIF) [6] uses the squared-loss to fit a
density ratio model to data. Furthermore, all the above methods can be interpreted as
fitting a density ratio model to data under the Bregman divergence [7].

Among these direct density ratio estimators, an unconstrained version of LSIF (uLSIF)
with a kernel density-ratio model was demonstrated to be highly useful in terms of both
accuracy [8] and computational efficiency [9]. For that reason, uLSIF-based machine
learning algorithms have been successfully used in solving various machine learning tasks
[10, 11, 12].

On the other hand, recent studies in pattern recognition demonstrated that deep archi-

tecture tends to perform better than kernel models [13]. In particular, a convolutional neu-
ral network (CNN) is demonstrated to be an excellent model of images [14, 15, 16, 17, 18],
which is motivated by a biological brain [19].

The objective of this paper is to use the CNN model in density ratio estimation. To
the best of our knowledge, this is the first attempt to apply deep learning to density ratio
estimation, and we develop a gradient-based training algorithm under the squared-loss.
We them apply the CNN-based density ratio estimator to inlier-based outlier detection

[20, 21], and demonstrate that the proposed method outperforms existing approaches.
The remainder of this paper is organized as follows. We first review the kernel-based

uLSIF method in Section 2. Then, we derive a density ratio estimation algorithm for CNNs
in Section 3, and its experimental performance is investigated in Section 4. Finally, we
conclude in Section 5.

2 Direct Density Ratio Estimation by uLSIF

In this section, we review the uLSIF method [22].

2.1 Problem Formulation

Suppose we are given independent and identically distributed training samples {xtr
i }

ntr

i=1

from training distribution with density ptr(x) and test samples {xte
j }

nte

j=1 from test distri-

bution with density pte(x) on some data domain D ⊂ R
d. The objective is to estimate

the density ratio,

r(x) =
ptr(x)

pte(x)
,

from {xtr
i }

ntr

i=1 and {xte
j }

nte

j=1.



Direct Density Ratio Estimation with Convolutional Neural Networks 3

A naive approach is to first separately estimate ptr(x) from {xtr
i }

ntr

i=1 and pte(x) from
{xte

j }
nte

j=1, and then compute the ratio of estimated densities. However, such a two-step
approach does not perform well because the estimation error incurred in the first density
estimation step can be magnified in the second step of computing their ratio [1]. Below,
a direct density ratio estimator that does not involve density estimation is reviewed.

2.2 The uLSIF Criterion

Let rα(x) be a model of the density ratio r(x), where α denotes a parameter. The
parameter α is determined so that the following squared error is minimized:

J0(α) =

∫ (
rα(x)− r(x)

)2

pte(x)dx

=

∫
rα(x)

2pte(x)dx− 2

∫
rα(x)ptr(x)dx

+

∫
r(x)ptr(x)dx,

where the last term is a constant so can be ignored. The first two terms are denoted by
J :

J(α) =

∫
rα(x)

2pte(x)dx− 2

∫
rα(x)ptr(x)dx,

which is empirically approximated by

1

nte

nte∑

j=1

rα(x
te

j )
2 −

2

ntr

ntr∑

i=1

rα(x
tr

i ). (1)

2.3 uLSIF for Kernel Model

Let us consider the following kernel density ratio model:

rα(x) =
ntr∑

ℓ=1

αℓK(x,xtr

ℓ ),

where K(x,x′) is a kernel function such as the Gaussian kernel :

K(x,x′) = exp

(
−
‖x− x′‖2

2σ2

)
for σ > 0.

Then the uLSIF criterion (1), enhanced with the ℓ2-regularizer, can be expressed as

Ĵ(α) = α
⊤Ĝα− 2ĥ⊤

α+ λ‖α‖2,
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Figure 1: CNN.

where λ > 0 is the regularization parameter and

Ĝℓ,ℓ′ =
1

nte

nte∑

j=1

K(xte

j ,x
te

ℓ )K(xte

j ,x
te

ℓ′ ),

ĥℓ =
1

ntr

ntr∑

i=1

K(xtr

i ,x
te

ℓ ).

Then the minimizer is given analytically as

argmin
α

Ĵ(α) = (Ĝ+ λI)−1ĥ,

where I denotes the identity matrix.

