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Abstract

Estimation of density derivatives is a ver-
satile tool in statistical data analysis. A
naive approach is to first estimate the den-
sity and then compute its derivative. How-
ever, such a two-step approach does not
work well because a good density estimator
does not necessarily mean a good density-
derivative estimator. In this paper, we give
a direct method to approximate the den-
sity derivative without estimating the den-
sity itself. Our proposed estimator allows
analytic and computationally efficient ap-
proximation of multi-dimensional high-order
density derivatives, with the ability that
all hyper-parameters can be chosen objec-
tively by cross-validation. We further show
that the proposed density-derivative esti-
mator is useful in improving the accuracy
of non-parametric KL-divergence estimation
via metric learning. The practical superior-
ity of the proposed method is experimentally
demonstrated in change detection and fea-
ture selection.

1 Introduction

Derivatives of probability density functions play key
roles in various statistical data analysis. For example:

• Mean shift clustering seeks modes of the data
density [1, 2, 3, 4], where the first-order density
derivative is the key ingredient.
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• A statistical test for modes of the data density,
which is based on the second order density deriva-
tive [5].

• The optimal bandwidth of kernel density estima-
tion (KDE) depends on the second-order density
derivative [6].

• The bias of nearest-neighbor Kullback-Leibler
(KL) divergence estimation is governed by the
second-order density derivative [7].

• More applications in fundamental statistical prob-
lems such as regression, Fisher information es-
timation, parameter estimation, and hypothesis
testing are discussed in [8].

Due to such a wide range of applications, accurately
estimating the density derivatives from data is an im-
portant research topic in statistics and machine learn-
ing.

Given samples {xi}ni=1 drawn from probability density
p(x) on R, a naive approach to density-derivative esti-
mation is to first perform density estimation and then
compute its derivatives. For example, suppose that
KDE is used for density estimation:

p̂(x) ∝
n∑
i=1

K

(
x− xi
h

)
,

where K is a kernel function (such as the Gaussian
kernel) and h > 0 is the bandwidth. Then the first-
order density derivative is estimated as follows [9, 10]:

p̂′(x) ∝
n∑
i=1

K ′
(
x− xi
h

)
.

A cross-validation method for selecting the bandwidth
h was proposed in [11]. However, since a good density
estimator is not always a good density-derivative es-
timator, this approach is not necessarily reliable; this
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problem becomes more critical if higher-order density
derivatives are estimated:

p̂(j)(x) ∝
n∑
i=1

K(j)

(
x− xi
h

)
.

A more direct approach of performing kernel density
estimation for density derivatives was proposed [12]:

p̂(j)(x) ∝
n∑
i=1

K

(
x− xi
h

)
.

However, this method suffers the bandwidth selection
problem because the optimal bandwidth depends on
higher-order derivatives than the estimated one [13].

In this paper, we propose a novel density-derivative
estimator which finds the minimizer of the mean in-
tegrated square error (MISE) to the true density-
derivative. The proposed method, which we call
MISE for derivatives (MISED), possesses various use-
ful properties:

• Density derivatives are directly estimated without
going through density estimation.

• The solution can be computed analytically and
efficiently.

• All tuning parameters can be objectively opti-
mized by cross-validation.

• Multi-dimensional density derivatives can be di-
rectly estimated.

• Higher-order density derivatives can be directly
estimated.

MISED is applied to metric learning to improve the ac-
curacy of nearest-neighbor KL-divergence approxima-
tion. Through experiments on change detection and
feature selection, we demonstrate the usefulness of the
proposed MISED-based metric learning method.

2 Direct Density-Derivative
Estimation

In this section, we describe our proposed MISED
method.

2.1 Problem Formulation

Suppose that independent and identically distributed
samples X = {xi}ni=1 from unknown density p(x) on
Rd are available. Our goal is to estimate the k-th order
(partial) derivative of p(x),

pk,j(x) =
∂k

∂xj11 ∂x
j2
2 . . . ∂xjdd

p(x), (1)

where j1 + j2 + · · · + jd = k for ji ∈ {0, 1, . . . , k} and
j = (j1, j2, . . . , jd). When k = 1 (or k = 2), pk,j(x)
corresponds to a single element in the gradient vector
(or the Hessian matrix) of p(x).

