
1IEICE Transactions on Information and Systems,
vol.E97-D, no.6, pp.1677–1681, 2014.

Tree-Based Ensemble Multi-Task Learning Method
for Classification and Regression

Jaak Simm∗

Tallinn University of Technology, Estonia

Ildefons Magrans de Abril∗

Vrije Universiteit Brussel, Belgium

Masashi Sugiyama
Tokyo Institute of Technology, Japan.

sugi@cs.titech.ac.jp
http://sugiyama-www.cs.titech.ac.jp/˜sugi

Abstract

Multi-task learning is an important area of machine learning that tries to learn
multiple tasks simultaneously to improve the accuracy of each individual task. We
propose a new tree-based ensemble multi-task learning method for classification
and regression (MT-ExtraTrees), based on Extremely Randomized Trees. MT-
ExtraTrees is able to share data between tasks minimizing negative transfer while
keeping the ability to learn non-linear solutions and to scale well to large datasets.

Keywords

machine learing, multi-task learning, tree-based methods, ensemble methods

1 Introduction

Often, related machine learning tasks are treated separately. The methods of multi-task
learning (MTL) try to overcome this limitation by sharing data between these related
tasks where possible. We are considering the same MTL setup as a previous work [1],
where T supervised learning tasks share the same input-output space X × Y and task
distributions Pt(X,Y) are different but overlap among each other.

One of the first approaches for supervised MTL was proposed by Evgeniou and Pon-
til [1], where sharing between SVM tasks is achieved by pushing together SVM solutions
through introducing a multi-task penalty. This multi-task penalty approach has been ex-
tended to logistic regression [2] and to least-squares probabilistic classifier [3] but they do

∗Jaak Simm and Ildefons Magrans de Abril contributed equally as main authors.

Tree-Based Multi-Task Learning Method 2

not fit well for large scale use as their time complexity with dense kernels is O(N3) where
N is the number of training samples. Another significant issue is that such multi-task
penalty creates a uniform sharing between all tasks that can lead to reduced accuracy if
Pt(Y |X) of different tasks are too dissimilar. Such a situation is called negative transfer.

An approach to solve the negative transfer problem is to perform task clustering. For
example, Xue et al. [4] use Dirichlet processes to cluster logistic regression tasks. The
idea behind the clustering approach is to only share between tasks that are in the same
cluster, thus avoiding sharing between too dissimilar tasks. However, this comes at the
cost of computational speed as EM-based approaches and Bayesian sampling methods
are even more computationally extensive than the ones mentioned earlier. Compared to
task clustering approaches like the work by Xue et al. [4], tree-based approaches are more
flexible as they allow us to share between tasks in certain areas of input space X but not
in others.

To propose an MTL version of decision trees there are two approaches. First one is to
modify the splitting criterion, to include the effects of multiple tasks. This approach has
been taken by Multi-task Adaboost [5] and by multi-label boosting implemented in Multi-
boost [6]. This approach implies that all tasks share the same tree structure, which may
not be optimal from the point of view of each individual task. A second approach that
we propose consists of growing multi-task decision trees with specific branches dedicated
to subsets of tasks. A suitable implementation of this idea should minimize the negative
transfer because the decision in each node has been learned only from samples of a task
subset with similar Pt(Y |X), instead of finding a decision which minimizes the penalty
over all tasks.

In this paper we propose an MTL extension to a binary decision tree based ensemble
method called Extremely Randomized Trees (ExtraTrees) [7]. The initial motivation for
using ExtraTrees as a base method is its ability to learn non-linear solutions and to
scale well to large datasets (up to 100,000 training samples or even millions of samples
if parallelized over many computation servers). Our implementation is freely available.
To the best of our knowledge, it is the first multi-task binary classification and regression
package in R1.

2 ExtraTrees

ExtraTrees [7] is an ensemble learning method that builds upon a large number of binary
decision trees (e.g., Ntree = 500). All trees are built independently of each other, thus,
it is straightforward to parallelize to multiple computing CPUs or servers. We assume
a D-dimensional input space, x ∈ RD, and either binary, y ∈ {−1, 1}, or real valued
outputs, y ∈ R. Let {(xn, yn)}n∈I be the training data in a node of one of the trees (I is
the set of sample indexes of that node), then the tree building algorithm proceeds as:

1. Randomly chooses K input dimensions. For each selected dimension d, it chooses a
random binary splitting value c, denoting data points n ∈ I that have xn,d < c by

1URL to R package: http://cran.r-project.org/web/packages/extraTrees/

Tree-Based Multi-Task Learning Method 3

L (left) and those with xn,d ≥ c by R (right). This step is the only difference with
Random Forest [8] which uses an optimal splitting criteria for value c. Therefore,
our proposed multi-task method could be also implemented in Random Forest.

