
Support Consistency of Direct Sparse-Change Learning in Markov Networks

Song Liu
song@sg.cs.titech.ac.jp

Tokyo Institute of Technology

Taiji Suzuki
s-taiji@is.titech.ac.jp

Tokyo Institute of Technology

Masashi Sugiyama
sugi@k.u-tokyo.ac.jp

University of Tokyo

Abstract

We study the problem of learning sparse structure changes
between two Markov networks P and Q. Rather than fitting
two Markov networks separately to two sets of data and fig-
uring out their differences, a recent work proposed to learn
changes directly via estimating the ratio between two Markov
network models. Such a direct approach was demonstrated
to perform excellently in experiments, although its theoret-
ical properties remained unexplored. In this paper, we give
sufficient conditions for successful change detection with re-
spect to the sample size np, nq , the dimension of data m,
and the number of changed edges d. More specifically, we
prove that the true sparse changes can be consistently identi-
fied for np = Ω(d2 log m2+m

2
) and nq = Ω(n2

p/d), with an
exponentially decaying upper-bound on learning error. Our
theoretical guarantee can be applied to a wide range of dis-
crete/continuous Markov networks.

Introduction
Learning changes in interactions between random variables
plays an important role in many real-world applications. For
example, genes may regulate each other in different ways
when external conditions are changed. The number of daily
flu-like symptom reports in nearby hospitals may become
correlated when a major epidemic disease breaks out. EEG
signals from different regions of the brain may be synchro-
nized/desynchronized when the patient is performing differ-
ent activities. Identifying such changes in interactions helps
us expand our knowledge on these real-world phenomena.

In this paper, we consider the problem of learning changes
between two undirected graphical models. Such a model,
also known as a Markov network (MN) (Koller and Fried-
man 2009), expresses interactions via the conditional inde-
pendence between random variables. Among many types of
MNs, we focus on pairwise MNs, whose joint distribution
can be factorized over single or pairwise random variables.

The problem of learning structure of MN itself has been
thoroughly investigated in the last decade. The graphical
lasso method (Banerjee, El Ghaoui, and d’Aspremont 2008;
Friedman, Hastie, and Tibshirani 2008) learns a sparse pre-
cision (inverse covariance) matrix from data by using the
`1-norm, while the neighborhood regression methods (Lee,
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Ganapathi, and Koller 2007; Meinshausen and Bühlmann
2006; Ravikumar, Wainwright, and Lafferty 2010) solve a
node-wise lasso program to identify the neighborhood of
each single node.

One naive approach to learning changes in MNs is to ap-
ply these methods to two MNs separately and compare the
learned models. However, such a two-step approach does not
work well when the MNs themselves are dense (this can hap-
pen even when the change in MNs is sparse). A recent study
(Zhang and Wang 2010) adopts a neighbourhood selection
procedure to learn sparse changes between Gaussian MNs
via a fused-lasso type regularizer (Tibshirani et al. 2005).
However, no theoretical guarantee was given on identify-
ing changes. Furthermore, extension of the above mentioned
methods to general non-Gaussian MNs is hard due to the
computational intractability of the normalization term.

To cope with these problems, an innovative algorithm has
been proposed recently (Liu et al. 2014). Its basic idea is to
model the changes between two MNs P and Q as the ratio
between two MN density functions p(x) and q(x), and the
ratio p(x)/q(x) is directly estimated in one-shot without es-
timating p(x) and q(x) themselves (Sugiyama, Suzuki, and
Kanamori 2012). Since parameters in the density ratio model
represent the parametric difference between P and Q, spar-
sity constrains can be directly imposed for sparse change
learning. Thus, the density-ratio approach can work well
even when each MN is dense as long as the change is sparse.
Furthermore, the normalization term in the density-ratio ap-
proach can be approximately computed by the straightfor-
ward sample average and thus there is no computational
bottleneck in using non-Gaussian MNs. Experimentally, the
density-ratio approach was demonstrated to perform excel-
lently. However, its theoretical properties have not been ex-
plored yet.

