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Abstract
We propose a general information-theoretic approach to semi-supervised metric
learning called Seraph (SEmi-supervised metRic leArning Paradigm with Hyper-
sparsity) that does not rely upon the manifold assumption. Given the probability
parameterized by a Mahalanobis distance, we maximize its entropy on labeled data
and minimize its entropy on unlabeled data following entropy regularization. For
metric learning, entropy regularization improves manifold regularization by consid-
ering the dissimilarity information of unlabeled data in the unsupervised part, and
hence it allows the supervised and unsupervised parts to be integrated in a natural
and meaningful way. Moreover, we regularize Seraph by trace-norm regularization
to encourage low-dimensional projections associated with the distance metric. The
non-convex optimization problem of Seraph could be solved efficiently and stably
by either a gradient projection algorithm or an EM-like iterative algorithm whose
M-step is convex. Experiments demonstrate that Seraph compares favorably with
many well-known metric learning methods, and the learned Mahalanobis distance
possesses high discriminability even under noisy environments.
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1 Introduction

How to learn a good distance metric for the input data domain is a crucial issue for many
distance-based learning algorithms. The goal of metric learning is to find a new metric
under which “similar” data are close and “dissimilar” data are far apart (Xing et al.,
2003). The great majority of metric learning methods developed in the last decade fall
into three types:

(a) Supervised type requiring class labels (e.g., Chiaromonte and Cook, 2002; Sugiyama,
2007; Fukumizu et al., 2009).1 Two data points with the same label are regarded
similar, and those with different labels are regarded dissimilar;

(b) Supervised type requiring weak labels, that is, {±1}-valued labels that indicate the
similarity and dissimilarity of data pairs directly (e.g., Xing et al., 2003; Goldberger
et al., 2005; Weinberger et al., 2006; Globerson and Roweis, 2006; Torresani and
Lee, 2007; Davis et al., 2007). See the illustration in Figure 1;

(c) Unsupervised type that requires no label information (e.g., Roweis and Saul, 2000;
Tenenbaum et al., 2000; Belkin and Niyogi, 2002). Unlike previous types, the sim-
ilarity and dissimilarity here are extracted from data instead of being given as su-
pervision.

The second type has been extensively studied, since weak labels are much cheaper than
class labels when the number of classes is fairly large. That being said, supervised metric
learning based on weak labels still has a strict limitation: Algorithms of this type need
each data point be involved in at least one weak label, otherwise these algorithms cannot
see that data point as it never exists. This limitation is often problematic for real-world
applications and needs to be fixed.

Based on the belief that preserving the geometric structure of all labeled and unla-
beled data in an unsupervised manner can be better than strongly relying on the limited
labeled data, semi-supervised metric learning has emerged. To the best of our knowledge,
all previous semi-supervised methods that extend types (a) and (b) employ off-the-shelf
unsupervised techniques in type (c). For example,

• Principal component analysis (e.g., Yang et al., 2006; Sugiyama et al., 2010);

• Manifold regularization or embedding (e.g., Hoi et al., 2008; Baghshah and Shouraki,
2009; Zha et al., 2009; Liu et al., 2010).

More specifically, they rely upon the manifold assumption and implement the following:

• If two data points are close under the original metric, pull them to make them not
far away under the new metric;

• If two data points are far away under the original metric, do nothing.

1Learning a Mahalanobis distance (which will be defined in Eq. (1)) in the scenario of metric learning
is equivalent to learning a projection in the scenario of dimensionality reduction, since the Mahalanobis
distance of the original data equals the Euclidean distance of the projected data.
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Figure 1: Illustration of supervised metric learning based on weak labels. In this figure,
we have three classes, each with two labeled data. The goal is to find a new metric under
which data in the same class are close and data from different classes are far apart. Note
that the original class labels will not be revealed to metric learning algorithms, and we
show the projected data here, since the Mahalanobis distance of the original data equals
the Euclidean distance of the projected data.

In the second case, we should not push the two data points to make them far away under
the new metric, since they may be connected by the data manifold and should be close
under the new metric even though they are originally far away. By implementing these
two cases, those semi-supervised methods successfully extract the similarity information
of unlabeled data.

However, there remain two issues. First, those methods ignore the dissimilarity infor-
mation of unlabeled data. This can be a huge waste of information, since most unlabeled
data pairs would be dissimilar if the number of underlying classes is large and the classes
are balanced. To this end, an appealing semi-supervised metric learning method should
be able to make use of the dissimilarity information of unlabeled data. Second, similarity
of unlabeled data extracted by those methods is measured by closeness under the original
metric, and it is inconsistent with similarity of labeled data. Recall that metric learning
aims at finding a new metric, and weak labels indicating similar but far away data pairs
are in principle the most informative ones. Therefore, under the original metric, closeness
is not the reason for similarity of labeled data, whereas it is the reason for similarity of
unlabeled data. In contrast, similarity and closeness generally imply each other for both
labeled and unlabeled data under the new metric. To this end, an appealing method
should focus on the new metric when extracting the similarity information of unlabeled
data. As a matter of fact, the unsupervised parts of the existing methods that rely upon
the manifold assumption and implement the aforementioned two cases are inconsistent
with their supervised parts in terms of these two issues. Simply putting them together
works in practice, but this paradigm is conceptually neither natural nor unified.

In this paper, we propose a general information-theoretic approach to semi-supervised
metric learning called Seraph (SEmi-supervised metRic leArning Paradigm with Hyper-
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sparsity), in order to address these issues. It extracts not only the similarity information
but also the dissimilarity information of unlabeled data, and to do so it accesses the new
metric rather than the original one. Our idea is to optimize a new Mahalanobis distance
metric through optimizing a conditional probability parameterized by that metric. We
maximize the entropy of this probability on labeled data pairs, and minimize the entropy
of this probability on unlabeled data pairs following entropy regularization (Grandvalet
and Bengio, 2005), which can achieve the sparsity of the posterior distribution (Graça
et al., 2009; Gillenwater et al., 2011), i.e., unlabeled data pairs can be classified with high
confidence. Furthermore, we employ mixed-norm regularization (Argyriou et al., 2007) to
encourage the sparsity of projection matrices associated with the new metric in terms of
their singular values (Ying et al., 2009), and the new metric can carry out dimensionality
reduction implicitly and adaptively. Unifying the posterior sparsity and the projection
sparsity brings to us the hyper-sparsity. Thanks to this hyper-sparsity, the new metric
learned by Seraph possesses high discriminability even under noisy environments.

Our contributions can be summarized as three folds. Firstly, we formulate supervised
metric learning based on weak labels as an instance of the generalized maximum entropy
distribution estimation (Dud́ık and Schapire, 2006). Secondly, we propose an extension of
this estimation to semi-supervised metric learning via entropy regularization (Grandvalet
and Bengio, 2005). It is able to consider the dissimilarity information of unlabeled data
based on the Mahalanobis distance being learned. Thirdly, we develop two ways to solve
the non-convex optimization problem involved in this extension, namely, a direct gradient
projection algorithm and an indirect EM-like iterative algorithm.

The rest of this paper is organized as follows. The model of Seraph is formulated in
Section 2, and then two algorithms are developed in Section 3 to solve the optimization
problem involved in the model. In Section 4, we discuss three sparsity mentioned above
and two additional justifications of the model. A comparison with related works is made
in Section 5. Experimental results are reported in Section 6. Then in Section 7, we offer
two extensions to Seraph. Finally, we give concluding remarks and future prospects in
Section 8.

2 SERAPH, the Model

In this section, we formulate the model of Seraph. We first propose the supervised part,
and then introduce its regularization terms.

2.1 Problem setting

Suppose that we have a training set X = {xi | xi ∈ Rm}ni=1 which contains n points each
with m features. Let the set of similar data pairs be

S = {(xi, xj) | xi and xj are similar},
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and the set of dissimilar data pairs be

D = {(xi, xj) | xi and xj are dissimilar}.

With some abuse of terminology, we refer to S ∪ D as the labeled data, and

U = {(xi, xj) | i 6= j, (xi, xj) 6∈ S ∪ D}

as the unlabeled data. A weak label yi,j is assigned to (xi, xj) such that

yi,j =


+1 if (xi, xj) ∈ S,
−1 if (xi, xj) ∈ D,
undefiend if (xi, xj) ∈ U .

We abbreviate
∑

(xi,xj)∈S∪D,
∑

(xi,xj)∈U and
∑

y∈{−1,+1} to
∑
S∪D,

∑
U and

∑
y respectively

for simplicity. Consider learning a Mahalanobis distance metric for x, x′ ∈ Rm of the form

d(x, x′) = ‖x− x′‖A =
√

(x− x′)>A(x− x′), (1)

where > is the transpose operator, and A ∈ Rm×m is a symmetric positive semi-definite
matrix to be learned2. The probability of labeling (x, x′) ∈ Rm × Rm with y = ±1 is
denoted by pA(y | x, x′) that is explicitly parameterized by the matrix A. When the pair
(x, x′) comes from S ∪ D ∪ U , pA(y | xi, xj) is abbreviated into pAi,j(y).

2.2 Basic model

To begin with, we derive a probabilistic model to investigate the conditional probability
of y = ±1 given (x, x′) ∈ Rm × Rm. We resort to a parametric form of pA(y | x, x′) and
we will focus on this form as it is optimal in the following sense.

The maximum entropy principle (Jaynes, 1957; Berger et al., 1996) suggests us to
choose the probability distribution with the maximum entropy out of all probability dis-
tributions that match the data moments. Let3

H(pAi,j) = −
∑

y
pAi,j(y) ln pAi,j(y)

be the entropy of the conditional probability pAi,j(y), and

f(x, x′, y;A) : Rm × Rm × {+1,−1} 7→ R
2In the rest of this paper, the matrix A is always assumed to be symmetric and positive semi-definite

if it is an optimization variable, and the constraints A = A> and A � 0 will not be explicitly written for
convenience.

