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Abstract

Symmetric positive definite (SPD) matrices, e.g. covariance matrices, are ubiquitous in
machine learning applications. However, because their size grows as n2 (where n is the
number of variables) their high-dimensionality is a crucial point when working with them.
Thus, it is often useful to apply to them dimensionality reduction techniques. Principal
component analysis (PCA) is a canonical tool for dimensionality reduction, which for vector
data reduces the dimension of the input data while maximizing the preserved variance. Yet,
the commonly used, naive extensions of PCA to matrices result in sub-optimal variance
retention. Moreover, when applied to SPD matrices, they ignore the geometric structure
of the space of SPD matrices, further degrading the performance. In this paper we develop
a new Riemannian geometry based formulation of PCA for SPD matrices that i) preserves
more data variance by appropriately extending PCA to matrix data, and ii) extends the
standard definition from the Euclidean to the Riemannian geometries. We experimentally
demonstrate the usefulness of our approach as pre-processing for EEG signals.

Keywords: dimensionality reduction, PCA, Riemannian geometry, SPD manifold, Grass-
mann manifold

1. Introduction

Covariance matrices are used in a variety of machine learning applications. Three prominent
examples are computer vision applications (Tuzel et al., 2008, 2006), brain imaging (Pennec
et al., 2006; Arsigny et al., 2006) and brain computer interface (BCI) (Barachant et al.,
2010, 2013) data analysis. In computer vision, covariance matrices in the form of region
covariances are used in tasks such as texture classification. For brain imaging, the covariance
matrices are diffusion tensors extracted from a physical model of the studied phenomenon.
Finally, in the BCI community correlation matrices between different sensor channels are
used as discriminating features for classification.

1.1. Geometry of covariance matrices

The set Sn+ of symmetric positive definite (SPD) matrices of size n × n, when equipped
with the Frobenius inner product 〈A,B〉F = tr(A>B), belongs to a Euclidean space. A
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Figure 1: Comparison between Euclidean (blue straight dashed lines) and Riemannian (red
curved solid lines) distances measured between points of the space S2

+.

straightforward approach for measuring similarity between SPD matrices would be to simply
use the Euclidean distance derived from the Euclidean norm. This is readily seen in the

following example for 2×2 SPD matrices. A matrix A ∈ S2
+ can be written as A =

[
a c
c b

]
with ab− c2 > 0, a > 0 and b > 0. Then matrices in S2

+ can be represented as points in R3

and the constraints can be plotted as a convex cone which SPD matrices lie strictly within
(see Fig. 1). In this representation, the Euclidean geometry of symmetric matrices then
implies that distances are computed along straight lines (again, see Fig. 1).

In practice, however, the Euclidean geometry is often inadequate to describe SPD ma-
trices extracted from real-life applications (e.g. covariance matrices). This observation has
already been discussed in Sommer et al. (2010). We observe similar behavior, as illustrated
in Fig. 2. In this figure, we computed the vertical and horizontal gradients at every pixel
of the image on the left. We then computed 2 × 2 covariance matrices between the two
gradients for patches of pixels in the image. On the right, visualizing the same convex cone
as in Fig. 1, every point represents a covariance matrix extracted from an image patch.
The distribution of these points exhibits some structure and the interior of the cone is not
uniformly populated.

Despite its simplicity, the Euclidean geometry has several drawbacks and is not always
well suited for SPD matrices (Fletcher et al., 2004; Arsigny et al., 2007; Sommer et al.,
2010). For example, for a task as simple as averaging two matrices, it may occur that the
determinant of the average is larger than any of the two matrices. This effect is an artifact
of the Euclidean geometry and is referred to as the swelling effect by Arsigny et al. (2007).
It is particularly harmful for data analysis as it adds spurious variation to the data. As
another example, take the computation of the maximum likelihood estimator of a covariance
matrix, the sample covariance matrix (SCM). It is well known that with the SCM, the largest
eigenvalues are overestimated while the smallest eigenvalues are underestimated (Dempster,
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(a) (b)

Figure 2: Original image -courtesy of A. Bernard-Brunel- (left) and 2×2 covariance matrices
(between the gradients of the image) extracted from random patches of the image
(right). In the right plot, the mesh represents the border of the cone of positive
semi-definite matrices.

1972). Since the SCM is an average of rank 1 symmetric positive semi-definite matrices, this
may be seen as another consequence of the swelling effect. Another drawback, illustrated
in Fig. 1 and documented by Fletcher et al. (2004), is the fact that this geometry forms a
non-complete space. Hence, in this Euclidean space interpolation between SPD matrices
is possible, but extrapolation may produce indefinite matrices, leading to uninterpretable
solutions.

In order to address these issues, an efficient alternative is to consider the space of SPD
matrices as a curved space, namely a Riemannian manifold. For example, one of the possible
Riemannian distances is computed on curved lines as illustrated in Fig. 1 for the space S2

+.
As noted in Fletcher et al. (2004) and Sommer et al. (2010), the use of the Riemannian

geometry in a method is more natural as it ensures that the solutions will respect the
constraint encoded by the manifold. In accordance with this approach, recently tools such
as kernels (Barachant et al., 2013) and divergences (Sra, 2011; Cichocki et al., 2014), as
well as methods such as dictionary learning (Ho et al., 2013; Cherian and Sra, 2014), metric
learning (Yger and Sugiyama, 2015) and dimensionality reduction (Fletcher et al., 2004)
have all been extended for SPD matrices using the Riemannian geometry.

1.2. Dimensionality reduction on manifolds

As discussed in Fletcher et al. (2004) and Harandi et al. (2014), dimensionality is a cru-
cial point when working with covariance matrices. This is because their size grows as n2

where n is the number of variables. Hence, it is useful to apply to them dimensionality
reduction techniques. A simple, commonly used technique is principal component analy-
sis (PCA) (Jolliffe, 2002). However, as we later show in Section 2.2, while vector PCA is
optimal in terms of preserving data variance, the commonly used naive extensions of vec-
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tor PCA to the matrix case (Yang et al., 2004; Lu et al., 2006) are sub-optimal for SPD
matrices.