The ability of recovering a sparsity pattern via a sparse
learning algorithm has been studied under the name of sup-
port consistency or model consistency (Wainwright 2009;
Zhao and Yu 2006), that is, the support of the esti-
mated parameter converges to the true support. Previ-
ous works for successful structure recovery are available
for `1-regularized maximum (pseudo-)likelihood estimators
(Ravikumar, Wainwright, and Lafferty 2010; Yang et al.
2012). However, Liu et al.’s density ratio estimator brought
us a new question: what is the sparsistency of identifying



correct sparse changes without learning individual MNs?
Such a concern is very practical since in many change de-
tection applications, we only care about changes rather than
recovering individual structures before or after changes.

In this paper, we theoretically investigate the success of
the density-ratio approach and provide sufficient conditions
for successful change detection with respect to the num-
ber of samples np, nq , data dimension m, and the num-
ber of changed edges d. More specifically, we prove that if

np = Ω(d2 log m2+m
2 ) and nq = Ω(

n2
p

d ), changes between
two MNs can be consistently learned under mild assump-
tions, regardless the sparsity of individual MNs. Technically,
our contribution can be regarded as an extension of support
consistency of lasso-type programs (Wainwright 2009) to
the ratio of MNs.

Note that the theoretical results presented in this paper are
fundamentally different from previous works on learning a
“jumping MN” (Kolar and Xing 2012), where the focuses
are learning the partition boundaries between jumps, and the
successful recovery of graphical structure within each parti-
tion, rather than learning sparse changes between partitions.

Direct Change Learning between Markov
Networks

In this section, we review a direct structural change detection
method (Liu et al. 2014).

Problem Formulation
Consider two sets of independent samples drawn separately
from two probability distributions P and Q on Rm:

{x(i)
p }

np

i=1
i.i.d.∼ P and {x(i)

q }
nq

i=1
i.i.d.∼ Q.

We assume that P and Q belong to the family of Markov
networks (MNs) consisting of univariate and bivariate fac-
tors, i.e., their respective probability densities p and q are
expressed as

p(x;θ(p)) =
1

Z(θ(p))
exp

 m∑
u≥v

θ(p)u,v
>ψ(xu, xv)

 , (1)

where x = (x1, . . . , xm)> is the m-dimensional random
variable, u ≥ v is short for u, v = 1, u ≥ v (same below),
> denotes the transpose, θ(p)u,v is the parameter vector for the
elements xu and xv with dimension b, and

θ(p) = (θ
(p)>
1,1 , . . . ,θ

(p)>
m,1 ,θ

(p)>
2,2 , . . . ,θ

(p)>
m,2 , . . . ,θ

(p)>
m,m)>

is the entire parameter vector. ψ(xu, xv) : R2 → Rb is a ba-
sis function, and Z(θ(p)) is the normalization factor defined
as

Z(θ(p)) =

∫
exp

 m∑
u≥v

θ(p)u,v
>ψ(xu, xv)

 dx.

q(x;θ(q)) is defined in the same way.
Given two parametric models p(x;θ(p)) and q(x;θ(q)),

the goal is to discover changes in parameters from P to Q,
i.e., θ(p) − θ(q).

Density Ratio Formulation for Structural Change
Detection
The key idea in (Liu et al. 2014) is to consider the ratio of p
and q:

p(x;θ(p))

q(x;θ(q))
∝ exp

∑
u≥v

(θ(p)u,v − θ
(q)
u,v)
>ψ(xu, xv)

 ,

where θ(p)u,v − θ
(q)
u,v encodes the difference between P and Q

for factor ψ(xu, xv), i.e., θ(p)u,v − θ
(q)
u,v is zero if there is no

change in the factor ψ(xu, xv).
Once the ratio of p and q is considered, each parameter

θ(p)u,v and θ(q)u,v does not have to be estimated, but only their
difference θu,v = θ(p)u,v − θ

(q)
u,v is sufficient to be estimated

for change detection. Thus, in this density-ratio formulation,
p and q are no longer modeled separately, but the changes
from p to q directly as

r(x;θ) =
1

N(θ)
exp

∑
u≥v

θ>u,vψ(xu, xv)

 , (2)

where N(θ) is the normalization term. This direct nature
would be more suitable for change detection purposes ac-
cording to Vapnik’s principle that encourages avoidance of
solving more general problems as an intermediate step (Vap-
nik 1998). This direct formulation also halves the number of
parameters from both θ(p) and θ(q) to only θ.