3 uLSIF for CNN

In this section, we apply the uLSIF criterion (1) to a convolutional neural network (CNN).

3.1 CNN

A CNN is a model for 2-dimensional images and consists of multiple layers (Figure 1):
the input layer, alternate succession of convolution layers and sub-sampling layers, fully
connected networks, and the output layer.

3.1.1 Convolution Layer

In the convolution layer, the output of the previous layer is convolved with a mask and
put through the activation function to form the output feature map. More specifically, a
matrix of an output feature map of the lth convolution layer gu

l (x) for input feature maps
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gv
l−1(x) is given by

gu
l (x) = f(zul (x)),

zul (x) =
∑

v∈Mv

gv
l−1(x) ∗ k

uv
l + bul ,

where Mv is a selection of the input feature maps, f represents the sigmoid function
f(x) = (1 + e−x)−1, ∗ denotes the convolution operator, bul is a bias parameter, and kuv

l

denotes a mask.

3.1.2 Sub-Sampling Layer

The sub-sampling layer treats each feature map separately and produces sub-sampled
versions of the input maps. More formally,

gu
l (x) = down(gu

l−1(x)) + bul ,

where “down” denotes a sub-sampling function and bul is the bias parameter. The average
value over the neighborhood is computed for each feature map in our method. This
reduced-resolution output feature map is robust to variation and noise in the input feature
map.

3.1.3 Fully-Connected Layer

The output gL(xj) of the fully-connected layer for input vector gL−1(xj) is represented as

gL(x) = h(zL(x)),

zL(x) = WLgL−1(x) + bL,

where L is the last layer, WL is a connection parameter, bL is the bias parameter and
gL−1(x) is a reshaped output of the last convolution layer. h is the softplus function
h(x) = log(1 + ex), which is a smooth approximation to the rectifier max(0, x) [23].

3.2 Density Ratio Estimation with CNN

The kernel-based uLSIF is a computationally very efficient method. Using a deep CNN,
however, would cast huge demand to the computation power during the training process.
To economize on the computation cost at every iteration, stochastic gradient descent
algorithm is used in out implementation. Thus we train the CNN model with the uLSIF
criterion (1) by the stochastic gradient method for a pair of samples (xte,xtr) to obtain a
local minimizer:

J̃({WL}, {bL}) = gL(x
te)2 − 2gL(x

tr). (2)
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The gradients of J̃ with respect to WL and bL are given by

∂J̃

∂WL

= δL(x
te)(gL−1(x

te))⊤ − δL(x
tr)(gL−1(x

tr))⊤,

∂J̃

∂bL
= δL(x

te)− δL(x
tr),

where

δL(x
te) = 2gL(x

te)h′(zL(x
te)),

δL(x
tr) = 2h′(zL(x

tr)).

The gradient of the bias for a feature map of the lth convolution layer is given by
summing all the elements in each error term:

∂J̃

∂bul
=

∑

n,m

(δu
l (x

te))n,m − (δu
l (x

tr))n,m.

The gradient for the mask weight of the lth convolution layer is given by

∂J̃

∂kuv
l

=
∑

n,m

(δu
l (x

te))n,m(M
v
l (x

te))n,m − (δu
l (x

tr))n,m(M
v
l (x

tr))n,m,

where

Mv
l (x) = gv

l−1(x) • k
uv
l ,

“•” denotes the element-wise product, and the error terms in the convolution layer are
expressed as

δ
u
l (x

te) = f ′(zul (x
te)) • up(δu

l+1(x
te)),

δ
u
l (x

tr) = f ′(zul (x
tr)) • up(δu

l+1(x
tr)).

Here, “up” denotes the up-sampling operation, which can be implemented with the Kro-
necker product. At the last convolution layer, an error term includes connection parame-
ters of the fully connected layer:

δ
u
l (x

te) = WL

(
f ′(zul (x

te)) • up(δu
l+1(x

te))
)
,

δ
u
l (x

tr) = WL

(
f ′(zul (x

tr)) • up(δu
l+1(x

tr))
)
.

