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Abstract

Latent Dirichlet allocation (LDA) is a popular generative model of various objects
such as texts and images, where an object is expressed as a mixture of latent top-
ics. In this paper, we theoretically investigate variational Bayesian (VB) learning
in LDA. More specifically, we analytically derive the leading term of the VB free
energy under an asymptotic setup, and show that there exist transition thresholds
in Dirichlet hyperparameters around which the sparsity-inducing behavior drasti-
cally changes. Then we further theoretically reveal the notable phenomenon that
VB tends to induce weaker sparsity than MAP in the LDA model, which is op-
posed to other models. We experimentally demonstrate the practical validity of
our asymptotic theory on real-world Last.FM music data.

1 Introduction

Latent Dirichlet allocation (LDA) [5] is a generative model successfully used in various applications
such as text analysis [5], image analysis [15], genometrics [6, 4], human activity analysis [12],
and collaborative filtering [14, 20]1. Given word occurrences of documents in a corpora, LDA
expresses each document as a mixture of multinomial distributions, each of which is expected to
capture a topic. The extracted topics provide bases in a low-dimensional feature space, in which
each document is compactly represented. This topic expression was shown to be useful for solving
various tasks including classification [15], retrieval [26], and recommendation [14].

Since rigorous Bayesian inference is computationally intractable in the LDA model, various approx-
imation techniques such as variational Bayesian (VB) learning [3, 7] are used. Previous theoretical
studies on VB learning revealed that VB tends to produce sparse solutions, e.g., in mixture models
[24, 25, 13], hidden Markov models [11], Bayesian networks [23], and fully-observed matrix fac-
torization [17]. Here, we mean by sparsity that VB exhibits the automatic relevance determination

1 For simplicity, we use the terminology in text analysis below. However, the range of application of our
theory given in this paper is not limited to texts.
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(ARD) effect [19], which automatically prunes irrelevant degrees of freedom under non-informative
or weakly sparse prior. Therefore, it is naturally expected that VB-LDA also produces a sparse solu-
tion (in terms of topics). However, it is often observed that VB-LDA does not generally give sparse
solutions.

In this paper, we attempt to clarify this gap by theoretically investigating the sparsity-inducing mech-
anism of VB-LDA. More specifically, we first analytically derive the leading term of the VB free
energy in some asymptotic limits, and show that there exist transition thresholds in Dirichlet hy-
perparameters around which the sparsity-inducing behavior changes drastically. We then analyze
the behavior of MAP and its variants in a similar way, and show that the VB solution is less sparse
than the MAP solution in the LDA model. This phenomenon is completely opposite to other mod-
els such as mixture models [24, 25, 13], hidden Markov models [11], Bayesian networks [23], and
fully-observed matrix factorization [17], where VB tends to induce stronger sparsity than MAP. We
numerically demonstrate the practical validity of our asymptotic theory using artificial and real-
world Last.FM music data for collaborative filtering, and further discuss the peculiarity of the LDA
model in terms of sparsity.

The free energy of VB-LDA was previously analyzed in [16], which evaluated the advantage of
collapsed VB [21] over the original VB learning. However, that work focused on the difference
between VB and collapsed VB, and neither the absolute free energy nor the sparsity was investigated.
The update rules of VB was compared with those of MAP [2]. However, that work is based on
approximation, and rigorous analysis was not made. To the best of our knowledge, our paper is the
first work that theoretically elucidates the sparsity-inducing mechanism of VB-LDA.

2 Formulation

In this section, we introduce the latent Dirichlet allocation model and variational Bayesian learning.

2.1 Latent Dirichlet Allocation

Suppose that we observe M documents, each of which consists of N (m) words. Each word is
included in a vocabulary with size L. We assume that each word is associated with one of the H
topics, which is not observed. We express the word occurrence by an L-dimensional indicator vector
w, where one of the entries is equal to one and the others are equal to zero. Similarly, we express
the topic occurrence as an H-dimensional indicator vector z. We define the following functions that
give the item numbers chosen by w and z, respectively:

ĺ(w) = l if wl = 1 and wl′ = 0 for l′ ̸= l, h́(z) = h if zh = 1 and zh′ = 0 for h′ ̸= h.