2. It computes the score for each dimension d and its splitting value as follows:

sd = |L|fscore(yL) + |R|fscore(yR), (1)

where |L| (|R|) is the number of data points assigned to left (right) branch, yL (yR)
denotes the y values in the left (right) branch. For binary classification function
fscore is Gini index calculated as

fscore(y) = 1− (p2−1 + p21), (2)

where p−1 is the proportion of samples with y = −1 and respectively, p1 is the
proportion of y = 1. For regression, fscore is negative of variance:

fscore(y) = − 1

n

n∑
i=1

(yi −mean(y))2, (3)

where n is the size of y and mean(y) =
1

n

∑
yi .

3. It chooses the dimension with the highest score sd, stores its split in the node and
recursively calls these 3 steps on the two subtrees made out of L and R, respec-
tively. ExtraTrees recursively builds every tree until a minimum node size (Nleaf) is
reached. Then, a leaf node is built and it stores the most frequent value of outputs
in the case of classification and the average value in the case of regression.

Training of a tree takes O(N logN) time and space where N is the number of samples.
For prediction, all the trees have to be traversed until the leaf nodes, requiring O(logN)
computation per tree.

3 MT-ExtraTrees

As explained in the introduction, we propose growing multi-task decision trees with spe-
cific branches dedicated to subsets of tasks. One way of achieving that goal is adding
one new splitting criterion able to divide samples according to tasks. This new split will
create two new branches and each branch will contain samples corresponding to separated
task subsets.

A simple and straightforward way to incorporate task id information to ExtraTrees
would be to add T binary variables to all training and testing samples such that the tth
new variables is equal to 1 iff a sample belongs to task t. By doing so the ExtraTrees
method can grow trees with branches dedicated to single tasks. This would certainly limit

Tree-Based Multi-Task Learning Method 4

negative transfer between the specific task and the rest. However, the task-specific branch
would also lose the possibility to capture relevant information from other tasks.

To cope with this limitation, we propose growing multi-task decision trees with specific
branches dedicated to subsets of tasks. One way of achieving that goal is adding one new
splitting criterion able to divide samples according to tasks. This new split will create
two new branches and each branch will contain samples corresponding to separated task
subsets.

To accomplish the splitting by tasks, we modified the step 1 so that in addition to
ordinary feature splits, the method can also split samples according to their task. A new
parameter, λ ∈ [0, 1], controls the probability of evaluating a task-wise split at the current
decision node. The higher the value of λ is, the more likely that the method generates a
larger number of sub-branches dedicated to particular subsets of tasks. More precisely,
λ = 0 means that we will never attempt to create a task-wise split in our decision trees,
and λ = 1 means that we will always consider whether the task-wise split is better option
than K ordinary feature-wise splits. It’s interesting to mention that when λ = 0, the new
MT-ExtraTrees is equivalent to the original ExtraTrees with all data from all tasks pooled
together. A nice capability of the method is that it simplifies the selection of a good λ
because even when λ is very high, the method limits the excessive task- wise splitting as
it always compares against other feature-wise splits. This will be shown in the evaluation
section.

When a task wise split is evaluated, for each task t, the method computes a task
feature ϕt. In the case of binary classification, ϕt measures the local sample probability
Pt(Y = 1|X). In the case of regression, ϕt measures the local sample expected value
Et[Y |X]. In detail, let I denote the set of sample indexes at the node and It denote
the set of sample indexes of the task t at the node. Task features for classification are
calculated by

ϕt =
Nt,y=1 + αγclass

|It|+ α
, (4)

and for regression by

ϕt =

∑
n∈It yn + αγregr

|It|+ α
, (5)

where α is the regularization parameter (with default value 1), Nt,y=1 is the number of
samples of class 1 in task t at the current node and γregr and γclass are multi-task priors
that average data of all tasks in the current node:

γclass =
1

|I|
∑
t

Nt,y=1, (6)

γregr =
1

|I|
∑
n∈I

yn. (7)

After calculating all ϕt the method chooses a random value c ∈ (mint ϕt,maxt ϕt) and
splits the samples according to the task split defined by c. After that, MT-ExtraTrees
follows steps 2 and 3 as in ExtraTrees (see Section 2).