Furthermore, when applied to SPD matrices, we claim that a Euclidean formulation
of PCA completely disregards the geometric structure of this space. If the swelling effect,
stemming from the Euclidean geometry, distorts the results for simple tasks such as re-
gression or averaging, it would certainly make it difficult to identify relevant information
contained in a given dataset of SPD matrices. Thus, it would be disadvantageous to retain
the principal modes of variations using the Euclidean geometry. A natural approach to
cope with this issue is then to consider a Riemannian formulation of PCA which utilizes
the intrinsic geometry of the SPD manifold.

In statistics, such an extension of the PCA to a Riemannian setting has been studied for
other manifolds. For example, it has been shown in Huckemann et al. (2010) for shape spaces
that a Riemannian PCA was able to extract relevant principal components, especially in
the regions of high curvature of the space where Euclidean approximation failed to correctly
explain data variation.

For the space of SPD matrices, a Riemannian extension of the PCA, namely the principal
geodesic analysis (PGA), has been proposed in Fletcher et al. (2004). This algorithm
essentially flattens the manifold at the center of mass of the data by projecting every
element from the manifold to the tangent space at the Riemannian mean. In this Euclidean
space a classical PCA is then applied. Although this approach is generic to any manifold it
does not fully make use of the structure of the manifold, as a tangent space is only a local
approximation of the manifold.

In this paper, we propose new formulations of PCA for SPD matrices. Our contribution
is twofold: First and foremost, we adapt the basic formulation of PCA to make it suitable
for matrix data. As a result it captures more of the data variance. Secondly, we extend
PCA to Riemannian geometries to derive a truly Riemannian PCA which takes into ac-
count the curvature of the space and preserves the global properties of the manifold. More
specifically, using the same transformation as in Harandi et al. (2014), we derive an unsu-
pervised dimensionality reduction method maximizing a generalized variance of the data on
the manifold. Through experiments on synthetic data and a signal processing application,
we demonstrate the efficacy of our proposed dimensionality reduction method.

2. Geometry-aware PCA for SPD matrices

In the introduction we discussed the need for dimensionality reduction methods for SPD
matrices as well as the shortcomings of the commonly used PCA for this task. Essentially,
although PCA is a dimensionality reduction method that for vectors optimally preserves
the data variance, its naive extensions to matrices do not do so optimally for SPD matrices.
In addition, the use of a Euclidean geometry may potentially lead to erroneous or distorted
results when applied to SPD matrices, especially when the distance between matrices is
large on the manifold 1. Other methods for dimensionality reduction of SPD matrices, while
utilizing the structure of the SPD manifold, suffer from many of the same faults. First, they

1. Errors also occur because the sample eigenvectors, i.e., the principal components, are sensitive even to
small perturbations and are, as a result, rarely correctly estimated. However, this is also the case for
other geometries.
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use only a local approximation of the manifold, causing a degradation in performance when
distances are large. Second, and more importantly, these methods apply the same flawed
formulation of matrix PCA.

We begin this section by stating a formal definition of our problem. Next, we show how
to suitably extend PCA from the vector case to the matrix case so as to retain more of the
data variance. Finally, we present several formulations for our geometry-aware methods
and discuss some of their main properties. The proposed methods preserve more variance
even when, as in the standard PCA, the Euclidean geometry is used.

2.1. Problem setup

Let Sn+ =
{
A ∈ Rn×n| ∀x 6= 0, x ∈ Rn, x>Ax > 0, A = A>

}
be the set of all n×n symmet-

ric positive definite (SPD) matrices, and let X = {Xi ∈ Sn+}Ni=1 be a set of N instances in
Sn+. Covariance matrices, widely used in many machine learning applications, are examples
of SPD matrices. We assume that these matrices have some underlying structure, whereby
their informative part can be described by a more compact, lower dimensional represen-
tation. Our goal is thus to compress the matrices, mapping them to a lower dimensional
manifold Sp+ where p < n. In the process, we wish to keep only the relevant part while
discarding the extra dimensions due to noise.

The task of dimensionality reduction can be formulated in two ways: First, as a problem
of minimizing the residual between the original matrix and its representation in the target
space. Second, it can be stated in terms of variance maximization, where the aim is to find
an approximation to the data that accounts for as much of its variance as possible. In a
Euclidean setting these two views are equivalent. However, in the case of SPD matrices, Sp+
is not a sub-manifold of Sn+ and elements of the input space cannot be directly compared to
elements of the target space. Thus, focusing on the second view, we search for a mapping
Sn+ 7→ S

p
+ that best preserves the Fréchet variance σ2

δ of X, defined below.
Following the work of Fréchet (1948) we define σ2

δ via the Fréchet mean:

Definition 1 (Fréchet Mean) The Fréchet mean of the set X w.r.t. the metric δ is

X̄δ = argmin
X∈Sn+

1

N

N∑
i=1

δ2 (Xi, X) .

Definition 2 (Fréchet Variance) The (sample) Fréchet variance of the set X w.r.t. δ is
given by

σ2
δ =

1

N

N∑
i=1

δ2
(
Xi, X̄δ

)
.

As in Harandi et al. (2014), we consider for any matrix X ∈ Sn+ a mapping to Sp+ (with
p < n) parameterized by a matrix W ∈ Rn×p which satisfies W>W = Ip, the p× p identity
matrix. The mapping then takes the form of X↓ = W>XW .

2.2. Variance maximizing PCA for SPD matrices

Having framed the optimization of the matrix W in terms of maximization of the data
variance, our proposed formulation, explicitly written in terms the Fréchet variance, is:
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Definition 3 (δ PCA) δPCA is defined as

W = argmax
W∈G(n,p)

∑
i

δ2
(
W>XiW,W

>X̄δW
)
, (1)

where G (n, p) is the Grassmann manifold, the set of all p-dimensional linear subspaces of
Rn.