The gradient of the bias for the lth sub-sampling layer is given by

∂J̃

∂bul
=

∑

n,m

(δu
l (x

te))n,m − (δu
l (x

tr))n,m,

where

δ
u
l (x

te) = δ
u
l+1(x

te) ∗ rot(ku
l+1),

δ
u
l (x

tr) = δ
u
l+1(x

tr) ∗ rot(ku
l+1).

Here “rot” denotes the rotation operator which rotates the mask by 180 degrees.
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4 Experiments

In this section, the proposed CNN-based uLSIF is compared with the kernel-based uLSIF
and the kernel-based KLIEP in inlier-based outlier detection. Note that, in [20], the
kernel-based uLSIF and KLIEP were demonstrated to outperform other outlier detection
methods such as the one-class support vector machine [24] and the local outlier factor

[25].

4.1 Inlier-Based Outlier Detection

The objective of inlier-based outlier detection is to find outliers in a test data set {xte
j }

nte

j=1

given a training data set {xtr
i }

ntr

i=1
which are known to be inliers. Here, following [20], the

problem of inlier-based outlier detection is formulated as the problem of estimating the
density ratio,

r(x) =
ptr(x)

pte(x)
,

from {xtr
i }

ntr

i=1
and {xte

j }
nte

j=1
. Given that outliers tend to exist in regions with small inlier

density ptr(x), the density ratio r(x) tends to take a small value if x is an outlier. Outliers
are hard to universally define. By contrast, inlier samples are often stable and available
abundantly in practice. Therefore the setting of inlier-based outlier detection would be
more practical than the (semi) supervised setting.

4.2 Experimental Setup

We use a CNN with 5 layers, i.e., the first 4 layers contain two alternate convolution
layers and sub-sampling layers, followed by an additional convolution layer for making a
vector input which is given to the final fully-connected layer (see Figure 1 again). The
size of input images depends on the data set. The first layer has 6 convolution masks of
size 9 × 9 with a stride of a pixel for image of size 32 × 32 (for smaller images, we use
5 × 5 convolution masks). In the following sub-sampling layer, each unit calculates the
average over the output from neighbors of 2 × 2 pixels. The sub-sampling layer reduces
the resolution of output of the previous layer and the reduced feature is robust to small
variations. The second convolution layer has 12 convolution masks of size 5×5 (for smaller
images, we use 3×3 convolution masks). Sub-sampling is applied to its output again. The
third convolution layer reshapes 12 feature maps generated by the previous sub-sampling
layer and provide the vector input to the final fully-connected layer. We use the sigmoid
activation function for convolution layers and the ReLU activation function for the last
layer. At the learning stage, all parameters are optimized through the stochastic gradient
method. We use the constant learning rate 0.1 for all layers. All the model parameters
such as the size of the convolution mask, the number of layers and learning rate are tuned
in the same way as the previous studies [26], [27].
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Table 1: Computation time of USPS dataset (8 and 3)

Method
uLSIF
(CNN)

uLSIF
(kernel)

KLIEP
(kernel)

Computation time (sec) 833.4969 0.0028 0.0164

We use the MNIST handwritten digit dataset, the USPS handwritten digit dataset,
the PIE face image dataset, and the CIFAR-10 image classification dataset. We select one
class (e.g., airplane in CIFAR-10) and all training samples is this class are regarded as
a training set in inlier-based outlier detection. Then all evaluation samples of a selected
class and a fraction ρ of evaluation samples from another class (e.g., bird) are regarded
as a test set in inlier-based outlier detection. Namely, we regard samples in a selected
class as inliers and samples in another class as outliers. The area under the ROC curve

(AUC) value is used as an error metric. Kernel-based uLSIF and KLIEP were designed
to use selected 100 test input points as Gaussian centers randomly.

4.3 Results

Experimental results are exhibited below.

4.3.1 MNIST and USPS

The MNIST dataset contains hand-written digit images in gray-scale: a training set of
60,000 images and a test set of 10,000 images. Each image consists of 1,024 (= 32 × 32)
pixels. The USPS hand-written digit dataset contains 9,298 gray-scale images of size
16× 16 which are spilt into a training set of 7,291 images and a test set of 2,007 images.
Both datasets have 10 class labels which are integers between 0 and 9.