3Throughout this paper, we adopt that 0 ln 0 = limx→0+ x lnx = 0.
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be a feature function that is convex with respect to A, then the constrained optimization
problem is

max
A,pAi,j ,ξ

∑
S∪D

H(pAi,j)−
1

2γ
ξ2

s.t.
∣∣∣∑

S∪D
EpAi,j [f(xi, xj, y;A)]−

∑
S∪D

f(xi, xj, yi,j;A)
∣∣∣ ≤ ξ,

(2)

where ξ is a slack variable and γ > 0 is a regularization parameter. After the introduction
of ξ, distributions are allowed to match two data moments in a way that is not strictly
exact. The penalty ξ2/(2γ) in the objective function presumes the Gaussian prior of the
expected data moment ∑

S∪D

EpAi,j [f(xi, xj, y;A)]

from the empirical data moment ∑
S∪D

f(xi, xj, yi,j;A),

which is consistent with the generalized maximum entropy principle (Dud́ık and Schapire,
2006). Please see Section 4.2 for the alternative explanation of optimization (2) in the
sense of the generalized maximum entropy principle, particularly the necessity of intro-
ducing the slack variable ξ from a theoretical point of view.

Theorem 1. The primal solution p∗A(y | x, x′) to optimization (2) can be given in terms
of the dual solution (A∗, κ∗) by

p∗A(y | x, x′) =
exp(κ∗f(x, x′, y;A∗))

Z(x, x′;A∗, κ∗)
, (3)

where
Z(x, x′;A, κ) =

∑
y′

exp(κf(x, x′, y′;A))

is the partition function, and (A∗, κ∗) can be obtained by solving the dual problem

min
A,κ

∑
S∪D

lnZ(xi, xj;A, κ)−
∑

S∪D
κf(xi, xj, yi,j;A) +

γ

2
κ2. (4)

Let pA(y | x, x′) take the form of p∗A(y | x, x′) in (3). Define the regularized log-likelihood
function on labeled data (i.e., on observed weak labels) as

L1(A, κ) =
∑

S∪D
ln pAi,j(yi,j)−

γ

2
κ2.

Then for supervised metric learning, the regularized maximum log-likelihood estimation

max
A,κ
L1(A, κ)

and the generalized maximum entropy estimation (2) are equivalent.4

4The proofs of all theorems are in Appendix A.
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When considering f(x, x′, y;A) that should take moments about the metric informa-
tion into account, we propose5

f(x, x′, y;A, η) = −y
2

(‖x− x′‖2A − η), (5)

where η > 0 is a hyperparameter that serves as the threshold to separate the similar and
dissimilar data pairs in S and D under the new metric d(x, x′). Now the probabilistic
model (3) becomes

pA(y | x, x′) =
1

1 + exp(κy(‖x− x′‖2A − η))
.

For the optimal solution (p∗A, A∗, κ∗) and reasonable η, we hope for two properties:

(i) The feature function can indicate the correctness of the observed weak labels, i.e.,

f(xi, xj, yi,j;A
∗, η) = −yi,j(‖xi − xj‖2A∗ − η)/2 > 0;

(ii) The probabilistic model can correctly classify the observed weak labels, i.e.,

p∗A(yi,j | xi, xj) = 1/
(
1 + exp(κ∗yi,j(‖xi − x′j‖2A∗ − η))

)
> 1/2.

Therefore, there must be κ∗ > 0.
Note that the generalized maximum entropy estimation for supervised metric learning

is a general framework, and it is not limited to supervised metric learning based on weak
labels. Although we use (5) as our feature function, other feature functions emphasizing
different perspectives of the metric information are possible. For instance, a local distance
metric feature function

f(x, x′, y;A) = −y
2

(‖x− x′‖2A − ‖x− x′‖22)

replaces the global threshold η with a local one ‖x − x′‖22 and focuses on the changes of
pairwise distances. In fact, optimization (2) can even be applied to other problem settings
such as multi-label metric learning with a global distance metric feature function

f(x, x′, y, y′;A, η) =

(
1

2
− 〈y, y′〉
‖y‖2‖y′‖2

)
(‖x− x′‖2A − η),

where the labels y and y′ are binary-valued vectors.

5Note that in Niu et al. (2012) the feature function is f(x, x′, y;A, η) = y(‖x − x′‖2A − η)/2 that has
the opposite sign with the feature function in Eq. (5). However, they are equivalent feature functions,
since the signs of κ∗ are also opposite here and there.
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2.3 Regularization

In this subsection, we extend L1(A, κ) defined above to semi-supervised metric learning
via entropy regularization, and further regularize it by trace-norm regularization.

Our unsupervised part extracts both the similarity and dissimilarity information of
unlabeled data according to the new Mahalanobis distance metric d(x, x′). In order to do
so, it follows the minimum entropy principle (Grandvalet and Bengio, 2005), and hence
pAi,j(y) should have low entropy (which in turn means low uncertainty) for unlabeled data
(xi, xj) ∈ U . Generally speaking, the resultant discriminative probabilistic models prefer
peaked distributions on unlabeled data such that unlabeled data can be classified with
high confidence, which can carry out a probabilistic low-density separation. Subsequently,
according to Grandvalet and Bengio (2005), our optimization becomes

max
A,κ
L2(A, κ) =

∑
S∪D

ln pAi,j(yi,j) + µ
∑

U

∑
y
pAi,j(y) ln pAi,j(y)− γ

2
κ2,

where µ ≥ 0 is a regularization parameter.
In addition, we hope for the dimensionality reduction ability by encouraging low-rank

projection matrices associated with A. It would be helpful in dealing with corrupted data
or data distributed intrinsically in a low-dimensional subspace. It is known that the trace
is a convex relaxation of the rank for positive semi-definite matrices, so we revise our
optimization problem into

max
A,κ
L(A, κ) =

∑
S∪D

ln pAi,j(yi,j) + µ
∑

U

∑
y
pAi,j(y) ln pAi,j(y)− γ

2
κ2 − λ tr(A), (6)

where tr(A) is the trace of A, and λ ≥ 0 is a regularization parameter.
Optimization problem (6) is the final model of Seraph. We say that it is equipped

with the hyper-sparsity when both µ and λ are positive and hence both regularization
terms are active. The hyper-sparsity, as well as the posterior and projection sparsity, will
be discussed in Section 4.1. Moreover, Seraph possesses standard kernel and manifold
extensions, and we will explain them in Sections 7.1 and 7.2 respectively.

3 SERAPH, the Algorithm

In this section, we reduce optimization (6) to a form that is easy to handle, and develop
two practical algorithms for solving the reduced optimization.

3.1 Reduction

While optimization (6) involves a dual variable κ, we would like to focus on the variable
A just as many previous metric learning methods. The theorem below guarantees that
we can eliminate κ from (6) to get an equivalent but simpler optimization, thanks to the
fact that we use a single feature function (5) in optimization (2).
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Theorem 2. Define the reduced optimization problem as6

max
A
L̂(A) =

∑
S∪D

ln p̂Ai,j(yi,j) + µ
∑

U

∑
y
p̂Ai,j(y) ln p̂Ai,j(y)− λ̂ tr(A), (7)

where the reduced probabilistic model is

p̂A(y | x, x′) =
1

1 + exp(y(‖x− x′‖2A − η̂))
. (8)

Let (A∗, κ∗) be a locally optimal solution to (6). Then, there exist well-defined η̂ and λ̂,
such that Â = κ∗A∗ is also a locally optimal solution to (7) and it satisfies

(i) d(x, x′) parameterized by Â is equivalent to d(x, x′) parameterized by A∗, i.e.,

∀x, x′ ∈ Rm,
d(x, x′; Â)

d(x, x′;A∗)
= Const.; (9)

(ii) p̂A(y | x, x′) parameterized by Â and η̂ is identical to the original pA(y | x, x′)
parameterized by A∗, κ∗ and η, i.e.,

∀x, x′ ∈ Rm, y ∈ {−1,+1}, p̂A(y | x, x′; Â, η̂) = pA(y | x, x′;A∗, κ∗, η). (10)

Remark 1. After the reduction of Theorem 2, γ has been dropped, η and λ have been
modified, but the regularization parameter µ remains the same, which means that the
tradeoff between the supervised and unsupervised parts has not been affected.

3.2 Two algorithms

There are several approaches for solving optimization (7). For example, gradient projec-
tion and expectation maximization (cf. Grandvalet and Bengio, 2006, pp. 155–158). By
no means an approach can always be better than another for non-convex optimizations.
Hence, we explore both of them and find they can solve (7) efficiently and stably.

Our first solver for (7) is a direct gradient projection algorithm (Polyak, 1967). The
gradient matrix ∇L(A) is simply

∇L(A) = −
∑

S∪D
yi,j(1− pAi,j(yi,j))(xi − xj)(xi − xj)>

− µ
∑

U

∑
y
y(1 + ln pAi,j(y))pAi,j(y)(1− pAi,j(y))(xi − xj)(xi − xj)>− λIm.

(11)

The projection of the symmetric matrix resulted from a gradient update back to the cone
of symmetric positive semi-definite matrices includes eigen-decomposing that symmetric
matrix and recovering it from its positive eigenvalues and eigenvectors associated with

6The new functions and parameters are denoted by ·̂ within this theorem for the sake of clarity.
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those eigenvalues. Although this algorithm must converge, many heuristic tricks are nec-
essary in order to find a reasonable locally optimal solution to (7) since the unsupervised
part is highly non-convex.

Our second solver for (7) is an indirect EM-like iterative algorithm. It runs as follows.
In the beginning, we initialize a probability q(y | xi, xj) for each pair (xi, xj) ∈ U . The
initial solution in our current implementation is q(y = −1 | xi, xj) = 1, which means that
at the beginning we treat all unlabeled pairs as dissimilar pairs. Then, the M-step and
the E-step get executed repeatedly until certain stopping conditions are satisfied. At the
t-th M-step, we find new metric A(t) through a surrogate optimization:

max
A
F(A) =

∑
S∪D

ln pAi,j(yi,j) + µ
∑

U

∑
y
q(y | xi, xj) ln pAi,j(y)− λ tr(A), (12)

where q(y | xi, xj) is generated in the last E-step. Since the feature function f(x, x′, y;A)
is convex with respect to A, the objective function F(A) is concave with respect to A and
optimization (12) is convex according to Boyd and Vandenberghe (2004, p. 74). Thus, we
could solve optimization (12) using the gradient projection method without worry about
local maxima, where the gradient matrix ∇F(A) is

∇F(A) = −
∑

S∪D
yi,j(1− pAi,j(yi,j))(xi − xj)(xi − xj)>

− µ
∑

U

∑
y
yq(y | xi, xj)(1− pAi,j(y))(xi − xj)(xi − xj)>− λIm.