2.2 MISE for Density Derivatives

Let gk,j(x) be a model of pk,j(x) (its specific form will
be introduced later). We learn gk,j(x) to minimize the
MISE to pk,j(x):

Jj(gk,j) =

∫
{gk,j(x)− pk,j(x)}2 dx− C

=

∫
{gk,j(x)}2 dx− 2

∫
gk,j(x)pk,j(x)dx,

(2)

where C =
∫
{pk,j(x)}2 dx.

The first term in (2) is accessible since gk,j(x) is a
model specified by the user. The second term in (2)
seems inaccessible at a glance, but integration by parts
allows us to transform it as∫

gk,j(x)pk,j(x)dx

=

∫
gk,j(x)

∂k

∂xj11 ∂x
j2
2 . . . ∂xjdd

p(x)dx,

=

∫ [
gk,j(x)

∂k−1

∂xj1−11 ∂xj22 . . . ∂xjdd
p(x)

]x1=∞

x1=−∞

dx\x1

−
∫

∂

∂x1
gk,j(x)

∂k−1

∂xj1−11 ∂xj22 . . . ∂xjdd
p(x)dx,

where dx\x1
denotes the integration except for x1.

The first term in the last equation vanishes un-
der a mild assumption on the tails of gk,j(x) and

∂k−1

∂x
j1−1
1 ∂x

j2
2 ...∂x

jd
d

p(x). By repeatedly applying integra-

tion by parts k times, we arrive at

Jj(gk,j) =

∫
{gk,j(x)}2 dx− 2(−1)k

×
∫ {

∂k

∂xj11 ∂x
j2
2 . . . ∂xjdd

gk,j(x)

}
p(x)dx.

Approximating the expectation by the sample average
gives

J̃j(gk,j) =

∫
{gk,j(x)}2 dx

− 2(−1)k

n

n∑
i=1

∂k

∂xj11 ∂x
j2
2 . . . ∂xjdd

gk,j(xi). (3)
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2.3 Analytic Solution for Gaussian Kernels

As a density-derivative model gk,j , we use the Gaus-
sian kernel model1:

gk,j(x) =

n∑
i=1

θj,i exp

(
−‖x− xi‖

2

2σ2

)
︸ ︷︷ ︸

ψi(x)

= θ>j ψ(x),

(4)

for which the k-th derivative is given by

∂k

∂xj11 ∂x
j2
2 . . . ∂xjdd

gk,j(x)

=
n∑
i=1

θj,i
∂k

∂xj11 ∂x
j2
2 . . . ∂xjdd

exp

(
−‖x− xi‖

2

2σ2

)
︸ ︷︷ ︸

ϕj,i(x)

= θ>j ϕj(x).

Substituting these formulas into the objective function
(3) and adding the `2-regularizer, we obtain a practical
objective function:

J̃j(θj) = θ>j Gθj − 2(−1)kθj
>hj + λθj

>θj , (5)

where

[G]ij =

∫
ψi(x)ψj(x)dx

= (πσ2)d/2 exp

(
−‖xi − xj‖

2

4σ2

)
,

hj =
1

n

n∑
i=1

ϕj(xi).

The minimizer of (5) is given analytically as

θ̂j = arg min
θj

J̃j(θj) = (−1)k (G + λI)
−1
hj , (6)

where I denotes the identity matrix. Finally, a density-
derivative estimator is obtained as

ĝk,j(x) = θ̂
>
j ψ(x).

We call this method the mean integrated square er-
ror for derivatives (MISED) estimator, which can be
regarded as an extension of score matching for den-
sity estimation [14], least-squares density-difference for
density-difference estimation [15, 16], and direct esti-
mation for log-density gradients [4, 17] to higher-order
derivatives.