The mean AUC values and the standard deviations over 20 trials for MNIST and
USPS are summarized in Table 2, and the mean MSE (mean squared error) values and
the standard deviations over 20 trials for MNIST and USPS are shown in Table 3. Figure 2
depicts the ROC curves for the experiment with inlier class 9 and outlier class 8. The
results show that the proposed CNN-based uLSIF works significantly better than kernel-
based KLIEP and uLSIF.

Table 1 shows the computation time of each algorithm for the USPS dataset (8 and
3). As we mentioned above, kernel-based uLSIF has the best performance in terms of
computational efficiency.

Mean AUC values (with standard deviations in parentheses) over 50 trials for the
PASCAL VOC dataset. The best method in terms of the mean AUC and comparable
methods according to the t-test at the significance level 5% are specified by bold face.

4.3.2 PIE

Next, we consider outlier detection on the PIE face image dataset. Face images contain
more complex objects than digits and data variability caused by posing variations, illu-
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Table 2: Mean AUC values and the standard deviations over 20 trials for MNIST and
USPS. The best method in terms of the mean AUC and comparable methods according

to the t-test at the significance level 5% are specified by bold face.

Dataset
(Inlier & outlier)

ρ
uLSIF
(CNN)

uLSIF
(kernel)

KLIEP
(kernel)

MNIST

4 & 9
0.01 0.86 ± 0.12 0.64 ± 0.00 0.82 ± 0.00
0.05 0.89 ± 0.01 0.65 ± 0.04 0.79 ± 0.06

2 & 5
0.01 0.95 ± 0.05 0.79 ± 0.00 0.95 ± 0.00
0.05 0.98 ± 0.01 0.91 ± 0.01 0.97 ± 0.00

8 & 3
0.01 0.97 ± 0.02 0.91 ± 0.00 0.94 ± 0.00
0.05 0.97 ± 0.01 0.83 ± 0.01 0.91 ± 0.00

9 & 8
0.01 0.97 ± 0.05 0.88 ± 0.00 0.92 ± 0.00
0.05 0.97 ± 0.01 0.71 ± 0.02 0.87 ± 0.00

USPS

4 & 9
0.03 0.87 ± 0.11 0.53 ± 0.00 0.73 ± 0.00
0.05 0.95 ± 0.13 0.68 ± 0.03 0.82 ± 0.01

2 & 5
0.03 0.97 ± 0.11 0.91 ± 0.00 0.93 ± 0.00
0.05 0.99 ± 0.02 0.94 ± 0.01 0.98 ± 0.00

8 & 3
0.03 0.95 ± 0.04 0.73 ± 0.00 0.77 ± 0.00
0.05 0.91 ± 0.07 0.67 ± 0.02 0.83 ± 0.02

9 & 8
0.03 0.91 ± 0.14 0.92 ± 0.00 0.94 ± 0.00
0.05 0.95 ± 0.06 0.59 ± 0.02 0.80 ± 0.03
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Figure 2: ROC curves of MNIST 9 and 8 (ρ = 0.05).

mination conditions, and facial expressions is higher. These facts make outlier detection
more challenging for the PIE dataset. The original PIE dataset contains 41,368 color face
images with 68 individuals, each person is under 13 different poses, 43 different illumi-
nation conditions, and with 4 different expressions. We use the processed PIE data for
face recognition [28], which chooses five near-frontal poses and uses all the images under
different illuminations and expressions; thus 170 images are given for each individual.
We allocate randomly chosen 5,780 images for training samples and the remaining 5,780
images for test samples in this experiment. All the images are manually aligned and
cropped. The cropped images are 32× 32 pixels with 256 gray-levels per pixel.
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Table 3: Mean MSE values over 20 trials for MNIST and USPS. The best method in
terms of the mean MSE and comparable methods according to the t-test at the

significance level 5% are specified by bold face.