(13)

At the t-th E-step, we update q(y | xi, xj) for each pair (xi, xj) ∈ U as

q(y | xi, xj) =

(
pAi,j(y)

)1+µ/t∑
y′

(
pAi,j(y

′)
)1+µ/t , (14)

where pAi,j(y) is parameterized by A(t) found in the last M-step. Although this algorithm
may not converge, it works fairly well in practice. No matter how we design the M-step,
it is insensitive to the step size of the gradient update and it gives a deterministic solution
after fixing the initial solution and the stopping conditions. In other words, the EM-like
iterative algorithm can easily be de-randomized by the initial solution and the stopping
conditions, which is a nice algorithmic property for non-convex optimizations.

For the details of our implementation, please see Appendix B.

3.3 Theoretical analyses

The gradient projection and EM-like algorithms developed above are able to solve opti-
mization (7) efficiently and stably. Let us figure out their asymptotic time complexities.
Generally speaking, the asymptotic time complexity of both algorithms is O(n2m+m3),
where n is the number of data and m is the number of features (recall that the training
set X contains n points each with m features). Specifically, each iteration of the gradient
projection algorithm consumes O(n2m+nm2) for the gradient update and O(m3) for the
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projection, which has an asymptotic time complexity O(n2m+m3), since O(nm2) could
never dominate O(n2m) and O(m3) simultaneously. Additionally, it is common to set in
advance a maximum number of iterations TGP for such a non-convex optimization solver,
and the overall asymptotic time complexity of the gradient projection algorithm is

O
(
(n2m+m3)TGP

)
.

For the EM-like iterative algorithm, each iteration of the M-step is same as the gradient
projection algorithm, and each E-step costs O(n2) which is negligible compared with the
computational complexity of the whole M-step. As a consequence, the overall asymptotic
time complexity of the EM-like algorithm is

O
(
(n2m+m3)T ′GPTEM

)
,

where T ′GP is the maximum number of iterations of the M-step and TEM is the maximum
number of iterations of the EM-like algorithm.

It is obvious that which algorithm is empirically faster depends primarily on which of
TGP or T ′GPTEM is smaller. In fact, the gradient projection method for (12) is much easier
than for (7) since (12) is a convex optimization, which means the M-step of the EM-like
algorithm itself is much easier than the gradient projection algorithm. Furthermore, it is
unnecessary to solve the M-step exactly in such an EM-like algorithm. As a result, T ′GP

is supposed to be significantly smaller than TGP. On the other hand, the temporary A(t)

of EM-like iterations make up a deterministic sequence (A(1), . . . , A(t), . . .) for fixed initial
q(y | xi, xj), and a small TEM is usually enough for finding a reasonable solution. To sum
up, we can set T ′GPTEM to be smaller than TGP in practice, and then expect the EM-like
algorithm to be faster than the gradient projection algorithm with comparable qualities
of the learned distance metrics.

The gradient projection and EM-like algorithms are not only computationally efficient
but also computationally stable. The following theorem shows that the gradient matrices
of L(A) and F(A) given in Eqs. (11) and (13) are uniformly bounded, regardless of the
scale of A, i.e., the magnitude of tr(A). It also implies that compared with maximizing
L(A), maximizing F(A) should be more stable even without considering that F(A) is a
concave function.

Theorem 3. The objective functions L(A) and F(A) of optimizations (7) and (12) are
Lipschitz continuous, and the best Lipschitz constants with respect to the Frobenius norm
‖ · ‖Fro satisfy

Lip‖·‖Fro(L) ≤ (#S + #D + (1 + ln 2)µ#U)(diam(X ))2 + λm, (15)

Lip‖·‖Fro(F) ≤ (#S + #D + µ#U)(diam(X ))2 + λm, (16)

where diam(X ) = maxxi,xj∈X ‖xi − xj‖2 is the diameter of X , and # measures the cardi-
nality of a set.
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Last but not least, we would like to comment on Eq. (14), i.e., the E-step of the EM-
like algorithm. It has the same idea as the deterministic annealing EM-like algorithm in
Grandvalet and Bengio (2006), and it is the analytical solution to

min
q

KL(q || pAi,j)− (µ/t)
∑

y
q(y | xi, xj) ln pAi,j(y)

similarly to Graça et al. (2009) and Gillenwater et al. (2011), where KL is the Kullback-
Leibler divergence. It is easy to see that our E-step is different from the standard E-step
if µ 6= 0, while for any µ it approaches the standard one as t → ∞. In other words, the
EM-like algorithm does not solve optimization (7) exactly, but (7) is indeed the limit of
a sequence of optimizations which the algorithm solves at different EM-like iterations. If
µ 6= 0 and t = 0, q(y | xi, xj) becomes the hard assignments

q(y | xi, xj) =


1 if pAi,j(y) > 0.5,

0.5 if pAi,j(y) = 0.5,

0 if pAi,j(y) < 0.5.

This is the reason for initializing q(y | xi, xj) ∈ {0, 1} in our current implementation.

4 Discussions

We have left out a few theoretical arguments when we proposed the model of Seraph in
order to keep the presentation as concise and comprehensible as possible. In this section,
we discuss the sparsity issue in the sense of metric learning and present two additional
justifications for our model.

4.1 Posterior sparsity and projection sparsity

Sparse metric learning might have different meanings, since we learn a metric with low-
rank linear projections by optimizing a conditional probability, where the optimization
variable is actually a square matrix. First of all, we would like to explain the meaning
of our sparsity and claim that we can obtain the posterior sparsity (Graça et al., 2009)
by entropy regularization and the projection sparsity (Ying et al., 2009) by trace-norm
regularization. The arguments are as follows.

By a “sparse” posterior distribution, we mean that the uncertainty (e.g., the entropy
or variance) of pAi,j(y) for (xi, xj) ∈ U is low, such that (xi, xj) can be classified to be a
similar or dissimilar pair with high confidence. Figure 2 is an illustrative example. Recall
that supervised metric learning aims at finding a new distance metric under which data
in the same class are close and data from different classes are far apart. It would result in
the metric which ignores the horizontal feature and only focuses on the vertical feature.
Nevertheless, the horizontal feature is useful, and taking care of the posterior sparsity
would lead to a better metric as shown in subfigures (e) and (f). As a consequence, we
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Labeled A
Labeled B
Unlabeled data
Test data

(a) Data set

 

 

Labeled A
Labeled B
Predicted A
PredictedB

(b) Euclidean

(c) Non-sparse (d) Non-sparse

(e) Sparse (f) Sparse

Figure 2: Sparse vs. non-sparse posterior distributions. Six weak labels were constructed
according to the four class labels. The left three panels show the original data and the
projected data by metrics learned with/without the posterior sparsity. The right three
panels exhibit one-nearest-neighbor classification results based on the Euclidean distance
and the two learned metrics.
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prefer taking the posterior sparsity into account in addition to the aforementioned goal
of supervised metric learning, and then the risk of overfitting weakly labeled data can be
significantly reduced.

When considering the posterior sparsity, our optimization via entropy regularization
is equivalent to soft posterior regularization (Graça et al., 2009; Gillenwater et al., 2011),
that is, we can rewrite L2(A, κ) as an objective function of a soft posterior regularization.
More specifically, let the auxiliary feature function be

g(x, x′, y) = − ln pA(y | x, x′),

then maximizing L2(A, κ) is equivalent to

max
A,κ
L1(A, κ)− µ

∑
U
EpAi,j [g(xi, xj, y)]. (17)

On the other hand, according to optimization (7) of Graça et al. (2009), the soft posterior
regularization objective should take a form as

max
A,κ

L1(A, κ)−min
q

(
KL(q || pA) + µ

∑
U
ξi,j

)
s.t. Eq[g(xi, xj, y)] ≤ ξi,j,∀(xi, xj) ∈ U , (18)

where ξi,j are slack variables. Since q is unconstrained, we can optimize q with respect to
fixed A and κ. It is easy to see that q should be pA restricted on U , so the KL divergence
term is zero and the expectation term is the entropy, which implies the equivalence of
optimizations (17) and (18).

Besides the posterior sparsity, we also hope for the projection sparsity that may guide
the new distance metric to a better generalization performance. Figure 3 illustrates its
effect, where the horizontal feature is dominant and the vertical feature is uninformative.
The underlying technique is known as mixed-norm regularization (Argyriou et al., 2007)
or group lasso (Yuan and Lin, 2006). Denote the `(2,1)-norm of a symmetric matrix M as

‖M‖(2,1) =
m∑
k=1

(
m∑
k′=1

M2
k,k′

)1/2

.

Similarly to Ying et al. (2009), let P ∈ Rm×m be a linear projection, W = P>P be the
symmetric positive semi-definite matrix of the metric induced from P , and Pi and Wi be
the i-th columns of P and W . If Pi is identically zero, the i-th component of x has no
contribution to z = Px. Since the column-wise sparsity of W and P are equivalent, we
can reach the column-wise sparsity of P by penalizing ‖W‖(2,1). Nevertheless, this is the
ability of feature selection rather than dimensionality reduction. Note that the goal is to
select a few most representative directions of input data which are not restricted to the
coordinate axes. The solution is to pick an extra transformation V ∈ Om to rotate x
before projecting x where Om is the set of orthonormal matrices of size m. Consequently,
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Figure 3: Sparse vs. non-sparse projections. Twenty-eight weak labels were constructed
according to the eight class labels. The left three panels show the original data and the
projected data by metrics learned with/without the projection sparsity. The right three
panels exhibit one-nearest-neighbor classification results based on the Euclidean distance
and the two learned metrics.
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we penalize ‖W‖(2,1), project x to z = PV x, and since A = (PV )>(PV ) = V>WV , we
arrive at

max
A,κ,W,V

L2(A, κ)− λ‖W‖(2,1)

s.t. A = V>WV,W = W>,W � 0, V ∈ Om.
(19)

Remember that the final model of Seraph was given by optimization (6) as

max
A,κ
L2(A, κ)− λ tr(A).