1 If n is too large, we may only use a subset of data
samples as kernel centers.

2.4 Model Selection by Cross-Validation

The performance of the MISED method depends on
the choice of model parameters (the Gaussian width σ
and the regularization λ in the current setup). Below,
we describe a method to optimize the model by cross-
validation, which essentially follows the same line as
[11] for kernel density estimation:

1. Divide the sample X = {xi}ni=1 into T disjoint
subsets {Xt}Tt=1.

2. Obtain the estimator ĝ
(t)
k,j(x) using X \ Xt, and

then compute the hold-out MISE to Xt as

CV(t) =

∫ {
ĝ
(t)
k,j(x)

}2

dx− 2(−1)k

|Xt|

×
∑
x∈Xt

∂k

∂xj11 ∂x
j2
2 · · · ∂x

jd
d

ĝ
(t)
k,j(x), (7)

where |Xt| denotes the number of elements in Xt.

3. Choose the model that minimizes CV =
1
T

∑T
t=1 CV(t).

2.5 Numerical Examples

Let us illustrate the behavior of MISED using
n = 500 samples drawn from the standard nor-
mal distribution. The Gaussian bandwidth σ
and the regularization parameter λ included in
MISED are chosen by 5-fold cross-validation from
σ ∈

{
10−0.3, 10−0.1375, 100.025, . . . , 101

}
and λ ∈{

10−1, 10−0.75, 10−0.5, . . . , 101
}

. For comparison, we
also test two types of Gaussian KDE: the Gaussian
bandwidth h is chosen by 5-fold cross-validation with
respect to (a) the hold-out MISED criterion (7) [11]
from σ ∈

{
10−0.3, 10−0.1375, 100.025, . . . , 101

}
(denoted

by KDEM) and (b) the hold-out log-likelihood [6]
from σ ∈

{
10−1, 10−0.75, 10−0.5, . . . , 101

}
(denoted by

KDEL).

Figures 1 (a) and (b) depict the estimation results
of the first-order and second-order density-derivatives,
showing that MISED works well in density-derivative
estimation. Figure 1 (c) depicts the estimation results
of the density, where the curve labeled as MISED is the
integral of the first-order MISED solution. This shows
that MISED also approximates the density function
well, up to an unspecified constant.

On the other hand, while KDEL works well as a density
estimator, it performs poorly as density-derivative es-
timators in particular for the second-order derivative.
This result clearly substantiates that a good density
estimator is not necessarily a good density-derivative
estimator.
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Figure 1: Estimation of the density and density-derivatives of the standard normal distribution. (a), (b),
and (c): estimated densities and density-derivatives. (d) and (e): normalized mean squared errors (MSE) of
density-derivative estimation as functions of the data dimensionality.

KDEM performs better than KDEL as density-
derivative estimators, but it is not as good as MISED.
Also, Figure 1 (c) shows that KDEM (using the first-
order MISED criterion for cross-validation) provides
an overly smoothed density estimate, which is poorer
than the integral of MISED. We conjecture that such
poor performance of KDEM is caused by the limited
adaptivity of KDE: the coefficients of Gaussian ker-
nels are fixed to 1/n in KDE, while they are learned
adaptively in MISED.

Next, we evaluate how the performance of density-
derivative estimation is affected when the dimension-
ality of the standard normal distribution is increased.
The performance is evaluated by the normalized mean
squared error (MSE):

1
n

∑n
i=1

∑
j(ĝk,j(xi)− pk,j(xi))2√

1
n

∑n
i=1

∑
j ĝk,j(xi)

2
√

1
n

∑n
i=1

∑
j pk,j(xi)

2
,

where
∑
j denotes the summation of all elements in

the gradient vector (or the Hessian matrix) when k = 1
(or k = 2). We use the common σ (and λ for MISED)
for all elements in the gradient vector or Hessian ma-

trix, which is selected by cross-validation with respect
to the hold-out MISED criterion (7) summed over all
elements. Figures 1 (d) and (e) show that the normal-
ized MSE for MISED increases much more mildly than
those for KDEM and KDEL, illustrating high reliabil-
ity of MISED in high-dimensional problems.

3 Application to KL-Divergence
Approximation

In this section, we apply density-derivative estimation
to KL-divergence approximation.