The normalization term N(θ) is chosen to fulfill∫
q(x)r(x;θ)dx = 1:

N(θ) =

∫
q(x) exp

∑
u≥v

θ>u,vψ(xu, xv)

 dx,

which is the expectation over q(x). This expectation form of
the normalization term is another notable advantage of the
density-ratio formulation because it can be easily approxi-
mated by the sample average over {x(i)

q }nq

i=1
i.i.d.∼ q(x).

N̂(θ;x(1)
q , . . . ,x(nq)

q ) :=

1

nq

nq∑
i=1

exp

∑
u≥v

θ>u,vψ(x(i)q,u, x
(i)
q,v)

 .

Thus, one can always use this empirical normalization term
for any (non-Gaussian) models p(x;θ(p)) and q(x;θ(q)).

Direct Density-Ratio Estimation
Density ratio estimation has been recently introduced to
the machine learning community and proven to be useful
in a wide range of applications (Sugiyama, Suzuki, and
Kanamori 2012). In (Liu et al. 2014), a density ratio estima-
tor called the Kullback-Leibler importance estimation proce-
dure (KLIEP) for log-linear models (Sugiyama et al. 2008;
Tsuboi et al. 2009) was employed in learning structural
changes.



For a density ratio model r(x;θ), the KLIEP method
minimizes the Kullback-Leibler divergence from p(x) to
p̂(x) = q(x)r(x;θ):

KL[p‖p̂] =

∫
p(x) log

p(x)

q(x)r(x;θ)
dx

= Const.−
∫
p(x) log r(x;θ)dx. (3)

Note that the density-ratio model (2) automatically satisfies
the non-negativity and normalization constraints:

r(x;θ) ≥ 0 and
∫
q(x)r(x;θ)dx = 1.

In practice, one minimizes the negative empirical approxi-
mation of the second term in Eq.(3)1:

`KLIEP(θ) = − 1

np

np∑
i=1

log r̂(x(i)
p ;θ)

= − 1

np

np∑
i=1

∑
u≥v

θ>u,vψ(x(i)p,u, x
(i)
p,v)

+ log

 1

nq

nq∑
i=1

exp

∑
u≥v

θ>u,vψ(x(i)q,u, x
(i)
q,v)

 .

where

r̂(x;θ) =
exp

(∑
u≥v θ

>
u,vψ(xq,u, xq,v)

)
N̂(θ;x

(1)
q , . . . ,x

(nq)
q )

.

Because `KLIEP(θ) is convex with respect to θ, its global
minimizer can be numerically found by standard optimiza-
tion techniques such as gradient ascent or quasi-Newton
methods. The gradient of `KLIEP with respect to θu,v is
given by

∇θu,v
`KLIEP(θ) = − 1

np

np∑
i=1

ψ(x(i)p,u, x
(i)
p,v)

+
1

nq

nq∑
i=1

r̂(x(i);θ)ψ(x(i)q,u, x
(i)
q,v),

that can be computed in a straightforward manner for any
feature vector ψ(xu, xv).

Sparsity-Inducing Norm
To find a sparse change between P and Q, one may reg-
ularize the KLIEP solution with a sparsity-inducing norm∑
u≥v ‖θu,v‖, i.e., the group-lasso penalty (Yuan and Lin

2006). Note that the separate density estimation approaches
sparsify both θp and θq so that the difference θp − θq is
also sparsified. On the other hand, the density-ratio approach
(Liu et al. 2014) directly sparsifies the difference θp − θq ,
and thus this method can still work well even if θp and θq
are dense as long as θp − θq is sparse.

1Note that the `KLIEP is the negative log-likelihood.

Now we have reached the final objective provided in (Liu
et al. 2014):

θ̂ = argmin
θ

`KLIEP(θ) + λnp

∑
u≥v

‖θu,v‖. (4)

Support Consistency of Direct Sparse-Change
Detection

The above density-ratio approach to change detection was
demonstrated to be promising in empirical studies (Liu et
al. 2014). However, its theoretical properties have not yet
been investigated. In this section, we give theoretical guar-
antees of the convex program (4) on structural change learn-
ing. More specifically, we give sufficient conditions for de-
tecting correct changes in terms of the sample size np and
nq , data dimensions m, and the number of changed edges d,
followed by the discussion on the insights we can gain from
the theoretical analysis.