The equivalence of optimizations (6) and (19) is guaranteed by Lemma 1 of Ying et al.
(2009). By unifying the posterior sparsity and the projection sparsity mentioned above,
we obtain a property that we call the hyper-sparsity.

4.2 Generalized maximum entropy principle

The basic model defined in optimization (2) contains an inequality constraint instead of
some equality constraint, since the regularization term −γκ2/2 in L1(A, κ) is indispens-
able. Otherwise we would have κ∗ = +∞ for the optimal solution (A∗, κ∗), which means
that the optimization would be degenerated, and the learned metric might easily overfit
weakly labeled data. This phenomenon is owing to the single-point prior of the expected
data moment from the empirical data moment. The regularization term −γκ2/2 reflects
the Gaussian prior in the generalized maximum entropy principle (Dud́ık and Schapire,
2006), while the ordinary maximum entropy principle (Jaynes, 1957; Berger et al., 1996)
assumes the single-point prior and applies no regularization on the dual variable.

The potential function underlies the generalized maximum entropy distribution esti-
mation. By the potential function and the slack variable, we could obtain the same dual
problem. Let the potential function Uf (·) and its target value uf be

Uf (x) =
1

2γ
(x− uf )2,

uf =
∑

S∪D
f(xi, xj, yi,j).

Redefine optimization (2) as an equivalent form

max
A,pAi,j

∑
S∪D

H(pAi,j)− Uf
(∑

S∪D
EpAi,j [f(xi, xj, y)]

)
,

where the equivalence is due to Fenchel’s Duality Theorem of Dud́ık and Schapire (2006)
plus the fact that the conjugate of Uf (x) is U∗f (κ) = γκ2/2. Subsequently,

max
A,κ
L2(A, κ) =

∑
S∪D

ln pAi,j(yi,j)− U∗f (−κ)− µUg
(∑

U
EpAi,j [g(xi, xj, y)]

)
is an optimization problem with two potential functions Uf (·) and Ug(·) under the poste-
rior regularization framework (Graça et al., 2008, 2009; Bellare et al., 2009; Gillenwater
et al., 2011), and hence Seraph can be viewed as a semi-supervised maximum entropy
estimation equipped with the additional projection sparsity.
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4.3 Information maximization principle

The final model defined in optimization (6) can also be viewed as an information maxi-
mization approach to semi-supervised metric learning based on weak labels. The regular-
ized information maximization framework (Gomes et al., 2010) advocates the preference
for maximizing the mutual information between data and labels as well as the necessity
for regularizing the model parameters.

Let p(y) be the prior distribution

p(y) =

∫∫
Rm×Rm

pA(y | x, x′)p(x)p(x′)dxdx′,

and p̂(y) be its estimate

p̂(y) =
1

#U
∑

U
pAi,j(y).

Let I(y;x, x′) be the mutual information between the data pair and the weak label

I(y;x, x′) =

∫∫
Rm×Rm

∑
y
pA(y | x, x′)p(x)p(x′) ln

(
pA(y | x, x′)

p(y)

)
dxdx′,

and I(y;U) be its estimate, that is, the mutual information between unlabeled data and
unobserved weak labels

I(y;U) =
1

#U
∑

U

∑
y
pAi,j(y) ln

(
pAi,j(y)

p̂(y)

)
.

Given the supervised part of Seraph, regularized information maximization would sug-
gest

max
A,κ

∑
S∪D

ln pAi,j(yi,j) + µ′I(y;U)− γ

2
κ2 − λ tr(A),

where we assume the regularization parameter µ′ satisfies µ′ = #Uµ. Then by decompos-
ing I(y;U), it could be rewritten as

max
A,κ
L(A, κ) + µ′H(p̂(y)).

The entropy term encourages a balanced prior distribution of y under the metric d(x, x′).
However, the number of similar and dissimilar data pairs (i.e., y = +1 and y = −1) are
inherently imbalanced in all metric learning problem settings. Therefore, we simply drop
the regularization term µ′H(p̂(y)) and attain optimization (6).

Notice that this explanation elicits a nice heuristic value of the regularization param-
eter

µ =
#(S ∪ D)

#U
.

In fact, let H(y | x, x′) be the conditional entropy of the weak label on the data pair

H(y | x, x′) =

∫∫
Rm×Rm

H(pA(y | x, x′))dxdx′,
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then H(y | x, x′) can be estimated by

H(y | S ∪ D) =
1

#(S ∪ D)

∑
S∪D

H(pAi,j).

As a result, the conditional entropy H(y | S ∪ D) as the supervised part and the mutual
information I(y;U) as the unsupervised part become equally important in L2(A, κ) and
L(A, κ) if setting µ = #(S ∪ D)/#U .

5 Related Works

Xing et al. (2003) initiated the research of metric learning based on pairwise similarity
and dissimilarity constraints by global distance metric learning (Gdm). Inspired by mis-
cellaneous motivations, several excellent metric learning methods have been developed
in the last decade, such as neighborhood component analysis (Nca) (Goldberger et al.,
2005), large margin nearest neighbor classification (Lmnn) (Weinberger et al., 2006),
information-theoretic metric learning (Itml) (Davis et al., 2007), and so on.

Both Itml and Seraph are information-theoretic, but the ideas and models are quite
different. Itml defines a generative Gaussian model

pA(x) =
1

Z
exp

(
−1

2
‖x− µ‖2A

)
,

where µ is the unknown mean value, Z is a normalizing constant, and both of them can be
canceled out in the constrained optimization. Compared with Gdm, Itml regularizes the
Kullback-Leibler divergence between pA0(x) and pA(x) where A0 is the prior metric, and
then transforms this term to a log-det regularization. By specifying A0 = 1

n
Im, it becomes

the maximum entropy estimation of pA(x). Thus, it prefers the distance metric close to
the Euclidean distance. On the other hand, the supervised part of Seraph also follows
the maximum entropy principle, but the probabilistic model pA(y | x, x′) is discriminative.

A probabilistic Gdm was designed intuitively as a baseline method in the experimental
part of Yang et al. (2006). It can be viewed as a special case of our supervised part, but
the final model of Seraph is much more general. Please refer to Sections 2.2, 7.1 and 7.2
for details.

Due to the limitation of supervised metric learning when few labeled data are avail-
able, semi-supervised models and algorithms that incorporate off-the-shelf unsupervised
techniques to existing supervised approaches have been proposed in recent years. Local
distance metric learning Ldm (Yang et al., 2006) is the pioneer. Unlike later manifold-
based methods, it embeds the unsupervised information by assuming that the eigenvectors
of the optimal A are the principal components of all training data. Hoi et al. (2008) bor-
rows the idea of Laplacian eigenmaps (Belkin and Niyogi, 2002) and combines manifold
regularization to the min-max principle of Gdm. Baghshah and Shouraki (2009) then
shows that Fisher discriminant analysis can be regularized by locally linear embedding
(Roweis and Saul, 2000), and the resulting manifold Fisher discriminant analysis (Mfda)
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is extremely computationally efficient. Liu et al. (2010) brings the element-wise matrix
sparsity of A to Hoi et al. (2008). In general, any unsupervised embedding method that
preserves the local neighborhood information can be modified into a semi-supervised ex-
tension. Check DistLearnKit7 for a partial list of such methods.

The manifold extension which will be described in Section 7.2 is so general that it can
be attached to all metric learning methods, whereas our information-theoretic extension
can only be applied to probabilistic metric learning methods. Nevertheless, any proba-
bilistic method with an explicit expression of the posterior distribution such as Nca, Ldm
and Seraph can have two semi-supervised extensions, while deterministic methods like
Gdm, Lmnn and Mfda cannot benefit from our semi-supervised extension. Itml utilizes
a generative Gaussian model whose parameters are not estimated by the algorithm, so it
is non-trivial to apply our extension to it.

Here we leave out sparse metric learning and robust metric learning, and instead, we
recommend Huang et al. (2009, pp. 8–9) and Huang et al. (2010, p. 2) for the reviews of
sparse and robust metric learning. Moreover, a comprehensive literature survey on metric
learning, Bellet et al. (2013), becomes available online now and can be a good reference.

6 Experiments

In this section, we numerically evaluate the performance of metric learning methods.

6.1 Setup

In our experiments, we compared the proposed Seraph with six representative metric
learning methods (plus the Euclidean distance):

• Global distance metric learning (Gdm; Xing et al., 2003)8;

• Neighborhood component analysis (Nca; Goldberger et al., 2005)9;

• Large margin nearest neighbor classification (Lmnn; Weinberger et al., 2006)10;

• Information-theoretic metric learning (Itml; Davis et al., 2007)11;

• Local distance metric learning (Ldm; Yang et al., 2006)12;

• Manifold Fisher discriminant analysis (Mfda; Baghshah and Shouraki, 2009)13.

Gdm, Nca, Lmnn and Itml are supervised methods, while Ldm and Mfda are semi-
supervised methods. Seraph as well as Gdm, Itml and Ldm utilize the global metric
information; and Nca, Lmnn and Mfda benefit from the local metric information.

7A Matlab toolkit for distance metric learning: http://www.cs.cmu.edu/˜liuy/distlearn.htm.
8The code was from http://www.cs.cmu.edu/˜epxing/papers/Old papers/code Metric online.tar.gz.
9The code was from http://www.cs.berkeley.edu/˜fowlkes/software/nca/nca demo.tar.gz.