As described in Edelman et al. (1998) and Absil et al. (2009), such an optimization
problem can be reformulated and efficiently solved on either the Stiefel or Grassmann man-
ifolds. It would be straightforward to reformulate our problem on the Stiefel manifold,
implying only an orthogonality constraint on W . However, as explained below (and also
noted in Harandi et al. (2014)), our cost function is invariant under certain transformations.
Since only the Grassmann manifold takes this invariance into account, we will consider a
mapping X↓ = W>XW with W ∈ G(n, p).

Given our variance-based definition, it is only befitting that we compare it to ordi-
nary PCA, the canonical method for dimensionality reduction which itself aims to preserve
maximal data variance. For vector data, PCA is formulated as

W = argmax
W>W=Ip

∑
i

‖(xi − x̄)W‖22 = argmax
W>W=Ip

tr

(
W>

(∑
i

(xi − x̄)> (xi − x̄)

)
W

)
, (2)

where x̄ is the Euclidean mean of the data.
Translating the operations in the right-most formulation of Eq. (2) from the vector case

to the matrix case gives

W = argmax
W>W=Ip

tr

(
W>

(∑
i

(
Xi − X̄e

)> (
Xi − X̄e

))
W

)
, (3)

where X̄e is the Euclidean mean of the data.
For symmetric matrices, this formulation is equivalent to the one proposed in Yang et al.

(2004) and Lu et al. (2006). Note, however, that the matrix W in Eq. (3) acts on the data
only by right-hand multiplication. Effectively, it is as if we are performing PCA only on
the row space of the data matrices X2.

Indeed, the main difference between our proposed method and ordinary PCA is that
in our cost function, the matrix W acts on X on both sides. Although our method can
accommodate multiple geometries via various choices of the metric δ, the difference between
Eq. (3) and Eq. (1) becomes apparent when we work, as the standard PCA does, in the
Euclidean geometry.

In the Euclidean case, the cost function optimization in Definition 3 becomes

W = argmax
W∈G(n,p)

∑
i

∥∥∥W> (Xi − X̄e

)
W
∥∥∥2

F

= argmax
W∈G(n,p)

∑
i

tr
(
W>

(
Xi − X̄e

)>
WW>︸ ︷︷ ︸ (Xi − X̄e

)
W
)2

F
. (4)

2. In our case the matrices are symmetric so PCA on the row space and on the column space are identical.
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Note the additional term WW> 6= In as compared to Eq. (3).
In fact, the two expressions are in general not equivalent. Moreover, our proposed

formulation consistently retains more of the data variance than the standard PCA method,
as shown in Fig. 3. It is worth noting, however, that the two methods are equivalent when
the matrices {Xi} are jointly diagonalizable. In this case, the problem can be written in
terms of the common basis. Then, the extra term WW> does not contribute to the cost
function and both methods yield identical results.

In order to make this article self-contained, we provide the Euclidean gradient of this
cost function w.r.t. W (which we later use for the optimization):

DW δ
2
e (W>XiW,W

>X̄eW ) = 4
(
Xi − X̄e

)
WW>

(
Xi − X̄e

)
W.

Its derivation is detailed in Appendix C of the supplementary material.

2.3. Instantiation with different metrics

We have thus far addressed the issue of variance maximization in the Euclidean geometry,
demonstrating that our proposed method results in improved retention of data variance (see
Fig. 3). We next turn to the issue of geometry awareness.

As mentioned in the introduction, SPD matrices form a Riemannian manifold. So, it
is natural to use a Riemannian metric rather than the Euclidean metric to measure the
distance between two matrices. There are several choices of Riemannian metrics defined on
the SPD manifold Sn+. A standard choice, due to its favorable geometric properties, is the
affine invariant Riemannian metric (AIRM) (Bhatia, 2009).

Definition 4 (Affine invariant Riemannian metric (AIRM)) Let X,Y ∈ Sn+ be two
SPD matrices. Then, the Riemannian metric is given as

δ2
r (X,Y ) =

∥∥∥log
(
X−1/2Y X−1/2

)∥∥∥2

F
,

where log (·) is the matrix logarithm function, which for SPD matrices is log (X) =
U log (Λ)U> for the eigendecompostion X = UΛU>.

Equipped with this metric, the SPD manifold becomes a complete manifold, i.e., all
geodesics are contained within the manifold. This prevents the swelling effect and allows
for matrix extrapolation without obtaining non-definite matrices. To see this, note that
an extrapolated matrix lays on the extension of the geodesic between two matrices. For a
complete manifold it is necessarily a valid element of the manifold. However, for a none
complete manifold it may escape the boundaries of the manifold. We refer the reader to
Figure 1. In addition, this metric introduces several invariance properties which we discuss
in Section 2.4.

Using the AIRM, the cost function in Definition 3 then becomes

W = argmax
W∈G(n,p)

∑
i

δ2
r

(
W>XiW,W

>X̄rW
)

(5)

with X̄r the Fréchet mean w.r.t. the AIRM δr.
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Once again, we provide the Euclidean gradient of the cost function w.r.t. W (following
Harandi et al. (2014))3:

DW δ
2
r

(
W>XiW,W

>X̄rW
)

=

4

(
XiW

(
W>XW

)−1
− X̄rW

(
W>X̄rW

)−1
)

log

(
W>XiW

(
W>X̄rW

)−1
)
. (6)

In general, the operations of computing the mean and projecting onto the lower dimen-
sional manifold are not interchangeable. That is, let X̄↓r be the mean of the compressed set
X↓ =

{
W>XiW

}
and let W>X̄rW be the compressed mean of the original set X. Then the

two are not equal in general. Since we do not know in advance the mean of the compressed
set, the cost function defined in Eq. 5 does not exactly express the Fréchet variance of X↓.
Rather, it serves as an approximation to it.