Notation
Before introducing our consistency results, we define a few
notations. In the previous section, a sub-vector of θ indexed
by (u, v) corresponds to a specific edge of an MN. From now
on, we use new indices with respect to the “oracle” sparsity
pattern of the true parameter θ∗ for notational simplicity. By
defining two sets of sub-vector indices S := {t′ | ‖θ∗t′‖ 6= 0}
and its complement Sc := {t′′ | ‖θ∗t′′‖ = 0}, we rewrite the
objective (4) as

θ̂ = argmin
θ

`KLIEP(θ) + λnp

∑
t′∈S
‖θt′‖

+ λnp

∑
t′′∈Sc

‖θt′′‖. (5)

The support of estimated parameter and its complement are
denoted as Ŝ and Ŝc. Sample Fisher information matrix I ∈
R

b(m2+m)
2 × b(m2+m)

2 is the Hessian of the log-likelihood: I =
∇2`KLIEP(θ∗). IAB is a sub-matrix of I indexed by two sets
of indices A and B on rows and columns.

Assumptions
We start our analysis with assumptions and some discus-
sions. Similar to previous researches on sparsity recovery
analysis (Wainwright 2009; Ravikumar, Wainwright, and
Lafferty 2010), the first two assumptions are made on Fisher
Information Matrix.
Assumption 1 (Dependency Assumption). The sample
Fisher Information Matrix ISS has bounded eigenvalues:

Λmin(ISS) ≥ λmin.

This assumption is to ensure that the model is identifiable.
Although Assumption 1 only bounds the smallest eigenvalue
of ISS , the largest eigenvalue of I is in fact, also upper-
bounded, as we stated in later assumptions.
Assumption 2 (Incoherence Assumption). The unchanged
edges cannot exert overly strong effects on changed edges:

max
t′′∈Sc

‖It′′SISS−1‖1 ≤ 1− α,

where ‖Y ‖1 =
∑
i,j ‖Y i,j‖1 and α ∈ (0, 1].



We also make the following assumptions as an analogy to
those made in (Yang et al. 2012).
Assumption 3 (Smoothness Assumption on Log-normal-
ization Function). We assume that the normalization term
log N̂(θ) 2 is smooth around its optimal value and has
bounded derivatives

max
δ,‖δ‖≤‖θ∗‖

∣∣∣∣∣∣∣∣∣∇2 log N̂(θ∗ + δ)
∣∣∣∣∣∣∣∣∣ ≤ λmax, (6)

max
t∈S∪Sc

max
δ,‖δ‖≤‖θ∗‖

∣∣∣∣∣∣∣∣∣∇θt∇2 log N̂(θ∗ + δ)
∣∣∣∣∣∣∣∣∣ ≤ λ(3)max,

where |||·||| is the spectral norm of a matrix or tensor.
Note that (6) also implies the bounded largest eigenvalue of
Fisher Information Matrix I, because I = ∇2`KLIEP(θ∗) =

∇2 log N̂(θ∗).
A key difference between this paper and previous proofs

is that we make no explicit restrictions on the type of distri-
bution P and Q, as KLIEP allows us to learn changes from
various discrete/continuous distributions. Instead, we make
the following assumptions on the density ratio:
Assumption 4 (The Correct Model Assumption). The den-
sity ratio model is correct, i.e. there exists θ∗ such that

p(x) = r(x;θ∗)q(x).

Assumptions 1, 2, and 3 are in fact related to distribu-
tion Q. However, the density ratio estimation objective is an
M-estimator summed up over samples from P . Assumption
4 provides a transform between P and Q and allows us to
perform analysis on such an M-estimator using an “impor-
tance sampling” fashion. See supplementary material (Liu,
Suzuki, and Sugiyama 2014) for details.
Assumption 5 (Smooth Density Ratio Model Assumption).
For any vector δ ∈ Rdim(θ∗) such that ‖δ‖ ≤ ‖θ∗‖ and
every t ∈ R, the following inequality holds:

Eq [exp (t (r(x,θ∗ + δ)− 1))] ≤ exp

(
10t2

d

)
,

where d is the number of changed edges.
Next, we list a few consequences of Assumption 5.