In the latent Dirichlet allocation (LDA) model [5], the word occurrence w(n,m) of the n-th position
in the m-th document is assumed to follow the multinomial distribution:

p(w(n,m)|Θ,B) =
∏L

l=1

(
(BΘ⊤)l,m

)w(n,m)
l

= (BΘ⊤)ĺ(w(n,m)),m, (1)

where Θ ∈ [0, 1]M×H and B ∈ [0, 1]L×H are parameter matrices to be estimated. The rows of Θ
and the columns of B are probability mass vectors that sum up to one. We denote a column vector
of a matrix by a bold lowercase letter, and a row vector by a bold lowercase letter with a tilde, i.e.,

Θ = (θ1, . . . ,θH) = (θ̃1, . . . , θ̃M )⊤, B = (β1, . . . ,βH) =
(
β̃1, . . . , β̃L

)⊤
.

With this notation, θ̃m denotes the topic distribution of the m-th document, and βh denotes the word
distribution of the h-th topic.

Given the topic occurrence latent variable z(n,m), the complete likelihood is written as

p(w(n,m), z(n,m)|Θ,B) = p(w(n,m)|z(n,m),B)p(z(n,m)|Θ), (2)

where p(w(n,m)|z(n,m),B) =
∏L

l=1

∏H
h=1(Bl,h)w

(n,m)
l z(n,m)

h , p(z(n,m)|Θ) =
∏H

h=1(Θm,h)z
(n,m)
h .

We assume the Dirichlet prior on Θ and B:

p(Θ|α) ∝
∏M

m=1

∏H
h=1(Θm,h)α−1, p(B|η) ∝

∏H
h=1

∏L
l=1(Bl,h)η−1, (3)
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Figure 1: Graphical model of LDA.

where α and η are hyperparameters that control the prior sparsity. We can make α dependent on m
and/or h, and η dependent on l and/or h, and they can be estimated from observation. However, we
fix those hyperparameters as given constants for simplicity in our analysis below. Figure 1 shows
the graphical model of LDA.

2.2 Variational Bayesian Learning

The Bayes posterior of LDA is written as

p(Θ,B, {z(n,m)}|{w(n,m)},α, η) = p({w(n,m)},{z(n,m)}|Θ,B)p(Θ|α)p(B|η)
p({w(n,m)}) , (4)

where p({w(n,m)}) =
∫
p({w(n,m)}, {z(n,m)}|Θ,B)p(Θ|α)p(B|η)dΘdBd{z(n,m)} is in-

tractable to compute and thus requires some approximation method. In this paper, we focus on
the variational Bayesian (VB) approximation and investigate its behavior theoretically.

In the VB approximation, we assume that our approximate posterior is factorized as

q(Θ,B, {z(n,m)}) = q(Θ,B)q({z(n,m)}), (5)

and minimize the free energy:

F =
〈
log q(Θ,B,{z(n,m)})

p({w(n,m)},{z(n,m)}|Θ,B)p(Θ|α)p(B|η)

〉

q(Θ,B,{z(n,m)})
, (6)

where ⟨·⟩p denotes the expectation over the distribution p. This amounts to finding the distribution
that is closest to the Bayes posterior (4) under the constraint (5). Using the variational method, we
can obtain the following stationary condition:

q(Θ) ∝ p(Θ|α) exp
〈
log p({w(n,m)}, {z(n,m)}|Θ,B)

〉

q(B)q({z(n,m)})
, (7)

q(B) ∝ p(B|η) exp
〈
log p({w(n,m)}, {z(n,m)}|Θ,B)