10The code was from http://www.cse.wustl.edu/˜kilian/code/files/mLMNN.zip.
11The code was from http://www.cs.utexas.edu/˜pjain/itml/download/itml-1.2.tar.gz.
12The code was from http://www.cs.cmu.edu/˜liuy/ldm scripts 2.zip.
13We wrote its code based on locally linear embedding (http://www.cs.nyu.edu/˜roweis/lle/code.html).
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Table 1: Specification of benchmark data sets. For each data set, c means the number of
classes, m means the number of features, ntrain/ntest means the number of training/test
data points, and nlabel means the number of class labels to construct S and D.

c m ntrain ntest nlabel E#S E#D #U
iris 3 4 100 38 10 15.10 29.90 4905
wine 3 13 100 78 10 13.98 31.02 4905
ionosphere 2 34 100 251 20 97.50 92.50 4760
balance 3 4 100 465 10 20.38 24.62 4905
breast cancer 2 30 100 469 10 23.54 21.46 4905
diabetes 2 8 100 668 10 23.02 21.98 4905

c m ntrain ntest nlabel #S #D #U
USPS1−5,20 5 64 100 2500 10 5 40 4905
USPS1−5,40 5 64 200 2500 20 30 160 19710
USPS1−10,20 10 64 200 2500 20 10 180 19710
USPS1−10,40 10 64 400 2500 40 60 720 79020
MNIST1,7 2 196 100 1000 4 2 4 4944
MNIST3,5,8 3 196 150 1500 9 9 27 11139

Table 1 describes the specification of benchmark data sets in our experiments. The
top six data sets (i.e., iris, wine, ionosphere, balance, breast cancer, and diabetes) come
from the UCI machine learning repository14, and USPS and MNIST are available at the
homepage of the late Sam Roweis15. The gray-scale images of handwritten digits in USPS
were downsampled to 8×8 pixel resolution resulting in 64-dimensional vectors. Similarly,
the gray-scale images in MNIST were downsampled to 14×14 pixel resolution resulting in
196-dimensional vectors. The symbol USPS1−5,20 means 20 training data from each of the
first 5 classes, USPS1−10,40 means 40 training data from each of all 10 classes, MNIST1,7

means digits 1 versus 7, and so forth. Note that in the last two tasks, the dimensionality
of data is greater than the number of all training data: The number of parameters to be
learned in A is m(m+ 1)/2 = 19306, whereas the number of training data points ntrain is
100 or 150 and then the number of training data pairs ntrain(ntrain − 1)/2 is only 4950 or
11175.

All metric learning methods were repeatedly run on 50 random samplings of a given
task. For each random sampling, we constructed S and D, which include the similar and
dissimilar data pairs for training, according to the class labels of the first few data points
for training: Let yi and yj be the class labels of xi and xj, then

• (xi, xj) ∈ S and yi,j = +1 if yi = yj;

• (xi, xj) ∈ D and yi,j = −1 if yi 6= yj.

The sizes of S and D were dependent on the specific random sampling of each UCI task,
but fixed for all samplings of each USPS and MNIST task. We measured the performance

14The data sets are available at http://archive.ics.uci.edu/ml/.
15The data sets are available at http://cs.nyu.edu/˜roweis/data.html.
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of the one-nearest-neighbor classifiers based on the learned metrics and the computation
time for learning the metrics, where the “training data” for our classifiers included only
the few data points having class labels.

For Seraph, we fixed η = 1 for simplicity. Then, four hyperparameter settings were
considered:

• Seraphnone stands for µ = 0 and λ = 0;

• Seraphpost stands for µ = #(S∪D)
#U and λ = 0;

• Seraphproj stands for µ = 0 and λ = 1;

• Seraphhyper stands for µ = #(S∪D)
#U and λ = 1.

There was no cross-validation for each random sampling, because we would like the
metrics learned by different methods to be independent of those nearest-neighbor classi-
fiers whose performance had a large deviation given limited supervised information.16 The
hyperparameters of other methods, e.g., the number of reduced dimensions, the number
of nearest neighbors, as well as the percentage of principal components, were selected as
the best candidate value based on another 10 random samplings, if no default or heuristic
value was provided by the original authors of the codes.

6.2 Results

Artificial data sets Figures 2 and 3 had already displayed the visually comprehensive
results of the posterior and projection sparsity regularization on two artificial data sets
respectively. More specifically,

• In both figures, subfigures (c) and (d) were generated with µ = λ = 0;

• In Figure 2, (e) and (f) were generated with µ = 100 · #(S∪D)
#U and λ = 0;

• In Figure 3, (e) and (f) were generated with µ = 0 and λ = 100,

where the gradient projection algorithm was used. We can see from Figures 2 and 3 that
the sparsity regularization can dramatically improve the generalized maximum entropy
estimation.

Gradient projection algorithm vs. EM-like algorithm Before comparing the pro-
posed Seraph with other metric learning methods, we evaluated the gradient projection
algorithm (GP) and the EM-like iterative algorithm (EM). Table 2 shows their perfor-
mance where the hyperparameter setting Seraphhyper was used. By the paired t-test at
the significance level 5%, GP and EM both won 2 times and tied 8 times, and therefore
GP and EM are basically comparable as two different solvers to the same optimization
problem. However, EM was computationally more efficient than GP in our experiments
consistently and the difference of their average computation time was remarkable, which
suggests EM as an indirect solver could be a good alternative to the direct solver GP.

16Even if we allow the learned metrics to be dependent on the following classifiers, it is nontrivial to
crossly validate the hyperparameters given limited supervised information.
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Table 2: Gradient projection algorithm (GP) vs. EM-like algorithm (EM). Means with
standard errors of the nearest-neighbor misclassification rate (in %) are shown, together
with results of the paired t-test at the significance level 5%. The computation time ratio
means the average computation time of GP over that of EM.

GP EM paired t-test computation time ratio

iris 5.58± 0.57 6.11± 0.66 Tie 3.00
wine 7.87± 0.62 7.46± 0.51 Tie 2.94
ionosphere 19.65± 0.50 19.53± 0.44 Tie 2.04
balance 21.55± 0.75 20.59± 0.64 Tie 1.94
breast cancer 9.51± 0.49 9.97± 0.49 Tie 1.43
diabetes 29.93± 0.65 30.07± 0.61 Tie 1.67
USPS1−5,20 31.46± 0.79 32.82± 0.77 GP win 2.58
USPS1−5,40 25.23± 0.58 25.30± 0.56 Tie 2.77
USPS1−10,20 45.45± 0.60 44.93± 0.58 EM win 2.81
USPS1−10,40 34.14± 0.48 33.45± 0.47 EM win 2.43
MNIST1,7 4.33± 0.25 8.15± 0.59 GP win 1.23
MNIST3,5,8 35.46± 0.84 35.77± 0.83 Tie 1.99

Benchmark data sets The experimental results in terms of the nearest-neighbor mis-
classification rate are reported in Table 3, where the EM-like algorithm was used. Gdm
was very slow for high-dimensional data and excluded from the comparison. Seraph was
fairly promising, especially the hyper-sparsity setting (i.e., µ = #(S∪D)

#U and λ = 1). It was
best or tie over all 12 tasks. It often statistically significantly outperformed other methods
except Itml on six UCI data sets, and it was superior to all other competitors including
Seraphpost and Seraphproj in 4 USPS tasks. Furthermore, it successfully improved the
accuracy even in two ill-posed MNIST tasks. To sum up, Seraph can reduce the risk of
overfitting weakly labeled data with the help of unlabeled data, and hence our sparsity
regularization would be reasonable and practical.

In vivid contrast with Seraph that exhibited the nice generalization capability, su-
pervised methods might learn a metric even worse than the Euclidean distance due to
overfitting problems, especially Nca that optimized the expected leave-one-out classifi-
cation error on a limited amount of labeled data. The powerful Lmnn did not behave
satisfyingly, since it was hardly fulfilled to find a lot of neighbors belonging to the same
class within labeled data. Itml worked very well despite that it can only access weakly
labeled data, but it became less useful for high-dimensional data. On the other hand, we
observed that Ldm might fail when the principal components of all training data were
not close to the eigenvectors of the optimal matrix being learned, and Mfda might fail
if the amount of training data cannot afford to recover the data manifold.

An observation is that the methods using the global metric information usually out-
performed the methods using the local metric information in our experiments since the
supervised information was insufficient, which is opposite to the phenomena observed in
supervised metric learning problem settings. It indicates that the methods using the local
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Figure 4: Average computation time of different metric learning methods on UCI, USPS
and MNIST benchmarks. The computation time was measured in seconds and drawn in
a logarithmic scale with 10 as the base.

metric information tends to fit the given information too much and suffers from overfitting
problems, since the local metric information always focuses on a small amount of data in
a local neighborhood and thus has a relatively large deviation.

Computational efficiency Figure 4 summarizes the corresponding experimental re-
sults in terms of the average computation time (Gdm was excluded from the comparison
due to its low speed). The computation time was measured in seconds and drawn in a
logarithmic scale with 10 as the base. The shortest average computation time was 0.1677
second of Mfda for iris, and the longest time was 3023 seconds of Lmnn for MNIST3,5,8.
Generally speaking, Seraph (when the EM-like algorithm was used) was the second most
computationally-efficient method, and the most computationally-efficient method Mfda
just consists of two steps: Solve a linear system of locally linear embedding (Roweis and
Saul, 2000) and then solve a generalized eigenvalue problem as Fisher discriminant analy-
sis (Fisher, 1936). Improvements may be expected if we program in Matlab with C/C++
as Nca and Lmnn.

Sensitivity to regularization parameters Recall that there was no cross-validation
within each random sampling, so it would be helpful to test the sensitivity of Seraph to
the regularization parameters µ and λ. Six benchmark data sets were included:

• diabetes, iris, and ionosphere, on which Seraphnone, Seraphpost, and Seraphproj

had lowest means of the nearest-neighbor misclassification rate in Table 3, respec-
tively;
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Figure 5: Contours of the mean misclassification rates (in %) of the one-nearest-neighbor
classifiers based on the metrics learned by Seraph given different regularization param-
eters µ′ and λ. The actual regularization parameter µ being used was µ = µ′ · #(S∪D)

#U .

• balance, USPS1−5,20, and MNIST1,7, on which Seraphhyper had lowest means of the
nearest-neighbor misclassification rate in Table 3.