Proposition 1. For some small constants ε and any vector
δ ∈ Rdim(θ∗) such that ‖δ‖ ≤ ‖θ∗‖,

P (r(x,θ∗ + δ)− 1 ≥ ε) ≤ 2 exp

(
−dε

2

40

)
. (7)

This proposition can be immediately proved by applying
the Markov inequality and the Chernoff bounding technique.

Proposition 2. For any vector δ ∈ Rdim(θ∗) such that ‖δ‖ ≤
‖θ∗‖,

d · Varq [r(x;θ∗ + δ)] ≤ 20.

Noting Eq [r(x;θ + δ)− 1] = 0, this inequality is the
consequence of sub-Gaussianity.

Using Assumption 5, we get Proposition 1 which pro-
vides a tail probability bound of the density ratio model

2From now on, we simplify N̂(η;x
(1)
q , . . . ,x

(nq)
q ) as N̂(η).

on Q. Obtaining such an upper bound by the Hoeffding in-
equality (Hoeffding 1963) usually requires a bounded ran-
dom variable. However, for continuous distributions, the ra-
tio between two densities could be unbounded, and thus the
boundedness cannot be assumed explicitly. Assumption 5
assumes the sub-Gaussianity of r(x;θ∗+δ) onQ and guar-
antees an exponentially decaying upper-bound of approxi-
mation error of the normalization term. Please see supple-
mentary material (Liu, Suzuki, and Sugiyama 2014) for de-
tails.

Proposition 2 demonstrates the limitation of density ra-
tio estimation based algorithm: In order to guarantee the
boundedness, the product between Varq [r(x;θ∗ + δ)] and
d needs to be small. Since the density ratio model indicates
the magnitude of change between two densities, such an as-
sumption excludes the KLIEP algorithm from detecting sig-
nificant change in parameters on many edges. We discuss a
milder assumption later on.

We are now ready to state the main theorem.

Sufficient Conditions for Successful Change
Detection
The following theorem establishes sufficient conditions of
change detection in terms of parameter sparsity. Its proof
is provided in supplementary material (Liu, Suzuki, and
Sugiyama 2014). First, let’s define g(m) = log(m2+m)

(log m2+m
2 )2

which is smaller than 1 when m is reasonably large.
Theorem 1. Suppose that Assumptions 1, 2, 3, 4, and 5 as
well as mint′∈S ‖θ∗t′‖ ≥ 10

λmin

√
dλnp are satisfied, where d

is the number of changed edges. Suppose also that the regu-
larization parameter is chosen so that

8(2− α)

α

√
M1 log m2+m

2

np
≤ λnp

,

4(2− α)M1

α
min

(
‖θ∗‖√
b
, 1

)
≥ λnp

,

where M1 = λmaxb + 2, and nq ≥
M2n

2
pg(m)

d , where
M2 is some positive constant. Then there exist some con-
stants L1, K1, and K2 such that if np ≥ L1d

2 log m2+m
2 ,

with the probability at least 1 − exp
(
−K1λ

2
np
np

)
−

4 exp
(
−K2dnqλ

4
np

)
, the following properties hold:

• Unique Solution: The solution of (5) is unique
• Successful Change Detection: Ŝ = S and Ŝc = Sc.

Note that the probability of success converges to 1 as
λ2np

np → ∞ and dnqλ4np
→ ∞. The proof roughly fol-

lows the steps of previous support consistency proofs using
primal-dual witness method (Wainwright 2009). Here is a
short sketch of the proof:

• Solve (5) with extra constrains on zero parameters.

θ̂S = argmin
θS

`KLIEP

([
θS
0

])
+ λnp

∑
t′∈S
‖θt′‖;



• For all t′ ∈ S, ẑt′ = ∇‖θ̂t′‖, and let θ̂ = [θ̂S ,0];
• Obtain dual feasible sub-vectors ẑt′′ for all t′′ ∈ Sc by

using the following equality:

∇`KLIEP(θ̂) + λnp
ẑ = 0.

• Check the dual feasibility by showing maxt′′∈Sc ‖zt′′‖ <
1 with high probability under certain conditions.