3.1 Nearest-Neighbor KL-Divergence
Approximation

The KL-divergence from one density p1(x) to another
density p2(x), defined as

KL(p1‖p2) =

∫
p1(x) log

p1(x)

p2(x)
dx,

is useful for various purposes such as two-sample
homogeneity testing [18], feature selection [19], and
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change detection [20]. Here, we consider the KL-
divergence approximator based on nearest-neighbor
density estimation (NNDE) [21] from two sets of inde-
pendent samples X1 = {xi}n1

i=1 and X2 = {xi}n1+n2
i=n1+1

following p1(x) and p2(x) on Rd:

K̂L(p1‖p2) =
1

n1

n1∑
i=1

log
(n1 − 1)dist1(xi)

d

n2dist2(xi)d
,

where dist1(x) and dist2(x) denote the distance from
x to the nearest samples except for x itself in X1 and
X2, respectively.

3.2 Metric Learning for NNDE-Based
KL-Divergence Approximation

Although the KL-divergence itself is metric-invariant,
the NNDE-based KL-divergence approximator is
metric-dependent. Indeed, it was shown in [7] that the
bias of the NNDE-based KL-divergence approximator
at x is approximately proportional to

tr(∇∇p1)

((n1 − 1)p1)2/dp1
− tr(∇∇p2)

(n2p2)2/dp2
,

where∇∇p1 and∇∇p2 are the Hessian matrices which
are metric-dependent. Therefore, changing the metric
in the input space is expected to reduce the bias.

It was shown in [7] that the best local Mahalanobis

metric (x−x′)>Â(x−x′) for point x that minimizes
the approximative bias is given by as the solution of
the following optimization problem:

Â = min
A

tr
(
A−1B

)
,

s.t. A> = A, |A| = 1, and A � 0,

where

B =
1

((n1 − 1)p1)2/d
∇∇p1
p1

− 1

(n2p2)2/d
∇∇p2
p2

.

It was shown that the solution Â is given analytically
up to a scaling factor as

Â ∝ [U+ U−]

(
d+Λ+ 0

0 −d−Λ−

)
[U+ U−]

>
,

where Λ+ ∈ Rd+×d+ and Λ− ∈ Rd−×d− are the diag-
onal matrices which contain d+ positive and d− neg-

ative eigenvalues of B, respectively. The matrices Â
and B share the same eigenvectors, and U+ ∈ Rd×d+
and U− ∈ Rd−×d− are collections of eigenvectors cor-
responding to the eigenvalues in Λ+ and Λ−, respec-
tively.

In [7], the authors assumed that p1 and p2 are both
nearly Gaussian, and estimated densities p1 and p2 as

well as their Hessian matrices ∇∇p1 and ∇∇p2 from
the Gaussian models with maximum likelihood esti-
mation. It was demonstrated that the accuracy of
NNDE-based KL-divergence approximation is signif-
icantly improved when p1 and p2 are nearly Gaussian.

3.3 Applying MISED to Metric Learning for
NNDE-Based KL-Divergence
Approximation

However, the above method does not work well if p1
and p2 are apart from Gaussian. To cope with this
problem, a naive approach to estimating B is to per-
form density estimation for p1 and p2 separately, com-
pute their Hessian matrices∇∇p1 and∇∇p2, and plug
them in the definition of B. However, such a plug-in
approach can be unreliable because a good density es-
timator does not necessarily mean a good estimator of
its Hessian matrix, as we have already shown in Sec-
tion 2.5. In addition, division by estimated densities
in B can significantly magnify the estimation errors of
Hessian matrices. Here, we propose to use MISED to
cope with this problem.

Since the scale of B is arbitrary, let us use the following
rescaled matrix B̃ instead:

B̃ =
1

(n1 − 1)2/d

{
p2
p1

}2/d+1

∇∇p1 −
1

n
2/d
2

∇∇p2.

(8)

We then estimate the Hessian matrices ∇∇p1 and
∇∇p2 by MISED and the density ratio p2/p1 by
the unconstrained least-squares density-ratio estima-
tor [22] that directly estimates the density ratio in a
non-parametric manner without estimating each den-
sity. By this, we can perform metric learning in a
non-parametric way without explicitly estimating the
densities p1 and p2.

3.4 Numerical Examples

We experimentally compare the behavior of the
NNDE-based KL-divergence approximator with
MISED-based metric learning to the following
methods:

• NNDE-based KL-divergence approximator with-
out metric learning (NN) [21].

• NNDE-based KL-divergence approximator with
Gaussian-based metric learning (NNG) [7].

• NNDE-based KL-divergence approximator with
KDEL-based metric learning (KDEL).