In an attempt to address this issue we may also consider a two-step mini-max formula-
tion. In this formulation we alternate between i) optimization on W and ii) computation
of the mean of the compressed set using the newly optimized W :

Wk+1 = argmax
W∈G(n,p)

∑
i

δ2
r

(
W>XiW, X̄k

)
,

X̄k+1 = argmin
X∈Sp+

∑
i

δ2
r

(
W>k+1XiWk+1, X

)
. (7)

Unfortunately, in our preliminary experiments, we were unable to obtain a stable solution
using method (7). Investigation of the mini-max formulation is left as a topic for future
work.

Instead, we study a variation of our intrinsic formulation whereby before optimizing
over W , we first center the data. Using the Riemannian geometry, each point is mapped to

Xi 7→ X̃i = X̄
−1/2
r XiX̄

−1/2
r . Subsequently, the Riemannian mean of X̃ is the identity In.

We call this method δgPCA, for reasons explained below. Its cost function is given by

W = argmax
W∈G(n,p)

∑
i

δ2
r

(
W>X̃iW, Ip

)
. (8)

It is interesting to examine the relation between the two cost functions in Eq. (5) and
Eq. (8). Beginning with our definition of δgPCA, we write

argmax
W∈G(n,p)

∑
i

δ2
r

(
W>X̃iW, Ip

)
= argmax

W∈G(n,p)

∑
i

δ2
r

(
W>X̄−1/2

r XiX̄
−1/2
r W,W>X̄−1/2

r X̄rX̄
−1/2
r W

)
= argmax

W̃>X̄
1/2
r ∈G(n,p)

∑
i

δ2
r

(
W̃>XiW̃ , W̃>X̄W̃

)
, (9)

3. It should be noted that using directional derivatives (Bhatia, 1997; Absil et al., 2009) we obtain a
different (but numerically equivalent) formulation of this gradient. For completeness, we report this
formula and its derivation in Appendix A of the supplementary material. In our experiments, as it was
computationally more efficient, we use Eq. (6) for the gradient.
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where W̃ = X̄
−1/2
r W .

Comparing Eq. (5) to Eq. (9), we see that the two have the same form. However,
the solution W̃ does not belong to the Grassmann manifold, but rather to a generalized
Grassmann manifold, weighted by X̄r (hence the name ‘g’ of the method). In other words,
we have W̃>X̄rW̃ = Ip instead of the standard W>W = Ip.

In addition to the generalized Grassmann variation, we study two more variants of our
δPCA. These are based on other metrics defined on the SPD manifold, namely the log-
Euclidean metric (Arsigny et al., 2007) and the symmetrized log-determinant divergence
(also referred to as the symmetric Stein loss) (Sra, 2012, 2011).

First is the log-Euclidean metric which, like the AIRM metric, is a Riemannian metric.
As illustrated in Yger and Sugiyama (2015), this metric uses the logarithmic map to project
the matrices to the tangent space at the identity TISn+, where the standard Euclidean norm
is then used to measure distances between matrices:

Definition 5 (Log-Euclidean metric) Let X,Y ∈ Sn+ be two SPD matrices. Then, the
log-Euclidean metric is given as

δ2
le(X,Y ) = ‖log (X)− log (Y )‖2F (10)

The Euclidean gradient w.r.t. W of this cost function is given by

DW δ
2
le(W

>XiW,W
>X̄leW ) =

4
(
XiWD log

(
W>XiW

) [
log
(
W>XiW

)
− log

(
W>X̄leW

)]
+ X̄leWD log

(
W>X̄leW

) [
log
(
W>X̄leW

)
− log

(
W>XiW

)])
, (11)

where Df(W )[H] = lim
h→0

f(W+hH)−f(W )
h is the Fréchet derivative (Absil et al., 2009) and X̄le

denoted the mean w.r.t. log-Euclidean metric. Note that there is no closed-form solution
for D log(W )[H] but it can be computed efficiently (Boumal, 2010; Boumal and Absil, 2011;
Al-Mohy and Higham, 2009). This derivation is given in Appendix B of the supplementary
material.

Next is the log-determinant (symmetric Stein) metric (Sra, 2011) defined as follows:

Definition 6 (Log-determinant (symmetric Stein) metric) Let X,Y ∈ Sn+ be two
SPD matrices. Then, the log-determinant (symmetric Stein) metric is given as

δ2
s (X,Y ) = log (det ((X + Y )/2))− log (det(XY )) /2. (12)

Although it is not a Riemannian metric, it approximates the AIRM and shares several
of its geometric properties. So, for computational ease we use the Riemannian mean X̄r

instead of the mean w.r.t. symmetric Stein metric X̄s. For further discussion on the Stein
metric and its differences from and similarities to the AIRM metric, we refer the readers
to Sra (2011).

Owing to Harandi et al. (2014), the gradient w.r.t. W of the Stein metric based cost
function is given by

DW δ
2
s

(
W>XiW,W

>X̄rW
)

=
(
Xi + X̄r

)
W

(
W>

Xi + X̄r

2
W

)−1

(13)

− XiW
(
W>XiW

)−1
− X̄rW

(
W>X̄rW

)−1
.
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2.4. Invariance properties of the intrinsic distances

As discussed in Bhatia (2009), δr is invariant4 by the congruence transformation, meaning
that for any matrix V ∈ GL(n), the group of n× n invertible matrices, we have

δr(X,Y ) = δr(V
>XV, V >Y V ).

Note that this property is also shared by δs (Sra, 2012). Hence, the points established below
for the Riemannian distance will also hold for the Stein loss.

As mentioned in Barachant and Congedo (2014), this invariance property has practical
consequences for covariance matrices extracted from EEG signals. Indeed, such a class of
transformations includes re-scaling and normalization of the signals, electrode permutations
and, if there is no dimensionality reduction, it also includes whitening, spatial filtering or
source separation. For covariance matrices extracted from images, this property has similar
implications and as noted in Harandi et al. (2014), this class of transformation includes
changes of illumination when using RGB values.