Dataset
(Inlier & outlier)

ρ
uLSIF
(CNN)

uLSIF
(kernel)

KLIEP
(kernel)

MNIST

4 & 9
0.01 -0.50 ± 0.00 -0.50 ± 0.00 -0.50 ± 0.00
0.05 -0.51 ± 0.00 -0.50 ± 0.00 -0.50 ± 0.00

2 & 5
0.01 -0.50 ± 0.00 -0.50 ± 0.00 -0.50 ± 0.00
0.05 -0.50 ± 0.00 -0.50 ± 0.00 -0.50 ± 0.00

8 & 3
0.01 -0.50 ± 0.00 -0.50 ± 0.00 -0.50 ± 0.00
0.05 -0.52 ± 0.00 -0.51 ± 0.01 -0.51 ± 0.00

9 & 8
0.01 -0.50 ± 0.00 -0.50 ± 0.00 -0.50 ± 0.00
0.05 -0.51 ± 0.00 -0.50 ± 0.01 -0.50 ± 0.00

USPS

4 & 9
0.03 -0.49 ± 0.02 -0.50 ± 0.00 -0.50 ± 0.00
0.05 -0.50 ± 0.02 -0.50 ± 0.00 -0.50 ± 0.00

2 & 5
0.03 -0.49 ± 0.04 -0.50 ± 0.00 -0.50 ± 0.00
0.05 -0.51 ± 0.01 -0.50 ± 0.00 -0.50 ± 0.00

8 & 3
0.03 -0.49 ± 0.04 -0.50 ± 0.00 -0.50 ± 0.00
0.05 -0.50 ± 0.03 -0.50 ± 0.00 -0.50 ± 0.00

9 & 8
0.03 -0.49 ± 0.00 -0.50 ± 0.00 -0.50 ± 0.00
0.05 -0.50 ± 0.02 -0.50 ± 0.00 -0.50 ± 0.00
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Figure 3: ROC curves of PIE 7 and 33 (ρ = 0.05).

The mean AUC values and the standard deviations over 20 trials are summarized in
Table 4, and Figure 3 depicts the ROC curves for the experiment with inlier class 7 and
outlier class 33. The results show that our proposed method achieves better performance
for all classes than the kernel-based KLIEP and uLSIF.

4.3.3 CIFAR-10

Finally, we use the CIFAR-10 image classification dataset, which consists of 32 × 32
color images in 10 classes (e.g., car, cat, dog, and ship) with 6,000 images per class.
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Table 4: Mean AUC values and the standard deviations over 20 trials for PIE. The best
method in terms of the mean AUC and comparable methods according to the t-test at

the significance level 5% are specified by bold face.

PIE
(Inlier & outlier)

ρ
uLSIF
(CNNs)

uLSIF
(kernel)

KLIEP
(kernel)

1 & 12
0.03 0.97 ± 0.02 0.92 ± 0.00 0.96 ± 0.00
0.05 0.96 ± 0.02 0.86 ± 0.00 0.93 ± 0.00

2 & 58
0.03 0.85 ± 0.02 0.53 ± 0.00 0.75 ± 0.00
0.05 0.81 ± 0.08 0.37 ± 0.00 0.66 ± 0.00

4 & 35
0.03 0.86 ± 0.04 0.81 ± 0.00 0.85 ± 0.00
0.05 0.69 ± 0.07 0.42 ± 0.00 0.53 ± 0.00

7 & 33
0.03 0.90 ± 0.04 0.64 ± 0.00 0.82 ± 0.00
0.05 0.94 ± 0.05 0.65 ± 0.00 0.84 ± 0.00

12 & 62
0.03 0.56 ± 0.21 0.57 ± 0.00 0.65 ± 0.00
0.05 0.67 ± 0.18 0.60 ± 0.00 0.63 ± 0.00

18 & 28
0.03 0.80 ± 0.07 0.62 ± 0.00 0.77 ± 0.00
0.05 0.81 ± 0.05 0.51 ± 0.00 0.67 ± 0.00

19 & 32
0.03 0.85 ± 0.02 0.69 ± 0.00 0.83 ± 0.00
0.05 0.84 ± 0.05 0.59 ± 0.00 0.76 ± 0.00

21 & 30
0.03 0.71 ± 0.12 0.51 ± 0.00 0.69 ± 0.00
0.05 0.95 ± 0.10 0.66 ± 0.00 0.84 ± 0.00

24 & 37
0.03 0.91 ± 0.04 0.86 ± 0.00 0.90 ± 0.00
0.05 0.92 ± 0.03 0.84 ± 0.00 0.89 ± 0.00