• Density-ratio-based non-parametric KL-
divergence estimator (Ratio) [23].
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Figure 2: KL-divergence estimation for (a) super-Gaussian, (b) Gaussian and (c) sub-Gaussian data as functions
of sample size n.
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Figure 3: KL-divergence estimation for (a) super-Gaussian, (b) Gaussian, and (c) sub-Gaussian data as functions
of dimension d.

• Risk-based nearest-neighbor KL-divergence esti-
mator (fRisk) [24].

• Gaussian parametric KL-divergence estimator
with maximum likelihood estimation (GP).

For model selection of MISED, we per-
form cross-validation as in Section 2.4 from
σ ∈ {10−0.4, 10−0.225, 100.125, . . . , 101} and
λ ∈ {10−1, 10−0.75, . . . , 101}. For KDEL, the
Gaussian bandwidth is selected by log-likelihood
cross-validation from the same candidate values as
MISED.

We generate data samples from the generalized Gaus-
sian distribution:

pGG(x;µ, β, ρ) =
β1/2

2Γ(1 + 1/ρ)
exp

(
−βρ/2|x− µ|ρ

)
,

where µ ∈ R denotes the mean, β > 0 controls the
variance, and ρ > 0 controls the Gaussianity: ρ < 2,
ρ = 2, and ρ > 2 correspond to super-Gaussian, Gaus-
sian, and sub-Gaussian distributions, respectively. For
x = (x(1), . . . , x(d))> with d = 6, we set

p1(x) =

d∏
j=1

pGG(x(j); 0, β, ρ),

p2(x) = pGG(x(1); 2, β, ρ)
d∏
j=2

pGG(x(j); 0, β, ρ),

where the value of β is selected so that the variance
is one. We evaluate the performance of each method
when sample size n and Gaussianity ρ are changed.

The experimental results for ρ = 1, 2, 3 and n =
500, 1000, 1500, 2000 are presented in Figure 2. The
proposed MISED outperforms the plain NN (without
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metric learning) for all three cases, and it outper-
forms NNG and GP for the super-Gaussian and sub-
Gaussian cases. Even for the Gaussian case, MISED
is comparable with GP and NNG both of which as-
sume the Gaussianity in KL divergence estimation,
while MISED provides a completely non-parametric
KL divergence approximator. KDEL is also a non-
parametric approximator, but does not work well es-
pecially when the sample size is small. fRisk is com-
parable to MISED for the sub-Gaussian case, but it
largely overestimates for the other two cases. Ratio
is a non-parametric method, but it systematically un-
derestimates for all three cases.

Figure 3 indicates dimension scalability of each
method when n = 1, 000. For all data, MISED per-
forms well for a wide range of data dimensionalities.
On the other hand, the performance of KDEL gets
worse for all data types as the dimensionality of data
increases. The performance of the other methods
largely depends on data types. These results show
that our approach of avoiding density estimation and
division is a promising approach.

3.5 Experiments on Distributional Change
Detection

The goal of change detection is to find abrupt changes
in time-series data. We use an m-dimensional real vec-
tor y(t) to represent a segment of time series at time
t, and a collection of r such vectors is obtained in a
sliding-window manner:

Y (t) := {y(t),y(t+ 1), . . . ,y(t+ r − 1)}.

Following [20], we consider an underlying density func-
tion that generates r retrospective vectors in Y (t). We
measure the KL-divergence between the underlying
density functions of the two sets, Y (t) and Y (t+r+m)
for every t, and determine a point t0+r+m as a change
point if the KL-divergence for Y (t0) and Y (t0+r+m)
is greater than a predefined threshold. In the experi-
ment, we set r = 3 and m = 100.

We use the Human Activity Sensing Consortium
(HASC) Challenge 2011 data collection2, which pro-
vides human activity information collected by a
portable three-axis accelerometer. Our task is to seg-
ment different activities such as “stay”, “walk”, “jog”,
and “skip”. Because the orientation of the accelerom-
eter is not necessarily fixed, we took the `2-norm of
3-dimensional accelerometer data and obtained one-
dimensional data, following [20].

Figure 4 depicts examples of time-series data and their
KL-divergences (which are regarded as change scores).