〉

q(Θ)q({z(n,m)})
, (8)

q({z(n,m)}) ∝ exp
〈
log p({w(n,m)}, {z(n,m)}|Θ,B)

〉

q(Θ)q(B)
. (9)

From this, we can confirm that {q(θ̃m)} and {q(βh)} follow the Dirichlet distribution and
{q(z(n,m))} follows the multinomial distribution:

q(Θ) ∝
∏M

m=1

∏H
h=1(Θm,h)Θ̆m,h−1, q(B) ∝

∏H
h=1

∏L
l=1(Bl,h)B̆l,h−1, (10)

q({z(n,m)}) =
∏M

m=1

∏N(m)

n=1

∏H
h=1(ẑ

(n,m)
h )z

(n,m)
h , (11)

where, for ψ(·) denoting the Digamma function, the variational parameters satisfy

Θ̆m,h = α+
∑N(m)

n=1 ẑ(n,m)
h , B̆l,h = η +

∑M
m=1

∑N(m)

n=1 w(n,m)
l ẑ(n,m)

h , (12)

ẑ(n,m)
h =

exp
{
Ψ(Θ̆m,h)+

∑L
l=1 w(n,m)

l (Ψ(B̆l,h)−Ψ(
∑L

l′=1 B̆l′,h))
}

∑H
h′=1

exp
{
Ψ(Θ̆m,h′ )+

∑L
l=1 w(n,m)

l (Ψ(B̆l,h′ )−Ψ(
∑L

l′=1
B̆l′,h′))

} . (13)

2.3 Partially Bayesian Learning and MAP Estimation

We can partially apply VB learning by approximating the posterior of Θ or B by the delta function.
This approach is called the partially Bayesian (PA) learning [18], whose behavior was analyzed
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and compared with VB in fully-observed matrix factorization. We call it PBA learning if Θ is
marginalized and B is point-estimated, and PBB learning if B is marginalized and Θ is point-
estimated. Note that the original VB algorithm for LDA proposed by [5] corresponds to PBA in
our terminology. We also analyze the behavior of MAP estimation, where both of Θ and B are
point-estimated. This corresponds to the probabilistic latent semantic analysis (pLSA) model [10],
if we assume the flat prior α = η = 1 [8].

3 Theoretical Analysis

In this section, we first give an explicit form of the free energy in the LDA model. We then investigate
its asymptotic behavior for VB learning, and further conduct similar analyses to the PBA, PBB, and
MAP methods. Finally, we discuss the sparsity-inducing mechanism of these learning methods, and
the relation to previous theoretical studies.

3.1 Explicit Form of Free Energy

We first express the free energy (6) as a function of the variational parameters Θ̆ and B̆:

F = R+Q, where (14)

R =
〈
log q(Θ)q(B)

p(Θ|α)p(B|η)

〉

q(Θ,B)

=
∑M

m=1

(
log

Γ (
∑H

h=1 Θ̆m,h)∏H
h=1 Γ (Θ̆m,h)

Γ (α)H

Γ (Hα) +
∑H

h=1

(
Θ̆m,h − α

)(
Ψ(Θ̆m,h)− Ψ(

∑H
h′=1 Θ̆m,h′)

))

+
∑H

h=1

(
log

Γ (
∑L

l=1 B̆l,h)∏L
l=1 Γ (B̆l,h)

Γ (η)L

Γ (Lη) +
∑L

l=1

(
B̆l,h − η

)(
Ψ(B̆l,h)− Ψ(

∑L
l′=1 B̆l′,h)

))
, (15)

Q =
〈
log q({z(n,m)})

p({w(n,m)},{z(n,m)}|Θ,B)

〉

q(Θ,B,{z(n,m)})

= −
∑M

m=1 N
(m)

∑L
l=1 Vl,m log

(∑H
h=1

exp(Ψ(Θ̆m,h))
exp(Ψ(

∑H
h′=1

Θ̆m,h′ ))
exp(Ψ(B̆l,h))

exp(Ψ(
∑L

l′=1
B̆l′,h))

)
. (16)

Here, V ∈ RL×M is the empirical word distribution matrix with its entries given by Vl,m =
1

N(m)

∑N(m)

n=1 w(n,m)
l . Note that we have eliminated the variational parameters {ẑ(n,m)} for the topic

occurrence latent variables by using the stationary condition (13).