21 & 47
0.03 0.65 ± 0.13 0.51 ± 0.00 0.63 ± 0.00
0.05 0.67 ± 0.13 0.33 ± 0.00 0.36 ± 0.00

40 & 11
0.03 0.81 ± 0.05 0.81 ± 0.00 0.83 ± 0.00
0.05 0.86 ± 0.07 0.83 ± 0.00 0.85 ± 0.00

Since images in CIFAR-10 contain more data variability and noise than those in the PIE
dataset, outlier detection is expected to be even harder. There are 50,000 training images
and 10,000 test images, and we convert color images to gray-scale.

The mean AUC values and the standard deviations over 20 trials are summarized in
Table 5, and Figure 4 depicts the ROC curves for the experiment with inlier class car

and outlier class cat. The results show that the proposed CNN-based uLSIF performs
excellently.

5 Discussion and Conclusion

We proposed to use CNNs in least-squares direct density-ratio estimation, uLSIF, and
demonstrated its usefulness in inlier-based outlier detection of images.

In order to investigate the change in AUC values for different number of kernel func-
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Table 5: Mean AUC values and the standard deviations over 20 trials for CIFAR-10.
The best method in terms of the mean AUC and comparable methods according to the

t-test at the significance level 5% are specified by bold face.

CIFAR
(Inlier & outlier)

ρ
uLSIF
(CNN)

uLSIF
(kernel)

KLIEP
(kernel)

Car and cat
0.03 0.71 ± 0.06 0.57 ± 0.01 0.65 ± 0.00
0.05 0.79 ± 0.03 0.50 ± 0.01 0.52 ± 0.00

Airplane and bird
0.03 0.63 ± 0.03 0.51 ± 0.00 0.61 ± 0.00
0.05 0.65 ± 0.05 0.50 ± 0.01 0.61 ± 0.00

Truck and car
0.03 0.58 ± 0.06 0.45 ± 0.02 0.66 ± 0.00

0.05 0.66 ± 0.02 0.51 ± 0.00 0.65 ± 0.00

Ship and airplane
0.03 0.64 ± 0.03 0.61 ± 0.00 0.61 ± 0.00
0.05 0.66 ± 0.02 0.49 ± 0.00 0.64 ± 0.00

Dog and frog
0.03 0.78 ± 0.08 0.59 ± 0.03 0.74 ± 0.00
0.05 0.77 ± 0.10 0.64 ± 0.02 0.73 ± 0.01
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Figure 4: ROC curves of CIFAR-10 car and cat (ρ = 0.05).

tion, we executed uLSIF and KLIEP with different number of kernel centers, for the
CIFAR-10 dataset (car and cat). As shown in Figure 6. This shows that using 100
kernels is reasonable in terms of both accuracy and computation time.

Multi-layer structure of CNNs gives us a chance to look into the outlier detection
process. Figure 5 displays the first convolution masks of size 9×9 learned by the proposed
method for the MNIST experiment with (a) inlier class 4 and outlier class 9 and (b) inlier
class 8 and outlier class 3. In (a), masks have oblique and rectilinear patterns and they
seem like a part of digit 4. In contrast, in (b), masks have U-shaped and turned U-shaped
patterns, which are rarely found in outlier class 3. Thus, the masks have learned to detect
inliers’ edges and lines at different positions and angles in the images, implying that our
algorithm is translation-invariant.

We used uLSIF for training CNNs, but there are many other density ratio estima-
tors [1]. Developing algorithms for training CNN with other density ratio estimation
approaches is an important future work.

We focused on inlier-based outlier detection in this paper, but we believe that the



Direct Density Ratio Estimation with Convolutional Neural Networks 13

Figure 5: The first convolution layer masks.
Left (a) depicts first convolution layer masks of MNIST experiments of class 4 and 9.

class 4 is inlier class.
Right (b) depicts first convolution layer masks of MNIST experiments of class 8 and 3.

class 8 is inlier class.
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Figure 6: Change in AUC values for different number of kernel functions (CIFAR-10 car

and cat)

proposed method is also useful in other machine learning tasks that can be tacked via
density ratio estimation [1]. This is another important future work.
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