2http://hasc.jp/hc2011/
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Figure 4: HASC time series data (top) and the
KL-divergence estimated by MISED (bottom). Green
symbols represent the true change points.

These graphs show that the change scores tend to be
large at the true change points. Next, we more system-
atically evaluate the performance of change detection
using the AUC (area under the ROC curve) scores.
The results are summarized in Table 1, where each
point was classified as a change point if it is within
a small tolerance region (±10 ms around an “exact”
change point). The table shows that the proposed
MISED outperforms GP and NNG, and is comparable
to fRisk. In the experiments in Figure 2, fRisk gave
similar values for different distributions even when the
true KL-divergence is large. This was poor as a KL-
divergence approximator, but this property seems to
work as a “regularizer” to stabilize the change score
to avoid incurring big errors. Similar tendencies were
also reported in the previous work [7].
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Table 1: Means and standard deviations of the area under the ROC curve (AUC) over 10 runs. The best
method and methods comparable to the best one in terms of the mean AUC by the one-tailed Welch’s t-test
with significance level 5% are highlighted in boldface.

GP NNG [7] fRisk [24] MISED
0.747(0.050) 0.822(0.030) 0.858(0.022) 0.839(0.028)

3.6 Experiments on Information-Theoretic
Feature Selection

Finally, KL-divergence approximation is applied to se-
lecting relevant features for classification. The Jensen-
Shannon (JS) divergence is an information-theoretic
measure between binary class labels y ∈ {1, 2} and
features x ∈ Rd:

JS(X ;y) = −
2∑
y=1

∫
p(x, y) log

p(x)p(y)

p(x, y)
dx

= p(y = 1)KL(p(x|y = 1)‖p(x))

+ p(y = 2)KL(p(x|y = 2)‖p(x)),

where p(x) = p(y = 1)p(x|y = 1) + p(y = 2)p(x|y =
2). Here, we non-parametrically estimate the JS di-
vergence for feature selection.

We use two gene expression datasets of breast can-
cer prognosis studies: “SMK-CAN-187” [25] and
“VANTVEER” [26]. The SMK-CAN-187 dataset con-
tains 90 positive (alive) and 97 negative (dead after 5
years) samples with 19993 features. We use 65 ran-
domly selected samples per class for training and use
the rest for evaluating the test classification perfor-
mance. The VANTVEER dataset contains 46 positive
and 51 negative samples with 24481 features. We use
35 randomly selected data per class for training and
use the rest for evaluating the test classification per-
formance.

For comparison, the JS divergence is estimated by
NNG and mIMR, which provide a non-parametric and
parametric approximations to the divergence [27], re-
spectively. As another feature selection method, we
employ the t-score defined by

t-score =
|µ̂1 − µ̂2|√
σ̂2
1

n1
+

σ̂2
2

n2

,

where µ̂1 (and µ̂2) and σ̂1 (and σ̂2) are the mean value
and standard deviation of class 1 (and class 2), respec-
tively.

We choose 20 features based on the forward selection
strategy and compare the AUC of classification. The
results are summarized in Figure 5, showing that the
proposed method works reasonably well in this chal-
lenging feature selection scenario.

SMK−CAN−187  VANTVEER  

0.66

0.7

0.74

0.78

A
U

C

MISED

NNG

NN

mIMR

t−score

*
*

*
* *

*

*

Figure 5: Gene expression classification with feature
selection. The best method and methods comparable
to the best one in terms of the mean AUC by the
one-tailed Welch’s t-test with significance level 5% are
highlighted by the asterisks.

4 Conclusion

We proposed a method to directly estimate density
derivatives. The proposed estimator, called MISED,
was shown to possess various useful properties, e.g.,
analytic and computationally efficient estimation of
multi-dimensional high-order density derivatives is
possible and all hyper-parameters can be chosen ob-
jectively by cross-validation. We further proposed a
MISED-based metric learning method to improve the
accuracy of nearest-neighbor KL-divergence approxi-
mation, and its practical usefulness was experimen-
tally demonstrated in change detection and feature se-
lection.

Estimation of density derivatives is versatile and use-
ful in various machine learning tasks beyond KL-
divergence approximation. In our future work, we
will explore more applications based on the proposed
MISED method.
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