Particular cases of the congruence transform when V is an SPD matrix or an orthonormal
matrix have been respectively used in Yger and Sugiyama (2015) and in Harandi et al.
(2014). In this paper, we also investigate invariance to orthonormal matrices. In terms of
our cost function, for δPCA this means that any orthonormal subspace W will be equivalent
to WO with O any matrix in the orthogonal group Op. Such an invariance is a particular
case of a congruent transform and is naturally encoded in the definition of the Grassmann
manifold G (n, p). This motivates our use of the Grassmann manifold for δPCA based on
δr or δs.

On the other hand, the log-Euclidean metric (and the derived distance) is not affine-
invariant. This fact has been used to derive a metric learning algorithm (Yger and Sugiyama,
2015). Nevertheless it is invariant under the action of the orthogonal group. This comes from
the property that for any SPD matrix A and invertible matrix V , we have log(V AV −1) = V
log(A)V −1 (Bhatia, 2009, p.219). Then, using the fact that for any matrix O ∈ Op, O

> =
O−1, it follows that δle(OXO

>, OY O>) = δle(X,Y ), once again motivating the use of the
Grassmann manifold.

Finally, in Eq. (4), due to the invariance of the trace to cyclic permutations5, the product
term WW> appears twice. For any orthogonal matrix O ∈ Op, replacing W by WO in
Eq. (4) will not change anything. Hence, as the Euclidean PCA (for vector data), the
matrix PCA proposed in this paper is invariant under the action of the orthogonal group
and explains our formulation on the Grassmann manifold.

2.5. Optimization on the Grassmann manifold

To sum up, our approach consists of finding a lower-dimensional manifold Sp+ by optimizing
a transformation (parameterized by W ) that maximizes the (approximate) Fréchet vari-
ance w.r.t. δ. As the parameter W lies in the Grassmann manifold G(n, p), we solve the
optimization problem on this manifold (Absil et al., 2009; Edelman et al., 1998).

Optimization on matrix manifolds is a mature field and by now most of the classical
optimization algorithms have been extended to the Riemannian setting. In this setting,

4. This property is also referred to as affine invariance.
5. That is, ∀A,B,C, tr(ABC) = tr(CAB) = tr(BCA).
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descent directions are not straight lines but rather curves on the manifold. For a function
f , applying a Riemannian gradient descent can be expressed by the following steps:

1. At any iteration, at the point W , transform a Euclidean gradient DW f into a Rie-
mannian gradient ∇W f . In our case, ∇W f = DW f −WW>DW f (Absil et al., 2009).

2. Perform a line search along geodesics at W in the direction H = ∇W f . In our case,
on the geodesic going from a point W in direction H (with a scalar step-size t ∈ R),
a new iterate is obtained as W (t) = WV cos(Σt)V > + U sin(Σt)V >, where UΣV > is
the compact singular value decomposition of H.

In practice, we employ a Riemannian trust-region method described in Absil et al. (2009)
and efficiently implemented in Boumal et al. (2014).

3. Numerical Experiments

To understand the performance of our proposed methods, we test them on both synthetic
and real data. First, for synthetically generated data, we examine their ability to compress
the data while retaining its variance. Next, we apply them to brain computer interface
(BCI) data in the form of covariance matrices. To assess the quality of the dimensionality
reduction, we use the compressed matrices for classification and examine the accuracy rates.

3.1. Synthetic data

Our first goal is to substantiate the claim that our methods outperform the standard matrix
PCA in terms of variance maximization. As shown in Chap. 6 of Jolliffe (2002), it is useful
to study the fraction of variance retained by the method as the dimension grows. To this
end we randomly generate a set X =

{
Xi ∈ Sn+

}
of 50 SPD matrices of size n = 17 using

the following scheme:
For each Xi, we first generate an n×n matrix A whose entries are i.i.d. standard normal

random variables. Next, we compute the QR decomposition of this matrix A = QR, whereQ
is an orthonormal matrix and R is an upper triangular matrix. We use Q as the eigenvectors
of Xi. Finally, we uniformly draw its eigenvalues λ = (λ1, . . . , λn) from the range [0.5, 4.5].
The resulting matrices are then Xi = Qdiag (λ)Q>, where each Xi has a unique matrix Q
and spectrum λ.

Each matrix was compressed to size p × p for p = 2, . . . , 9 using our various δPCA
methods, 2DPCA (Yang et al., 2004) and PGA (Fletcher et al., 2004). PGA first maps the
matrices X via the matrix logarithm to TX̄r

Sn+, the tangent space at the point X̄r. Then
standard linear PCA is performed in the (Euclidean) tangent space. For all δPCA methods,
the matrix W was initialized by the first p columns of the identity matrix. For each value
of p we recorded the fraction of the Fréchet variance contained in the compressed dataset,

αδ (p) =
σ2
δ

(
X↓(p)

)
σ2
δ (X)

,

for the Euclidean and Riemannian metrics. This process was repeated 25 times for different
instances of the dataset X.
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Figure 3: Fraction of Fréchet variance retained by the various compression methods w.r.t.
(a) the Riemannian and (b) the Euclidean distances.

We also performed this experiment with the log-Euclidean metric. However, since it is
an approximation of the Riemannian metric, αδle exhibits essentially the same behavior as
αδr . We omit the corresponding figure for brevity.

The results of the experiment, averaged over all iterations, are presented in Fig. 3. We
note that the methods δsPCA and δlePCA obtained almost identical results to δrPCA. So,
for clarity, of the δPCA methods we display the results only for δrPCA, δePCA and δgPCA.
The curves of δrPCA and δgPCA coincide for the Riemannian variance.

First, with the exception of one case, our δPCA methods retain the greatest fraction of
variance. As expected, each δPCA method is best at retaining the variance w.r.t. its own
metric. That is, for αδr , δrPCA outperforms δePCA, and for αδe the opposite is true. The
only exception is δgPCA, which performs poorly w.r.t. the Euclidean variance. This is due
to the data centering performed before the dimensionality reduction. Recall that the data

centering is done using the Riemannian geometry, i.e., X̃i = X̄
−1/2
r XiX̄

−1/2
r . While this

transformation preserves the Riemannian distance between matrices, it does not preserve
the Euclidean distance. Thus, we obtain poor results for αδe using this method.