Tree-Based Multi-Task Learning Method 5

4 Experimental results

We run two experiments on well-known multi-task learning benchmark datasets to show
the performance and behavior of our method in both binary classification and regression
settings.

Landmine detection problem: The main objective of this subsection is to evaluate
the performance of the proposed MT-ExtraTrees in the setting of multi-task binary clas-
sification. MT-ExtraTrees is compared to basic ExtraTrees, to ExtraTrees with added T
binary variables representing the task ids and to Multi-task Adaboost using the Multi-
boost implementation [6]. The latter is a multi-label classification method by Schapire and
Singer [9] encoded as a multi-task classification following the guidelines of the Multiboost
reference paper [6].

The Landmine detection problem dataset was collected from various landmine fields. It
consists of 29 tasks and each task contains between 450 and 700 samples represented by 9
features. The feature vector was extracted from radar images and it is built concatenating
four moment based features, three correlation-based features, one energy ratio feature and
one spatial variance.2

The same percentage of samples from each task is used to train the classification
models. The performance is measured by average AUC on 100 runs. Figure 1(a) shows
the performance as a function of the training percentage for different models. The lower
curve corresponds to the basic ExtraTrees model (=MT-ExtraTrees with λ = 0) where we
pool together all samples from all tasks. The following curve drawn as a plain line is the
performance curve corresponding to the basic ExtraTrees model again pooling together all
samples from all tasks with added T binary variables representing the task ids. Finally, we
have 5 additional curves always in top of the previous ones that show the performance of
the MT-ExtraTrees model with different λs bigger than 0. We can observe how, for all λs,
our multi-task model always outperforms the basic ExtraTrees models. It is interesting
also to comment the experimental results obtained with the library multi-boost [6]. The
performance was measured as the average AUC of the method on 10 runs using 75% of
samples from all tasks for training the models. In this case, the average AUC is 0.743,
which clearly underperforms our method and even the basic ExtraTrees models.

Figure 1(b) is a more detailed plot of the model behavior as a function λ. Each point
of the curve corresponds to the average AUC on 100 runs using 75% of samples from all
tasks for training the models. We can observe that for any λ between 0.125 and 0.6, the
average AUC is bigger than 0.77 while the performance of the ExtraTrees with added T
binary variables representing the task ids has an average performance just above 0.76.
A large continuous range of suitable λs is an indication that our method can provide an
enhanced performance with little additional model selection complexity.

School data from the Inner London Education: The main objective of this
subsection is to evaluate the performance of the proposed MT-ExtraTrees in the setting
of multi-task regression. MT-ExtraTrees is compared to basic ExtraTrees, to ExtraTrees
with added T binary variables representing the task ids and to Regularized Multi-task

2http://www.ee.duke.edu/~lcarin/LandmineData.zip

Tree-Based Multi-Task Learning Method 6

0.71

0.73

0.75

0.77

0.25 0.50 0.75
% of training samples

A
U

C

lambda
0 (=basic ExtraTrees)

0.1

0.2

0.3

0.4

0.5
basic ExtraTrees
with task_id features

(a) AUC as a function of training per-
centage for Landmine dataset.

0.75

0.76

0.77

0.78

0.00 0.25 0.50 0.75 1.00
lambda

A
U
C

(b) AUC as a function of λ for Landmine dataset.
Solid bold line shows the performance of Extra-
Trees with added T binary variables representing
the task ids.

35

36

37

38

0.00 0.25 0.50 0.75 1.00
lambda

P
er

ce
n
ta

ge
 o

f
ex

p
la

in
ed

 v
ar

ia
n
ce

(c) Explained variance as function of λ for the
School dataset. Solid bold line shows the per-
formance of ExtraTrees with added T binary
variables representing the task ids. Dash line
shows the state-of-the art reference performance
reported in [1].

Figure 1: Experimental results of MT-ExtraTrees.