3.2 Asymptotic Analysis of VB Solution

Below, we investigate the leading term of the free energy in the asymptotic limit when N ≡
minm N (m) → ∞. Unlike the previous analysis for latent variable models [24], we do not as-
sume L,M ≪ N , but 1 ≪ L,M,N at this point. This amounts to considering the asymptotic
limit when L,M,N → ∞ with a fixed mutual ratio, or equivalently, assuming L,M ∼ O(N).
Throughout the paper, H is set at H = min(L,M) (i.e., the matrix BΘ⊤ can express any multino-
mial distribution). We assume that the word distribution matrix V is a sample from the multinomial
distribution with the true parameter U∗ ∈ RL×M whose rank is H∗ ∼ O(1), i.e., U∗ = B∗Θ∗⊤

where Θ∗ ∈ RM×H∗
and B∗ ∈ RL×H∗

.2 We assume that α, η ∼ O(1).

The stationary condition (12) leads to the following lemma (the proof is given in Appendix A):

Lemma 1 Let B̂Θ̂
⊤
= ⟨BΘ⊤⟩q(Θ,B). Then, it holds that

⟨(BΘ⊤ − B̂Θ̂
⊤
)2l,m⟩q(Θ,B) = Op(N

−2), (17)

Q = −
∑M

m=1 N
(m)

∑L
l=1 Vl,m log(B̂Θ̂

⊤
)l,m +Op(M), (18)

where Op(·) denotes the order in probability.

2 More precisely, U∗ = B∗Θ∗⊤ +O(N−1) is sufficient.
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Eq.(17) implies the convergence of the posterior. Let

Ĵ =
∑L

l=1

∑M
m=1 κ

(
(B̂Θ̂

⊤
)l,m ̸= (B∗Θ∗⊤)l,m +Op(N−1)

)
(19)

be the number of entries of B̂Θ̂
⊤

that does not converge to the true value. Here, we denote by κ(·)
the indicator function equal to one if the event is true, and zero otherwise. Then, Eq.(18) leads to
the following lemma:

Lemma 2 Q is minimized when B̂Θ̂
⊤
= B∗Θ∗⊤ +Op(N−1), and it holds that

Q = S +Op(ĴN +M), where

S = − log p({w(n,m)}, {z(n,m)}|Θ∗,B∗) = −
∑M

m=1 N
(m)

∑L
l=1 Vl,m log(B∗Θ∗)l,m.

Lemma 2 simply states that Q/N converges to the normalized entropy S/N of the true distribution
(which is the lowest achievable value with probability 1), if and only if VB converges to the true
distribution (i.e., Ĵ = 0).

Let Ĥ =
∑H

h=1 κ(
1
M

∑M
m=1 Θ̂m,h ∼ Op(1)) be the number of topics used in the whole corpus,

M̂ (h) =
∑M

m=1 κ(Θ̂m,h ∼ Op(1)) be the number of documents that contain the h-th topic, and
L̂(h) =

∑L
l=1 κ(B̂l,h ∼ Op(1)) be the number of words of which the h-th topic consist. We have

the following lemma (the proof is given in Appendix B):

Lemma 3 R is written as follows:

R =
{
M

(
Hα− 1

2

)
+ Ĥ

(
Lη − 1

2

)
−
∑Ĥ

h=1

(
M̂ (h)

(
α− 1

2

)
+ L̂(h)

(
η − 1

2

))}
logN

+ (H − Ĥ)
(
Lη − 1

2

)
logL+Op(H(M + L)). (20)

Since we assumed that the true matrices Θ∗ and B∗ are of the rank of H∗, Ĥ = H∗ ∼ O(1) is
sufficient for the VB posterior to converge to the true distribution. However, Ĥ can be much larger
than H∗ with ⟨BΘ⊤⟩q(Θ,B) unchanged because of the non-identifiability of matrix factorization—
duplicating topics with divided weights, for example, does not change the distribution.