We considered geometrically progressed candidates for both µ′ and λ ranging from 2−3 to
2+3 with 20.5 as the factor, namely,

µ′, λ ∈

{
1

8
,

√
2

8
,
1

4
,

√
2

4
,
1

2
,

√
2

2
, 1,
√
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√

2, 4, 4
√

2, 8

}
,

and the actual regularization parameter µ being used was µ = µ′ · #(S∪D)
#U . The gradient

projection algorithm was repeatedly run on 10 random samplings, which were the first 10
random samplings of those 50 random samplings, given all combinations of µ′ and λ, and
the resulting contours are displayed in Figure 5.

We can see that Seraph worked well in large areas of the contour plots in Figure 5,
and we can clearly observe two phenomena.
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Firstly, Seraph was more sensitive to λ for low-dimensional tasks diabetes, iris, iono-
sphere and balance, and the learned metrics became worse when λ became large. Even
for USPS1−5,20, the learned metrics also became worse when λ became large for small µ′.
Note that large λ implies the strong regularization on the trace norm of A, which upper
bounds the rank of A, and the rank of A ultimately controls the number of parameters to
be learned in A. This explains why the contours of MNIST1,7 were different from others
as there were so many parameters in A that large λ did not make Seraph significantly
over-regularized.

Secondly, Seraph was also sensitive to µ′ for high-dimensional tasks USPS1−5,20 and
MNIST1,7, while this time when µ′ became large, the learned metrics became worse for
small λ but better for large λ. In other words, Seraph easily got over-regularized by
emphasizing unlabeled data too much if the number of parameters to be learned in A was
improperly large, whereas it hardly got over-regularized if the number of parameters was
properly small. Additionally, for USPS1−5,20 and MNIST1,7 neither the posterior sparsity
nor the projection sparsity worked alone, but they became very powerful after integrated
into the hyper-sparsity. A final caveat is that the hyper-sparsity could never be a panacea
for such high-dimensional tasks and we should not employ it too much: The contours of
MNIST1,7 have exhibited a typical effect that the learned metrics became worse suddenly
and rapidly along the line log2(µ

′) = log2(λ) when µ′ = λ became very large.

7 Extensions

In this section, we explain the kernel and manifold extensions of Seraph. The technique
for kernelizing a metric learning method was originally proposed in Jain et al. (2010), and
the technique for manifold regularizing a metric learning method was originally proposed
in Hoi et al. (2008).

7.1 Kernel extension

Suppose that we have a kernel function k : Rm×Rm 7→ R with the feature map φ : Rm 7→
Rm̃ such that k(x, x′) = φ(x)>φ(x′). Consider learning a Mahalanobis distance metric for
x, x′ ∈ Rm of the form

d(x, x′) = ‖φ(x)− φ(x′)‖W =
√

(φ(x)− φ(x′))>W (φ(x)− φ(x′)), (20)

where W ∈ Rm̃×m̃ is a symmetric positive semi-definite matrix to be learned. However, it
is impractical or impossible to learn W directly, since m̃ is often very large and possibly
infinite. In order to learn W indirectly, we rewrite optimization (7) with respect to W :

min
W

λ tr(W ) +
∑

S∪D
ξi,j + µ

∑
U
ξi,j

s.t. ln pWi,j(yi,j) ≥ −ξi,j,∀(xi, xj) ∈ S ∪ D∑
y
pWi,j(y) ln pWi,j(y) ≥ −ξi,j, ∀(xi, xj) ∈ U ,
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where pW (y | x, x′) is similar to Eq. (8):

pW (y | x, x′) =
1

1 + exp(y(‖φ(x)− φ(x′)‖2W − η))
.

Subsequently, according to Jain et al. (2010), any optimal solution W ∗ will be in the form
of W ∗ = Φ>A∗Φ, where Φ = (φ(x1), . . . , φ(xn))> ∈ Rn×m̃ is the design matrix obtained by
applying φ to the training set X , and A∗ ∈ Rn×n is an optimal solution to

min
A

λ tr(A) +
∑

S∪D
ξi,j + µ

∑
U
ξi,j

s.t. ln pAi,j(yi,j) ≥ −ξi,j,∀(xi, xj) ∈ S ∪ D∑
y
pAi,j(y) ln pAi,j(y) ≥ −ξi,j,∀(xi, xj) ∈ U ,

which is actually optimization (7) with respect to A but pA(y | x, x′) in Eq. (8) is replaced
with

pA(y | x, x′) =
1

1 + exp(y((φ(x)− φ(x′))>Φ>AΦ(φ(x)− φ(x′))− η))
. (21)

Next let us simplify our notations to remove the feature map φ from our equations.
We introduce the empirical kernel map (Schölkopf and Smola, 2001, p. 42) defined by

ψ(x) = Φφ(x) = (k(x1, x), . . . , k(xn, x))>,

and then Eqs. (20) and (21) can be expressed by

d(x, x′) = ‖φ(x)− φ(x′)‖W = ‖ψ(x)− ψ(x′)‖A
=
√

(ψ(x)− ψ(x′))>A(ψ(x)− ψ(x′)),

pA(y | x, x′) =
1

1 + exp(y(‖ψ(x)− ψ(x′)‖2A − η))
.

Moreover, let K ∈ Rn×n be the kernel matrix and k1, . . . , kn be the columns of K, then
for any xi, xj ∈ X ,

d(xi, xj) = ‖ψ(xi)− ψ(xj)‖A = ‖ki − kj‖A,

pAi,j(y) =
1

1 + exp(y(‖ki − kj‖2A − η))
.

All components of Seraph remain the same after replacing xi with the corresponding ki.
The resultant Mahalanobis distance metric d(x, x′) will be highly non-linear with respect
to the original input data domain.

The experimental results based on the kernel extension are reported in Table 4, where
the EM-like algorithm was used, and for convenience the best hyperparameter setting in
Table 3 is also listed in Table 4. The four hyperparameter settings were same as before,
but here they were kernelized and with a symbol “ker” in front of them. More specifically,
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three kernels were involved: The linear kernel was used for iris; the Gaussian kernel was
used for other UCI data sets; the sparse variant of the cosine kernel was used for USPS
and MNIST. The linear kernel is

k(x, x′) = x>x′.

The Gaussian kernel is

k(x, x′) = exp

(
−‖x− x

′‖22
2σ2

)
with a hyperparameter σ, and σ was set to the median pairwise distance, i.e., the median
value of the Euclidean distances between all training data pairs. Note that we just need
compute the empirical kernel map ψ in which the first argument of the kernel k must be
from X , and hence the sparse variant of the cosine kernel is

k(xi, x) =


x>ix

‖xi‖2‖x‖2
if xi ∼k̃ x,

0 otherwise,

with a hyperparameter k̃, where xi ∼k̃ x means that xi is one of the k̃ nearest neighbors

of x in X , and k̃ was set to 11 so that 10 nearest neighbors were found for xi ∈ X except
itself. We can see from Table 4 that Seraph still performed well and even better after
applying the kernel extension. Among all 12 tasks on UCI, USPS and MNIST data sets,
the records were improved by the kernel extension in 7 tasks, and the improvement was all
significant under the paired t-test at the significance level 5%. We may roughly compare
the experimental results in Table 4 with similar results in Jain et al. (2010)17 and Wang
et al. (2011), while we should be aware that the training data for Seraph as well as for
the following nearest-neighbor classifiers were much less than theirs, and a single kernel
was also much weaker than multiple kernels.

7.2 Manifold extension

Without loss of generality, we adopt the kernel matrix K used in the kernel extension as
our adjacency matrix of the underlying similarity graph for manifold regularization. Let
di =

∑n
j=1Ki,j be the degree of xi, and D = diag(d1, . . . , dn) be the degree matrix, then

the unnormalized graph Laplacian is given by L = D −K.
Let P ∈ Rm̃×m be a projection matrix associated with A such that A = P>P , X =

(x1, . . . , xn)> ∈ Rn×m be the design matrix of X , and Z = (z1, . . . , zn)> ∈ Rn×m̃ be the
design matrix of the projected data such that zi = Pxi and Z = XP>. The manifold
assumption suggests that ∀x, x′ ∈ Rm, if x and x′ are close, z and z′ should also be close,
and we should minimize a manifold regularization term defined by

M(A) = tr(Z>LZ) = tr(X>LXA).

17Though called semi-supervised, the proposed method in Jain et al. (2010) does not involve U .
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Table 4: Means with standard errors of the nearest-neighbor misclassification rate (in %)
based on the kernel extension. For each data set, the best hyperparameter setting and
comparable ones based on the paired t-test at the significance level 5% are in boldface.

Table 3 best ker none ker post ker proj ker hyper

iris 5.21± 0.43 8.74± 0.88 8.47± 0.90 8.89± 0.86 8.63± 0.89
wine 7.46± 0.51 7.54± 0.58 6.41± 0.57 6.82± 0.69 6.15± 0.54
ionosphere 19.42± 0.49 14.03± 0.97 13.04± 0.72 14.48± 1.04 13.20± 0.71
balance 20.59± 0.64 25.09± 1.08 24.22± 1.07 23.02± 0.96 23.54± 0.99
breast cancer 9.54± 0.45 11.22± 0.74 10.98± 0.71 11.22± 0.87 10.93± 0.67
diabetes 29.76± 0.61 32.43± 0.67 32.31± 0.67 32.02± 0.70 32.20± 0.64
USPS1−5,20 32.82± 0.77 29.73± 0.88 30.04± 0.89 29.77± 0.93 28.80± 0.89
USPS1−5,40 25.30± 0.56 22.29± 0.54 22.47± 0.55 22.16± 0.55 22.14± 0.53
USPS1−10,20 44.93± 0.58 44.07± 0.47 44.26± 0.47 44.39± 0.44 43.83± 0.47
USPS1−10,40 33.45± 0.47 33.10± 0.40 33.30± 0.40 32.81± 0.41 32.66± 0.39
MNIST1,7 8.15± 0.59 17.51± 1.47 17.54± 1.47 17.47± 1.47 12.44± 1.24
MNIST3,5,8 35.77± 0.84 29.51± 0.84 29.52± 0.84 29.61± 0.85 27.48± 0.84

More specifically, the similarity between xi and xj is measured by k(xi, xj), whereas the
dissimilarity of zi and zj is measured by the Euclidean distance ‖zi − zj‖2. The manifold
assumption translates into that ‖zi − zj‖22 should be penalized more for larger k(xi, xj)
than smaller k(xi, xj). Consequently, we have

M(A) =
1

2

n∑
i,j=1

Ki,j‖zi − zj‖22

=
n∑

i,j=1

Ki,j(z
>
i zi − z>i zj)

=
n∑
i=1

diz
>
i zi −

n∑
i,j=1

Ki,jz
>
i zj

= tr(Z>DZ)− tr(Z>KZ)

= tr(Z>LZ)

= tr(X>LXA).