There are some fundamental differences between this
work and previous proofs. First, `KLIEP analyzed in this proof
is a likelihood ratio between two densities which means that
two sets of samples are involved in this proof and we have
to consider the sparsity recovery conditions not only on one
dataset, but with respect to two different MNs. Second, we
did not explicitly limit the types of distribution for P and Q,
and the parameter of each factor θt is a vector rather than
a scalar, which gives enough freedom of modelling highly
complicated distributions. To the best of our knowledge, this
is the first sparsity recovery analysis on learning changes
from two MNs.

It is interesting to analyze the sample complexity of nq ,
which is a novel element in this research. Intuitively, one
should obtain sufficient number of samples from Q to accu-
rately approximate the normalization term. Theorem 1 states
nq should grow at least quadratically with respect to np.
Moreover, we show that as long as the density ratio model is
smooth with respect to d (Assumption 5 and Proposition 2),
such sample complexity can be relaxed by orderO(d−1)(see
supplementary material (Liu, Suzuki, and Sugiyama 2014)
for proof).

However, Assumption 5 together with Proposition 2 also
shows that the variation allowed for the density ratio model
decays as the number of changed edges d grows. This im-
plies that, if d is large, we are only able to detect weak
changes that do not cause huge fluctuations in the density
ratio model, which is rather restrictive. Below, we consider
another more relaxed scenario, where the assumption on the
smoothness of the density ratio model is irrelevant to d.

Assumption 6. For any vector δ ∈ Rdim(θ∗) such that
‖δ‖ ≤ ‖θ∗‖ and every t ∈ R, the following inequality
holds:

Eq [exp (t (r(x,θ∗ + δ)− 1))] ≤ exp
(
10t2

)
.

Corollary 1. Suppose that Assumptions 1, 2, 3, 4, and 6 are
satisfied, mint∈S ‖θ∗t ‖ satisfies the condition in Theorem 1,
and the regularization parameter is chosen so that

2− α
α

√√√√M1log m2+m
2

n
3
4
p

≤ λnp
,

4(2− α)M1

α
min

(
‖θ∗‖√
b
,

1

n
1/8
p

)
≥ λnp ,

where M1 = λmaxb+ 2, and nq ≥M2npg(m) where M2 is
some positive constant. Then there exist some constants L1

such that if np ≥ L1d
8
3

(
log m2+m

2

) 4
3

, KLIEP has the same
properties as those stated in Theorem 1.

Corollary 1 states that it is possible to consider a relaxed
version of Assumption 5 with the cost that the growth of np
with respect to d has now increased from 2 to 8

3 , while the
growth rate of nq on np has decreased from 2 to 1. This is
an encouraging result, since with mild changes on sample
complexities, we are able to consider a weaker assumption
that is irrelevant to d.

So far, we have only considered the scaling quadruple
(np, nq, d,m). However, it is also interesting to consider that
the scalability of our theorem relative to b. This is a realis-
tic scenario: It may be difficult to know the true underlying
model of MN in practice, and thus we may adopt a model
that contains many features to be “flexible enough” to de-
scribe the interactions among data. In the following corol-
lary, we restate Theorem 1 with b and a new scalar s, which
is the maximum number of non-zero elements in a pairwise
feature vector.

Corollary 2. Suppose that Assumptions 1, 2, 3, 4, and 5 are
satisfied, mint∈S ‖θ∗t ‖ satisfies the condition in Theorem 1,
and the regularization parameter is chosen so that

8(2− α)

α

√
M1s log m2+m

2

np
≤ λnp

,

4(2− α)M1

α
min

(
‖θ∗‖√
b
, 1

)
≥ λnp ,

where M1 = λmaxb + 2 and nq ≥
M2sn

2
pg
′(m)

d where M2

is some positive constant and g′(m) =
log((m2+m)(b

s))
(log m2+m

2 )2
.

Then there exist some constants L1 such that if np ≥
L1sd

2 log m2+m
2 , KLIEP has the same properties as those

stated in Theorem 1.

From Corollary 2, we can see that required np and nq for
change detection grows only linearly with s, and nq grows
mildly with

(
b
s

)
. Therefore, it is possible for one to consider

a highly flexible model in practice.

Discussions
From the above theorem, one may gather some interesting
insights into change detection based on density ratio estima-
tion.