3.2. Brain-computer interface

Following the promising results on the synthetic data, we next test our methods on real
data. The use of covariance matrices is prevalent, for example, in the brain computer
interface (BCI) community. EEG signals involve highly complex and non-linear phe-
nomenon (Blankertz et al., 2008) which cannot be modeled efficiently using simple Gaussian
assumptions. In this context, for some specific applications, covariance matrices (using their
natural Riemannian geometry) have been successfully used (Barachant et al., 2010, 2012,
2013; Yger, 2013). As emphasized in Blankertz et al. (2008) and Lotte and Guan (2011),
dimensionality reduction and spatial filtering is a crucial step for building an efficient BCI
system. Hence, an unsupervised dimensionality reduction method preserving the Rieman-
nian geometry of covariance matrices is of great interest for BCI applications.

12
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In this set of experiments, we apply our methods to BCI data from the BCI competition
III datasets IIIa and IV (Schlögl et al., 2005). These datasets contain motor imagery
(MI) EEG signals and was collected in a multi-class setting, with the subjects performing
more than 2 different MI tasks. As was done in Lotte and Guan (2011), we evaluate our
algorithms on two-class problems by selecting only signals of left- and right-hand MI trials.

Dataset IIIa comprises EEG signals recorded from 60 electrodes from 3 subjects who
performed left-hand, right-hand, foot and tongue MI. A training set and a test set are
available for each subject. Both sets contain 45 trials per class for subject 1, and 30 trials
per class for subjects 2 and 3. Dataset IV, comprises EEG signals recorded from 118
electrodes from 5 subjects who performed left-hand, right-hand, foot and tongue MI. Here
280 trials were available for each subject, among which 168, 224, 84, 56 and 28 composed
the training sets for the respective subjects. The remaining trials composed their test sets.

We apply the same pre-processing as described in Lotte and Guan (2011). EEG signals
were band-pass filtered in 8− 30 Hz, using a 5th order Butterworth filter. For each trial, we
extracted features from the time segment located from 0.5s to 2.5s after the cue instructing
the subject to perform MI.

The quality of performance of the dimensionality reduction is judged via classification
error using the following scheme: We first apply our methods in an unsupervised manner.
Next, using the labels of the training set, we compute the mean for each of the two classes.
Then, we classify the covariance matrices in the test set according to their distance to the
class means; each test covariance matrix is assigned the class to which it is closer. This
classifier is described and referred to as minimum distance to the mean (MDM) in Barachant
et al. (2012) and it is restricted here to a two-classes problem with various distances.

For both datasets we reduce the matrices from their original size to 6×6 as it corresponds
to the number of sources recommended in Blankertz et al. (2008) for common spatial pattern
(CSP). We used both the Riemannian and the Euclidean metrics to compute the class means
and distances to the test samples. However, we report the results only for the Riemannian
metric, as they were better for all subjects. The results using the Euclidean metric can be
found in Appendix D of the supplementary material.

The accuracy rates of the classification are presented in Table 1. As a reference on
these datasets, we also report the results of a classical method of the literature. This
method (Lotte and Guan, 2011) consists of supervised dimensionality reduction, namely a
CSP, followed by a linear discriminant analysis on the log-variance of the sources extracted
by the CSP.

While the results of Lotte and Guan (2011) cannot be compared to those of our unsu-
pervised techniques in a straightforward manner, they nonetheless serve as a motivation.
Since we intend to extend our approach to the supervised learning setting, it is instructive
to quantitatively assess the performance gap even at this early stage of research. Encour-
agingly, our comparatively naive methods work well, obtaining the same classification rates
as Lotte and Guan (2011) for some test subjects, and for others even achieving higher rates.

4. Conclusion

In this paper, we introduced a novel way to perform unsupervised dimensionality reduction
for SPD matrices. We provided a rectified formulation of matrix PCA based on the opti-

13



Horev Yger Sugiyama

Table 1: Accuracy rates for the various PCA methods using the Riemannian metric. The
best method (excluding CSP+LDA) is highlighted by boldface.

data set IIIa data set IV
Subject 1 2 3 avg 1 2 3 4 5 avg
No compression 95.56 60 98.33 84.63 53.57 76.79 53.06 49.11 69.05 60.32
2DPCA 84.44 60 73.33 72.59 54.46 71.43 53.57 66.07 58.33 60.77
δrPCA 95.56 68.33 85 82.96 55.36 94.64 52.04 50.89 68.65 64.32
δePCA 84.44 60 73.33 72.59 55.36 73.21 53.57 65.62 58.33 61.22
δsPCA 95.56 61.67 85 80.74 55.36 64.29 52.04 54.02 53.97 55.94
δlePCA 86.67 61.67 85 77.78 53.57 76.79 50.51 52.23 51.19 56.86
δgPCA 62.22 50 50 54.07 46.43 50 50 50.89 48.41 49.15
PGA 76.67 50 78.33 68.33 54.46 75 59.69 64.29 69.84 64.66

CSP + LDA 95.56 61.67 93.33 83.52 66.07 96.43 47.45 71.88 49.6 66.29

mization of a generalized notion of variance for SPD matrices. Extending this formulation
to other geometries, we used tools from the field of optimization on manifolds. We applied
our method to synthetic and real-world data and demonstrated its usefulness.

In future work we consider several promising extensions to our methods. First, we may
cast our δPCA to a stochastic optimization setting on manifolds (Bonnabel, 2013). Such an
approach may be useful for the massive datasets common in applications such as computer
vision. In addition, it would be interesting to use our approach with criteria in the spirit
of Yger and Sugiyama (2015). This would lead to supervised dimensionality reduction,
bridging the gap between the supervised log-Euclidean metric learning proposed in Yger
and Sugiyama (2015) and the dimensionality reduction proposed in Harandi et al. (2014).
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Alexandre Barachant, Stéphane Bonnet, Marco Congedo, and Christian Jutten. Classification of
covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing, 112:
172–178, 2013.