It would affect neither the concavity nor the Lipschitz continuity ifM(A) is attached
to concave or Lipschitz continuous functions, since M(A) is again linear with respect to
A. Therefore, our optimization becomes

max
A
L̃(A) = L(A)− ωM(A),

where ω ≥ 0 is a regularization parameter, and at each M-step of the EM-like algorithm,
we still solve a convex optimization

max
A
F̃(A) = F(A)− ωM(A).
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Table 5: Means with standard errors of the nearest-neighbor misclassification rate (in %)
based on the manifold extension. For each data set, the best hyperparameter setting and
comparable ones based on the paired t-test at the significance level 5% are in boldface.

Table 3 best mani post+mani proj+mani hyper+mani

iris 5.21± 0.43 8.21± 0.78 9.58± 1.04 8.37± 1.35 9.84± 0.98
wine 7.46± 0.51 23.54± 1.29 29.95± 1.42 21.79± 1.30 28.77± 1.36
ionosphere 19.42± 0.49 20.60± 0.68 20.57± 0.66 20.61± 0.68 20.55± 0.70
balance 20.59± 0.64 28.00± 1.31 24.28± 0.98 29.43± 1.50 25.12± 1.16
breast cancer 9.54± 0.45 21.79± 0.79 25.74± 0.78 17.90± 0.92 21.64± 0.84
diabetes 29.76± 0.61 32.32± 0.91 31.28± 0.72 33.26± 1.02 31.73± 0.89
USPS1−5,20 32.82± 0.77 42.21± 0.77 36.46± 0.77 36.68± 0.73 31.46± 0.76
USPS1−5,40 25.30± 0.56 30.42± 0.56 26.09± 0.56 26.96± 0.58 24.41± 0.54
USPS1−10,20 44.93± 0.58 53.42± 0.51 46.58± 0.55 47.77± 0.64 43.80± 0.57
USPS1−10,40 33.45± 0.47 38.22± 0.52 33.71± 0.48 35.58± 0.52 32.60± 0.48
MNIST1,7 8.15± 0.59 15.32± 1.23 15.30± 1.08 9.68± 0.70 7.88± 0.60
MNIST3,5,8 35.77± 0.84 43.81± 0.80 39.76± 0.87 37.42± 0.86 36.28± 0.89

The gradient matrices of L̃(A) and F̃(A) are simply

∇L̃(A) = ∇L(A)− ω∇M(A) = ∇L(A)− ωX>LX,
∇F̃(A) = ∇F(A)− ω∇M(A) = ∇F(A)− ωX>LX,

where ∇L(A) and ∇F(A) were given by Eqs. (11) and (13) respectively.
Four additional hyperparameter settings were considered in our experiments:

• Seraphmani stands for µ = 0, λ = 0, and ω = #(S∪D)
n(n−1) ;

• Seraphpost+mani stands for µ = #(S∪D)
#U , λ = 0, and ω = #(S∪D)

n(n−1) ;

• Seraphproj+mani stands for µ = 0, λ = 1, and ω = #(S∪D)
n(n−1) ;

• Seraphhyper+mani stands for µ = #(S∪D)
#U , λ = 1, and ω = #(S∪D)

n(n−1) .

The experimental results based on the manifold extension are reported in Table 5, where
the EM-like algorithm was used, and for convenience the best hyperparameter setting in
Table 3 is also listed in Table 5. We can see that Seraphmani did not work at all, while
Seraphpost+mani and Seraphproj+mani were not too bad. Even Seraphhyper+mani failed to
improve the records on UCI data sets, but it did successfully improve 5 records on USPS
and MNIST, and the improvement on USPS was all significant under the paired t-test at
the significance level 5%. This is because the manifold extension has the same drawback
with Mfda if the amount of training data cannot afford to recover the data manifold,
and the manifold structures are vague for UCI data sets but clear for USPS and MNIST.
Nevertheless, the manifold extension can hardly deal with the artificial data set shown in
Figure 2 that has an extremely clear manifold structure. As illustrated in Figure 6, the
manifold extension failed to stop the supervised part merging and compressing the two
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Labeled A
Labeled B
Unlabeled data
Test data

(a) Data set (b) ω′ = 1/10 (c) ω′ = 1/
√

10

(d) ω′ = 1 (e) ω′ =
√

10 (f) ω′ = 10

Figure 6: The projected data by metrics learned exclusively with the manifold extension.
The actual regularization parameter ω being used was ω = ω′ · #(S∪D)

n(n−1) .

disconnected data clouds without the help of the posterior sparsity, even though it had
detected and was able to recover the data manifold.

8 Conclusions

We proposed a general information-theoretic approach to semi-supervised metric learning
called Seraph (SEmi-supervised metRic leArning Paradigm with Hyper-sparsity) which
follows entropy regularization rather than manifold regularization. The generalized maxi-
mum entropy distribution estimation for supervised metric learning based on weak labels
was our foundation. Then, a semi-supervised extension which can achieve the posterior
sparsity was obtained via entropy regularization, and low-dimensional projections which
can achieve the projection sparsity were encouraged by trace-norm regularization. The
non-convex optimization problem could be solved efficiently and stably by the proposed
gradient projection algorithm or EM-like iterative algorithm. Last but not least, Seraph
could be easily kernelized or manifold regularized in standard manners.

Experiments on benchmark data sets demonstrated that given limited supervised in-



Information-theoretic Semi-supervised Metric Learning 32

formation, Seraph usually outperformed state-of-the-art supervised and semi-supervised
metric learning methods, especially that the learned Mahalanobis distance possessed high
discriminability even under a noisy environment. A final note is that in our experiments
the posterior sparsity and the projection sparsity were shown to be very helpful for high-
dimensional data only when they were combined with each other, i.e., integrated into the
hyper-sparsity.
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A Proofs

In this appendix, we prove the theorems appeared in Sections 2 and 3.

A.1 Proof of Theorem 1

To simplify our notations and make the proof compact, let us denote

p+i,j , pAi,j(+1), p−i,j , pAi,j(−1),

f+
i,j , f(xi, xj,+1), f−i,j , f(xi, xj,−1), f̃i,j , f(xi, xj, yi,j),

respectively. Foremost, expand optimization (2) into its complete form:

max
A,pAi,j ,ξ

−
∑

S∪D
(p+i,j ln p+i,j + p−i,j ln p−i,j)−

1

2γ
ξ2

s.t.
∑

S∪D
(p+i,jf

+
i,j + p−i,jf

−
i,j)−

∑
S∪D

f̃i,j − ξ ≤ 0,∑
S∪D

f̃i,j −
∑

S∪D
(p+i,jf

+
i,j + p−i,jf

−
i,j)− ξ ≤ 0,

p+i,j + p−i,j = 1,∀(xi, xj) ∈ S ∪ D.

The terms ln p+i,j and ln p−i,j in the objective function plus p+i,j + p−i,j = 1 in the constraints
have already implied that

0 ≤ p+i,j, p
−
i,j ≤ 1.
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By introducing dual variables κ1 ≥ 0, κ2 ≥ 0 for the first and second constraints, and
δi,j ∈ R for the third group of constraints, the Lagrangian is expressed as

L(A, pAi,j, ξ, κ1, κ2, δi,j) =−
∑

S∪D
(p+i,j ln p+i,j + p−i,j ln p−i,j)−

1

2γ
ξ2

− κ1
(∑

S∪D
(p+i,jf

+
i,j + p−i,jf

−
i,j)−

∑
S∪D

f̃i,j − ξ
)

− κ2
(∑

S∪D
f̃i,j −

∑
S∪D

(p+i,jf
+
i,j + p−i,jf

−
i,j)− ξ

)
+
∑

S∪D
δi,j(p

+
i,j + p−i,j − 1).

Differentiating the function L(A, pAi,j, ξ, κ1, κ2, δi,j) with respect to p+i,j and p−i,j, and
equating the derivatives to zero will give us

ln p+i,j = κf+
i,j + δi,j − 1,

ln p−i,j = κf−i,j + δi,j − 1,
(22)

where κ = κ2 − κ1 ∈ R. Note that Eq. (22) says that

ln p+i,j − ln p−i,j = κf+
i,j − κf−i,j,

i.e.,
p+i,j
p−i,j

=
exp(κf+

i,j)

exp(κf−i,j)
. (23)

Hence Eq. (3) follows with
δi,j = 1− lnZA

i,j. (24)

Next, differentiating L(A, pAi,j, ξ, κ1, κ2, δi,j) with respect to ξ and equating the derivative
to zero will give us

ξ = γ(κ1 + κ2). (25)

According to the Karush-Kuhn-Tucker condition about the dual complementary slackness

κ1

(∑
S∪D

(p+i,jf
+
i,j + p−i,jf

−
i,j)−

∑
S∪D

f̃i,j − ξ
)

= 0,

κ2

(∑
S∪D

f̃i,j −
∑

S∪D
(p+i,jf

+
i,j + p−i,jf

−
i,j)− ξ

)
= 0,

we know that κ1κ2 = 0, which means

(κ1 + κ2)
2 = (κ1 − κ2)2 = κ2. (26)

Substituting Eq. (22)–Eq. (26) into L(A, pAi,j, ξ, κ1, κ2, δi,j) accomplishes dual problem (4).
Finally, the optimization of the regularized maximum log-likelihood estimation is

max
A,κ
L1(A, κ).