Based on Lemma 2 and Lemma 3, we obtain the following theorem (the proof is given in Ap-
pendix C):

Theorem 1 In the limit when N → ∞ with L,M ∼ O(1), it holds that Ĵ = 0 with probability 1,
and

F = S +
{
M

(
Hα− 1

2

)
+ Ĥ

(
Lη − 1

2

)
−
∑Ĥ

h=1

(
M̂ (h)

(
α− 1

2

)
+ L̂(h)

(
η − 1

2

))}
logN

+Op(1).

In the limit when N,M → ∞ with M
N , L ∼ O(1), it holds that Ĵ = op(logN), and

F = S +
{
M

(
Hα− 1

2

)
−
∑Ĥ

h=1 M̂
(h)

(
α− 1

2

)}
logN + op(N logN).

In the limit when N,L → ∞ with L
N ,M ∼ O(1), it holds that Ĵ = op(logN), and

F = S +HLη logN + op(N logN).

In the limit when N,L,M → ∞ with L
N , M

N ∼ O(1), it holds that Ĵ = op(N logN), and

F = S +H(Mα+ Lη) logN + op(N2 logN).

Since Eq.(17) was shown to hold, the predictive distribution converges to the true distribution if
Ĵ = 0. Accordingly, Theorem 1 states that the consistency holds in the limit when N → ∞ with
L,M ∼ O(1).

Theorem 1 also implies that, in the asymptotic limits with small L ∼ O(1), the leading term depends
on Ĥ , meaning that it dominates the topic sparsity of the VB solution. We have the following
corollary (the proof is given in Appendix D):
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Table 1: Sparsity thresholds of VB, PBA, PBB, and MAP methods (see Theorem 2). The first four
columns show the thresholds (αsparse,αdense), of which the function forms depend on the range of
η, in the limit when N → ∞ with L,M ∼ O(1). A single value is shown if αsparse = αdense. The
last column shows the threshold αM→∞ in the limit when N,M → ∞ with M

N , L ∼ O(1).
(
αsparse,αdense

)
αM→∞

η range 0 < η ≤ 1
2L

1
2L < η ≤ 1

2
1
2 < η < 1 1 ≤ η < ∞ 0 < η < ∞

VB 1
2 −

1
2−Lη

minh M∗(h)
1
2 +

Lη− 1
2

maxh M∗(h)

(
1
2 + L−1

2maxh M∗(h) ,
1
2 +

Lη− 1
2

minh M∗(h)

)
1
2

PBA —
(

1
2 ,

1
2 + L(η−1)

minh M∗(h)

)
1
2

PBB 1 1 +
Lη− 1

2

maxh M∗(h)

(
1 + L−1

2maxh M∗(h) , 1 +
Lη− 1

2

minh M∗(h)

)
1

MAP —
(
1, 1 + L(η−1)

minh M∗(h)

)
1

Corollary 1 Let M∗(h) =
∑M

m=1 κ(Θ
∗
m,h ∼ O(1)) and L∗(h) =

∑L
l=1 κ(B

∗
l,h ∼ O(1)). Consider

the limit when N → ∞ with L,M ∼ O(1). When 0 < η ≤ 1
2L , the VB solution is sparse if

α < 1
2 −

1
2−Lη

minh M∗(h) , and dense if α > 1
2 −

1
2−Lη

minh M∗(h) . When 1
2L < η ≤ 1

2 , the VB solution is

sparse if α < 1
2 +

Lη− 1
2

maxh M∗(h) , and dense if α > 1
2 +

Lη− 1
2

maxh M∗(h) . When η > 1
2 , the VB solution is

sparse if α < 1
2 + L−1

2maxh M∗(h) , and dense if α > 1
2 +

Lη− 1
2

minh M∗(h) . In the limit when N,M → ∞
with M

N , L ∼ O(1), the VB solution is sparse if α < 1
2 , and dense if α > 1

2 .