Rajendra Bhatia. Matrix Analysis. Springer, 1997.

Rajendra Bhatia. Positive Definite Matrices. Princeton University Press, 2009.

Benjamin Blankertz, Ryota Tomioka, Steven Lemm, Motoaki Kawanabe, and Klaus-Robert Müller.
Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Processing Magazine,
25(1):41–56, 2008.

Silvere Bonnabel. Stochastic gradient descent on Riemannian manifolds. IEEE Transactions on
Automatic Control, 58(9):2217–2229, Sept 2013.

Nicolas Boumal. Discrete curve fitting on manifolds. Master’s thesis, Université Catholique de
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In this appendix, we assume X and Y to be two positive definite matrices of size n× n and W
a n× p matrix in a low-rank manifold.

Appendix A. Computing the Derivative of the Riemannian-based Cost

In Harandi et al. (2014), a cost function similar to Eq.(5) and corresponding gradient function are
derived. Since that gradient formulation is more computationally efficient than ours, we used it in
our implementation. However, for the sake of completeness we include below an alternative gradient
formulation.

While the definition of our objective function is quite intuitive, computing its derivative w.r.t.
W for the purpose of optimization is not straight forward. First, for ease of notation, we define
f(W ) = δ2r (W>XW,W>YW ). We compute the gradient based on Df(W )[H], the directional
derivative of f at W in the direction H.

As the directional derivative of the function X 7→ X−1/2 is not obvious to obtain, let us refor-
mulate f(W ) :

f(W )

= tr
(

log
((
W>XW

)−1/2
W>YW

(
W>XW

)−1/2)
log
((
W>XW

)−1/2
W>YW

(
W>XW

)−1/2))
= tr

log

(W>XW )−1W>YW︸ ︷︷ ︸
gXY (W )

 log
((
W>XW

)−1
W>YW

)
= 〈log (gXY (W )) , log (gXY (W ))〉

Next, owing to the product rule and the chain rule of the Fréchet derivative (Absil et al., 2009),
we express DgXY (W )[H] as

DgXY (W )[H] = D
(
X 7→ X−1

) (
W>XW

)
[W>XH

+H>XW ]W>YW +
(
W>XW

)−1 (
W>Y H +H>YW

)
= −

(
W>XW

)−1 (
W>XH +H>XW

) (
W>XW

)−1
W>YW

+
(
W>XW

)−1 (
W>Y H +H>YW

)
= −X̃−1

(
W>XH +H>XW

)
X̃−1Ỹ + X̃−1

(
W>Y H +H>YW

)
,

where for simplicity we have introduced the notation X̃ = W>XW and similarly Ỹ = W>YW .
The function gXY (W ) can then be written as gXY (W ) = X̃−1Ỹ .

Note that the matrix X̃−1Ỹ , while in general is not a symmetric matrix, has real, positive
eigenvalues and is diagonizable (Boumal, 2010, Prop.(5.3.2)) as X̃−1Ỹ = V ΛV −1.

In order to compute Df(W )[H], let us introduce H̃ = V −1 (DgXY (W )[H])V and F̃ , a matrix
of the first divided differences (Bhatia, 1997, p.60 & p.164) of the log function for λi = Λii. The
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symbol � denotes the Hadamard product of two matrices. Then we have

Df(W )[H] = 2 〈D log ◦gXY (W ) [H], log ◦gXY (W )〉 (14)

= 2
〈
D log (gXY (W )) [DgXY (W )[H]], log

(
X̃−1Ỹ

)〉
(15)

= 2
〈
H̃ � F̃ , V > log

(
X̃−1Ỹ

)
V −>

〉
(16)

= 2

〈(
V > log

(
X̃−1Ỹ

)
V −>

)
� F̃︸ ︷︷ ︸

A

, H̃>

〉
(17)

= 2
〈
V AV −1, DgXY (W )[H]

>
〉

(18)

= 2

〈
V AV −1X̃−1︸ ︷︷ ︸

B

,W>Y H +H>YW

〉
(19)

−2

〈
X̃−1Ỹ V AV −1X̃−1︸ ︷︷ ︸

C

,W>XH +H>XW

〉

=

〈
2YW

(
B +B>

)
− 2XW

(
C + C>

)︸ ︷︷ ︸
∇f(W )

, H

〉
, (20)

where the transition between Eq.(16) and Eq.(17) is due to the identity 〈A�B,C〉 =
〈
A� C>, B>

〉
(Boumal and Absil, 2011, Eq.(5.5)).

Since the directional derivative Df(W )[H] is related to its gradient by Df(W )[H] =
〈∇f(W ), H〉, we have obtained the desired gradient:

∇f(W ) = 2YW
(
B +B>

)
− 2XW

(
C + C>

)
. (21)

Appendix B. Computing the Derivative of the LogEuclidean-based Cost

In our logEuclidean PCA, we want to learn a full column-rank matrix W by minimizing a cost
function based on f(W ) = δ2le(W

>XW,W>YW ) where δle is defined as

δ2le(X,Y ) = ‖log (X)− log (Y )‖2F .

Let us reformulate the directional derivative of f :

f(W ) =
∥∥log

(
W>XW

)
− log

(
W>YW

)∥∥2
F

=
〈
log
(
W>XW

)
− log

(
W>YW

)
, log

(
W>XW

)
− log

(
W>YW

)〉
=
〈
log
(
W>XW

)
, log

(
W>XW

)〉
− 2

〈
log
(
W>XW

)
, log

(
W>YW

)〉
+
〈
log
(
W>YW

)
, log

(
W>YW

)〉
.

In order to obtain ∇f , the (Euclidean) gradient of f , we first express Df(W )[H] the directional
derivative of f (at W in the direction H). This is due to the fact that Df(W )[H] = 〈∇f(W ), H〉.