By plugging the probabilistic model (3) into it we get optimization (4) exactly, which is
the dual problem of the generalized maximum entropy estimation (2).
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A.2 Proof of Theorem 2

As mentioned before, there must be κ∗ > 0. It is clear that κ∗ < +∞ and tr(A∗) < +∞,
since they are penalized in optimization (6). Let η̂ = κ∗η and λ̂ = λ/κ∗. Then η̂ and
λ̂ are well-defined hyperparameters as finite positive real numbers, and Â is a feasible
solution to (7) as a finite-trace symmetric positive semi-definite matrix. Notice that the
two properties described in Eqs. (9) and (10) hold, and then the theorem follows if Â is
a local maximum of L̂(A).

Differentiate pA and p̂A with respect to A,

∂pA/∂A = κypA(1− pA)(x− x′)(x− x′)>, (27)

∂p̂A/∂A = −yp̂A(1− p̂A)(x− x′)(x− x′)>. (28)

From (10) we have
∂L̂/∂p̂A

∣∣
A=Â

= ∂L/∂pA
∣∣
A=A∗,κ=κ∗

.

Thus from
∂p̂A/∂A

∣∣
A=Â

= −(1/κ∗)∂pA/∂A
∣∣
A=A∗,κ=κ∗

,

∂ tr(A)/∂A = Im where Im is the identity matrix, and the KKT stationarity condition of
optimization (6)

∂L/∂A
∣∣
A=A∗,κ=κ∗

= 0m×m

where 0m×m is the zero matrix in Rm×m, we get

∂L̂/∂A
∣∣
A=Â

= −(1/κ∗)∂L/∂A
∣∣
A=A∗,κ=κ∗

= 0m×m.

This implies that Â is a stationary point of L̂(A).
Similarly, it is not difficult to verify that

∂2L̂/∂(p̂A)2
∣∣
A=Â

= ∂2L/∂(pA)2
∣∣
A=A∗,κ=κ∗

,

∂2p̂A/∂A2
∣∣
A=Â

= (1/κ∗)2∂2pA/∂A2
∣∣
A=A∗,κ=κ∗

,

and
∂2L/∂A2 = (∂2L/∂(pA)2) · (∂pA/∂A)2 + (∂L/∂pA) · (∂2pA/∂A2).

As a result,
∂2L̂/∂A2

∣∣
A=Â

= (1/κ∗)2∂2L/∂A2
∣∣
A=A∗,κ=κ∗

.

Hence, ∂2AL̂(Â) is negative definite if ∂2AL(A∗, κ∗) is negative definite, and Â is actually a
local maximum of L̂(A).
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A.3 Proof of Theorem 3

Let us first consider F(A). Obviously, it is differentiable as long as we allow unbounded
derivatives. Since the conjugate norm of the Frobenius norm is still the Frobenius norm,
the best Lipschitz constant of F with respect to ‖ · ‖Fro is expressed as

Lip‖·‖Fro(F) = supA�0 ‖∇F(A)‖Fro.

So we are going to prove that ‖∇F(A)‖Fro is uniformly bounded for fixed training set X .
It is sufficient to bound ‖(∂F/∂pAi,j)(∂pAi,j/∂A)‖Fro for all (xi, xj) ∈ S ∪D ∪U from above
uniformly, which is more convenient than to bound ‖∇F(A)‖Fro directly.

Recall that the partial derivative of the simplified pA(y | x, x′) with respect to A was
given by Eq. (28) as

∂pA/∂A = −ypA(1− pA)(x− x′)(x− x′)>.

On the other hand,

∂F/∂pAi,j =

1/pAi,j(yi,j) if (xi, xj) ∈ S ∪ D

µq(y | xi, xj)/pAi,j(y) if (xi, xj) ∈ U , y ∈ {1,−1}.

Hence when (xi, xj) ∈ S ∪ D,

‖(∂F/∂pAi,j)(∂pAi,j/∂A)‖Fro = ‖ − yi,j(1− pAi,j(yi,j))(xi − xj)(xi − xj)>‖Fro
≤ ‖(xi − xj)(xi − xj)>‖Fro
= ‖xi − xj‖22
≤ (diam(X ))2,

where we use the fact that

‖zz>‖2Fro =
m∑

i,j=1

(zizj)
2 =

(
m∑
i=1

z2i

)(
m∑
j=1

z2j

)
= ‖z‖42.

Similarly, we have that when (xi, xj) ∈ U for fixed y,

‖(∂F/∂pAi,j)(∂pAi,j/∂A)‖Fro ≤ µq(y | xi, xj)(diam(X ))2,

and thus ∑
y
‖(∂F/∂pAi,j)(∂pAi,j/∂A)‖Fro ≤ µ(diam(X ))2.

As a consequence, there exists a finite Lip‖·‖Fro(F), and (16) can be obtained by applying
the triangle inequality of the Frobenius norm.

Now let us consider L(A). The only difference is that for (xi, xj) ∈ U and fixed y,

∂L/∂pAi,j = µ(1 + ln pAi,j(y)),
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and thus∑
y
‖(∂L/∂pAi,j)(∂pAi,j/∂A)‖Fro ≤ µ(diam(X ))2

∑
y
|pAi,j(y) + pAi,j(y) ln pAi,j(y)|

≤ µ(diam(X ))2
(∑

y
pAi,j(y)−

∑
y
pAi,j(y) ln pAi,j(y)

)
≤ (1 + ln 2)µ(diam(X ))2,

where the second step is because pAi,j(y) ln pAi,j(y) is negative, and the last step is because

−
∑

y
pAi,j(y) ln pAi,j(y) = H(pAi,j) ≤ ln 2.

Then, (15) can be obtained similarly to (16).

B Implementation Details

In this appendix, we explain the details of our implementation, in particular two simple
tricks for the speedup. The pseudo codes are in Matlab, while the tricks apply to similar
high-level programming languages.

To begin with, we must compute the Mahalanobis distances

‖xi − xj‖2A = (xi − xj)>A(xi − xj)

for all (xi, xj) ∈ S ∪ D ∪ U . If implemented naively, each pair will cost O(m2) time and
there are O(n2) pairs, so it will consume O(n2m2) time. The trick here is to compute the
distances for all pairs simultaneously:

x̄← diag(XAX>),

M ← repmat(x̄, 1, n) + repmat(x̄>, n, 1)− 2XAX>,

where repmat(x̄, 1, n) means to replicate the column vector x̄ and form a 1-by-n tiling of
copies of x̄ and repmat(x̄>, n, 1) means to replicate the row vector x̄> and form an n-by-1
tiling of copies of x̄>. This would result in M ∈ Rn×n such that Mi,j = ‖xi − xj‖2A. The
computation of XAX> costs O(nm2), the computation of M costs O(n2), and hence this
trick reduces the computational complexity from O(n2m2) to O(nm2 + n2). After we get
M , we can compute pAi,j(y = +1) for all (xi, xj) ∈ S ∪ D ∪ U simply by

P ← 1./(1 + exp(M − η1n×n)),

where “./” and “exp” are the element-wise division and exponential on matrices. We can
similarly compute L(A), F(A), and q(y | xi, xj) for all (xi, xj) ∈ U with the computational
complexity O(n2).

However, the computation of ∇L(A) or ∇F(A), which requires O(n2m) time, is the
main bottleneck. In practice, we should avoid using the computationally-inefficient struc-
ture “double for loops”, and fortunately there is such a trick. Without loss of generality,
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Algorithm 1 Efficient Computation of ∇F(A)

Input: A ∈ Rm×m that is the current solution,
X ∈ Rn×m that is the design matrix of X ,
S ∈ Rn×n such that Si,j = Sj,i = 1 if (xi, xj) ∈ S and Si,j = 0 otherwise,
D ∈ Rn×n such that Di,j = Dj,i = 1 if (xi, xj) ∈ D and Di,j = 0 otherwise,
Q ∈ Rn×n such that Qi,j = q(y = +1 | xi, xj) for (xi, xj) ∈ U

Output: ∇F(A)

1: x̄← diag(XAX>)
M ← repmat(x̄, 1, n) + repmat(x̄>, n, 1)− 2XAX>

2: P ← 1./(1 + exp(M − η1n×n))
3: C ← 0n×n
4: O ← 1n×n
CS ← PS −OS

CD ← PD
5: U ← O − S −D − In
CU ← µ(PU −QU)

6: ∇F(A)← X>(repmat(C1n, 1,m). ∗X)−X>CX − λIm

we describe the efficient computation of ∇F(A) in Algorithm 1. We have observed that
in our experiments Algorithm 1 was at least twenty times faster than the computation of
∇F(A) using double for loops. In this algorithm, we use a matrix C ∈ Rn×n to store all
coefficients of (xi − xj)(xi − xj)>, and the entries of C are computed separately for S, D
and U :

CS ← PS −OS,

CD ← PD,

CU ← µ(PU −QU)

where the subscript S, D or U means that the involved element-wise operations are done
only for the entries corresponding to Si,j = 1, Di,j = 1 or Ui,j = 1. Since C was initialized
as the zero matrix, we would have

Ci,j = Cj,i =


0 if i = j,

−yi,j(1− pAi,j(yi,j)) if (xi, xj) ∈ S ∪ D,
−µ
∑

y yq(y | xi, xj)(1− pAi,j(y)) if (xi, xj) ∈ U .

At last, ∇F(A) can be obtained by

∇F(A)← X>(repmat(C1n, 1,m). ∗X)−X>CX − λIm.

Note that ∇F(A) 6= 2X>(repmat(C1n, 1,m). ∗ X) − 2X>CX − λIm, since we have con-
sidered each pair (xi, xj) twice in the algorithm by Ci,j and Cj,i but it appears only once
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in Eq. (13). Moreover, it suffices to replace CU ← µ(PU −QU) in Algorithm 1 with

CU ← µ(lnPU − ln(OU − PU)). ∗ PU . ∗ (PU −OU)

to efficiently compute ∇L(A), where “.∗” is the element-wise multiplication on matrices.
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