Tree-Based Multi-Task Learning Method 7

method [1], which is state-of-the-art multi-task learning method for regression.
The School dataset consists of examination records of 15362 students from 139 sec-

ondary schools. Each record consists of 8 features and the corresponding examination
score. The features are: year of the exam (1985, 1986 or 1987), school code (139),
percentage of students eligible for free school meals, percentage of students in Verbal
Reasoning (VR) band one, gender of the student, VR band of student, ethnic group of
student, school gender and school denomination (Maintained, Church of England, Roman
Catholic).3 To compare our results with Evgeniou and Pontil [1], we used the same setup
described in the paper [10]: we converted categorical features into binary vectors, we used
10 random splits of the data, we trained our models with 75% of all the samples from each
school/task and we used the percentage of explained variance4 as performance measure.

As a reference we computed the average performance using a basic ExtraTrees model
pooling together all samples from all tasks/schools with added T binary variables rep-
resenting the task ids, showing a final performance of 35.5%. Figure 1(c) shows the
performance as a function λ. We can observe that for any λ bigger than 0.125, the multi-
task model always outperforms the basic ExtraTrees model with a top performance over
38%. It is also a performance improvement with respect to the performance reported by
Evgeniou and Pontil [1] of 34.37%.

As we discussed in Section 3 we can observe both in Figure 1(b) and in Figure 1(c) that
even when the values of λ are high, MT-ExtraTrees outperforms basic ExtraTrees and
state-of-the-art methods. This is an indication that our method can provide an enhanced
performance with little additional model selection complexity.

5 Conclusions

We have introduced a new multi-task learning method MT-ExtraTrees based on a binary
decision tree ensemble method. Our implementation is able to grow trees that contain
branches uniquely dedicated to particular subsets of tasks with similar behavior. Conse-
quently, this facilitates sharing among similar tasks while minimizing negative transfer.
We have implemented a binary classification and regression open source library in R and
evaluated it with well-known benchmark datasets for multi-task binary classification and
regression. Results show an enhanced performance with respect to the base method and
state-of-the-art methods.

Acknowledgments

Ildefons Magrans de Abril was supported by EU FP7 framework’s Marie Curie Industry-
Academia Partnerships and Pathways (IAPP) project SCANERGY, under grant agree-
ment number 324321. Masashi Sugiyama was supported by KAKENHI 23300069 and
AOARD.

3http://www.bristol.ac.uk/cmm/learning/support/datasets/ilea567.zip
4Total variance minus the sum-squared error on the test set as a percentage of the total data variance

Tree-Based Multi-Task Learning Method 8

References

[1] T. Evgeniou and M. Pontil, “Regularized multi–task learning,” Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, New York, NY, USA, pp.109–117, ACM, 2004.

[2] A. Lapedriza, D. Masip, and J. Vitrià, “A hierarchical approach for multi-task logistic
regression,” Proceedings of the 3rd Iberian Conference on Pattern Recognition and
Image Analysis, Part II, Berlin, Germany, pp.258–265, Springer-Verlag, 2007.

[3] J. Simm, M. Sugiyama, and T. Kato, “Computationally efficient multi-task learn-
ing with least-squares probabilistic classifiers,” Information and Media Technologies,
vol.6, no.2, pp.508–515, 2011.

[4] Y. Xue, X. Liao, L. Carin, and B. Krishnapuram, “Multi-task learning for classifi-
cation with Dirichlet process priors,” Journal of Machine Learning Research, vol.8,
pp.35–63, 2007.

[5] J.B. Faddoul, B. Chidlovskii, R. Gilleron, and F. Torre, “Learning multiple tasks with
boosted decision trees,” in Machine Learning and Knowledge Discovery in Databases,
pp.681–696, Springer, 2012.

[6] D. Benbouzid, R. Busa-Fekete, N. Casagrande, F.D. Collin, and B. Kégl, “Multi-
boost: a multi-purpose boosting package,” The Journal of Machine Learning Re-
search, vol.13, pp.549–553, 2012.

[7] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Machine learn-
ing, vol.63, no.1, pp.3–42, 2006.

[8] L. Breiman, “Random forests,” Machine learning, vol.45, no.1, pp.5–32, 2001.

[9] R.E. Schapire and Y. Singer, “Improved boosting algorithms using confidence-rated
predictions,” Machine learning, vol.37, no.3, pp.297–336, 1999.

[10] B. Bakker and T. Heskes, “Task clustering and gating for Bayesian multitask learn-
ing,” Journal of Machine Learning Research, vol.4, pp.83–99, 2003.