We recall that the directional derivative is defined as

Df(X)[H] = lim
h→0

f(X + hH)− f(X)

h
.
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As summarized in (Boumal, 2010, p.53), the directional derivative is equipped with various useful
identities such as:

D (f ◦ g) (X) [H] = Df (g (X)) [Dg (X) [H]] (composition rule)

D (X 7→ 〈f (X) , g (X)〉) (X) [H] = 〈Df (X) [H] , g (X)〉+ 〈f (X) , Dg (X) [H]〉 (product rule).

Moreover, from the definition of the directional derivative, we can show that for a symmetric
matrix A :

D
(
X 7→ X>AX

)
(X) [H] = H>AX +X>AH (22)

Now, using these identities we find the derivative of f :

Df(W )[H] = 2
〈
D log

(
W>XW

)
[H>XW +W>XH], log

(
W>XW

)〉
(23)

+ 2
〈
D log

(
W>YW

)
[H>YW +W>Y H], log

(
W>YW

)〉
− 2

〈
D log

(
W>XW

)
[H>XW +W>XH], log

(
W>YW

)〉
− 2

〈
D log

(
W>YW

)
[H>YW +W>Y H], log

(
W>XW

)〉
= 2

〈
D log

(
W>XW

)
[H>XW +W>XH], log

(
W>XW

)
− log

(
W>YW

)〉
(24)

+ 2
〈
D log

(
W>YW

)
[H>YW +W>Y H], log

(
W>YW

)
− log

(
W>XW

)〉
= 2

〈
D log

(
W>XW

) [
log
(
W>XW

)
− log

(
W>YW

)]
, H>XW +W>XH

〉
(25)

+ 2
〈
D log

(
W>YW

) [
log
(
W>YW

)
− log

(
W>XW

)]
, H>YW +W>Y H

〉
Df(W )[H] =

〈
4XWD log

(
W>XW

) [
log
(
W>XW

)
− log

(
W>YW

)]
, H
〉

(26)

+
〈
4YWD log

(
W>YW

) [
log
(
W>YW

)
− log

(
W>XW

)]
, H
〉

From the expression of the function f , we first apply the product rule and the chain rule in order
to obtain Eq. 23. Then, from Eq. 24 to Eq. 25, we use the property that Dlog(X)[.] is an auto-
adjoint operator6 for symmetric definite positive matrices, as stated in Boumal and Absil (2011)
and demonstrated in Boumal (2010, Chap. 5 p.52).
Note that the directional derivative of the matrix logarithm can be computed numerically thanks to
the algorithm provided in Boumal (2010) and Boumal and Absil (2011).

Hence, we have :

∇f(W ) = 4XWD log
(
W>XW

) [
log
(
W>XW

)
− log

(
W>YW

)]
(27)

+ 4YWD log
(
W>YW

) [
log
(
W>YW

)
− log

(
W>XW

)]
Appendix C. Computing the Derivative of the Euclidean-based Cost

In our matrix Euclidean PCA, the cost is much simpler to derive. In this method, we want to learn a
full columns rank matrix W by minimizing a cost function based on f(W ) = δ2e (W>XW,W>YW )
where δe is defined as

δ2le(X,Y ) = ‖X − Y ‖2F .
As for the logEuclidean case, we reformulate the cost :

f(W ) =
∥∥W>XW −W>YW∥∥2F

=
〈
W>XW −W>YW,W>XW −W>YW

〉
=
〈
W>XW,W>XW

〉
− 2

〈
W>XW,W>YW

〉
+
〈
W>YW,W>YW

〉
.

6. This means that for all symmetric matrices H1 and H2, we have 〈D log (X) [H1] , H2〉 =
〈H1, D log (X) [H2]〉.
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Table 2: Accuracy rates for the various PCA methods using the Euclidean metric
data set IIIa data set IV

Subject 1 2 3 avg 1 2 3 4 5 avg
No compression 63.33 48.33 55 55.55 47.32 69.64 54.59 62.05 41.27 54.97
2DPCA 61.11 48.33 55 54.81 47.32 66.07 54.59 62.5 41.27 54.35
δrPCA 86.67 61.67 73.33 73.89 50 83.93 52.04 56.25 76.59 63.76
δePCA 61.11 48.33 55 54.81 47.32 64.29 54.59 62.5 41.67 54.07
δsPCA 86.67 60 71.67 72.78 50.89 64.29 48.47 55.36 52.38 54.28
δlePCA 81.11 56.67 80 72.59 52.68 78.57 50.51 52.68 50.4 56.97
δgPCA 61.11 50 65 58.7 46.43 50 50.51 50.89 51.98 49.96
PGA 66.67 48.33 56.67 57.22 47.32 58.93 50 62.5 50.4 53.83

CSP + LDA 95.56 61.67 93.33 83.52 66.07 96.43 47.45 71.88 49.6 66.29

Then, reusing Eq. (22) for the directionnal derivative for the quadratic term W>XW and making
use of the composition and product rules (defined in the previous section), we have :

Df(W )[H] = 2
〈
H>XW +W>XH,W>XW

〉
+ 2

〈
H>YW +W>Y H,W>YW

〉
(28)

− 2
〈
H>XW +W>XH,W>YW

〉
− 2

〈
H>YW +W>Y H,W>XW

〉
= 2

〈
H>XW +W>XH,W> (X − Y )W

〉
+ 2

〈
H>YW +W>Y H,W> (Y −X)W

〉
= 4

〈
H>XW,W> (X − Y )W

〉
− 4

〈
H>YW,W> (X − Y )W

〉
= 4

〈
H> (X − Y )W,W> (X − Y )W

〉
Df(W )[H] =

〈
4 (X − Y )WW> (X − Y )W,H

〉
(29)

Hence, we have :

∇f(W ) = 4 (X − Y )WW> (X − Y )W (30)

Appendix D. BCI classification results using Euclidean metric

Table 2 contains the results of BCI data classification using the MDM classifier with the Euclidean
metric.

20


	horev09
	horev09-supp