First, the required number of samples depends solely on
d and m and is irrelevant to the number of edges of each
MN. In contrast, separate graphical structural learning meth-
ods require more samples when each MN gets denser in
terms of number of edges or neighborhood (Meinshausen
and Bühlmann 2006; Ravikumar, Wainwright, and Lafferty
2010; Raskutti et al. 2009). This establishes the superiority
of the density-ratio approach in sparse change detection be-
tween dense MNs. In other words, in order to detect sparse
changes, the density-ratio approach does not require the in-
dividual MN to be sparse.

Second, the growth of nq is also lower-bounded and
grows quadratically with respect to np. This result illustrates
the consequence of introducing a sample approximated nor-
malization term. An insufficient number of samples from Q
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Figure 1: The rate of successful change detection versus the number of samples np normalized by log m2+m
2 (a-c) and d

1
4 (d).

would lead to poor approximation of the normalization term,
and makes change detection more difficult. Fortunately, such
growth rate can be further relaxed, and with slightly in-
creased sample complexity of np.

Finally, our theorem also points out the limits of the
density-ratio approach. Since the density-ratio approach is a
conjunction of density ratio estimation and a (group) lasso
program, it also inherits the drawbacks from both algo-
rithms. Our analysis shows that the density ratio model may
not deviate too much from 1 near the mean of distributionQ.
A previous study on another density ratio estimator also has
a similar observation (Yamada et al. 2013). Furthermore, the
amount of variation allowed to diverge from 1 decreases at
speed O(d−1). Since the density ratio indicates how much
the change between P and Q is, this analysis generally says
that the density-ratio approach is not good at detecting dra-
matic changes on a large number of edges.

Experiments
One important consequence of Theorem 1 is that, for fixed d,
the number of samples np required for detecting the sparse
changes grows with log m2+m

2 . We now illustrate this effect
via experiments.

The first set of experiments are performed on four-
neighbor lattice-structured MNs. We draw samples from a
Gaussian lattice-structured MN P . Then we remove 4 edges
randomly, to construct another Gaussian MN Q. We con-
sider the scaling of m = 9, 16, 25, np ∈ [3000, 10000], and
np = nq . As suggested by Theorem 1, λnp is set to a con-

stant factor of

√
log m2+m

2

np
. The rate of successful change

detection versus the number of samples np normalized by
log m2+m

2 is plotted in Figure 1(a). Each point corresponds
to the probability of success over 20 runs. It can be seen that
KLIEP with different input dimensionsm tend to recover the
correct sparse change patterns immediately beyond a certain
critical threshold. All curves are well aligned around such a
threshold, as Theorem 1 has predicted.

We next perform experiments on the non-Gaussian distri-
bution with a diamond shape used in (Liu et al. 2014). The
MNs are constructed in the same way as the previous exper-
iment, while the samples are generated via slice sampling
(Neal 2003). Figure 1(b) shows, for the lattice grids with

dimensions m = 9, m = 16 and m = 25, the curves of
success rates are well aligned.

We then validate our theorem on a larger scale Gaussian
MNs with randomly generated structures. In this set of ex-
periments, the structure of P is generated with 20% over-
all sparsity. The structure of Q is also set by removing 10
edges randomly. We considerm = 40, 70, 100, and np = nq

scales as 1500β log m2+m
2 where β ∈ [0.1, 1]. Again, curves

of successful detection rate are aligned well on this graph, as
Theorem 1 has predicted.

Finally, we evaluate the dependency between number of
samples np = nq and number of changed edges d. Our
theory predicts np required for successful change detec-
tion grows with d. We again construct a Gaussian lattice-
structured MN P . Then we remove d edges randomly, to
construct another Gaussian MN Q. We plot the success rate
for d = 3, 4, 5, 6 versus np/d

1
4 . Results are shown on Figure

1(d). As we can see, curves are well aligned, which suggests
that np scales linearly with d

1
4 . The sufficient condition from

Theorem 1, np = Ω
(
d2 log m/2

2

)
, seems to be overly con-

servative and might be tightened under certain regimes.

Conclusion
The KLIEP algorithm was experimentally demonstrated to
be a promising method in sparse structure-change learning
between two MNs (Liu et al. 2014). In this paper, we the-
oretically established sufficient conditions for its successful
change detection. Our notable finding is that the number of
samples needed for successful change detection is not de-
pendent on the number of edges in each MN, but only on
the number of changed edges between two MNs. We also
provide numerical illustrations for our theories.
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