In the case when L,M ≪ N and in the case when L ≪ M,N , Corollary 1 provides information
on the sparsity of the VB solution, which will be compared with other methods in Section 3.3. On
the other hand, although we have successfully derived the leading term of the free energy also in the
case when M ≪ L,N and in the case when 1 ≪ L,M,N , it unfortunately provides no information
on sparsity of the solution.

3.3 Asymptotic Analysis of PBA, PBB, and MAP

By applying similar analysis to PBA learning, PBB learning, and MAP estimation, we can obtain
the following theorem (the proof is given in Appendix E):

Theorem 2 In the limit when N → ∞ with L,M ∼ O(1), the solution is sparse if α < αsparse,
and dense if α > αdense. In the limit when N,M → ∞ with M

N , L ∼ O(1), the solution is sparse if
α < αM→∞, and dense if α > αM→∞. Here, αsparse, αdense, and αM→∞ are given in Table 1.

A notable finding from Table 1 is that the threshold that determines the topic sparsity of PBB-LDA
is (most of the case exactly) 1

2 larger than the threshold of VB-LDA. The same relation is observed
between MAP-LDA and PBA-LDA. From these, we can conclude that point-estimating Θ, instead
of integrating it out, increases the threshold by 1

2 in the LDA model. We will validate this observation
by numerical experiments in Section 4.

3.4 Discussion

The above theoretical analysis (Thereom 2) showed that VB tends to induce weaker sparsity than
MAP in the LDA model3, i.e., VB requires sparser prior (smaller α) than MAP to give a sparse
solution (mean of the posterior). This phenomenon is completely opposite to other models such
as mixture models [24, 25, 13], hidden Markov models [11], Bayesian networks [23], and fully-
observed matrix factorization [17], where VB tends to induce stronger sparsity than MAP. This
phenomenon might be partly explained as follows: In the case of mixture models, the sparsity
threshold depends on the degree of freedom of a single component [24]. This is reasonable because

3 Although this tendency was previously pointed out [2] by using the approximation exp(ψ(n)) ≈ n − 1
2

and comparing the stationary condition, our result has first clarified the sparsity behavior of the solution based
on the asymptotic free energy analysis without using such an approximation.
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(d) MAP

Figure 2: Estimated number Ĥ of topics by (a) VB, (b) PBA, (c) PBB, and (d) MAP, for the artificial
data with L = 100,M = 100, H∗ = 20, and N ∼ 10000.
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Figure 3: Estimated number Ĥ of topics for the Last.FM data with L = 100,M = 100, and
N ∼ 700.

adding a single component increases the model complexity by this amount. Also, in the case of
LDA, adding a single topic requires additional L + 1 parameters. However, the added topic is
shared over M documents, which could discount the increased model complexity relative to the
increased data fidelity. Corollary 1, which implies the dependency of the threshold for α on L and
M , might support this conjecture. However, the same applies to the matrix factorization, where VB
was shown to give a sparser solution than MAP [17]. Investigation on related models, e.g., Poisson
MF [9], would help us fully explain this phenomenon.

Technically, our theoretical analysis is based on the previous asymptotic studies on VB learning con-
ducted for latent variable models [24, 25, 13, 11, 23]. However, our analysis is not just a straight-
forward extension of those works to the LDA model. For example, the previous analysis either
implicitly [24] or explicitly [13] assumed the consistency of VB learning, while we also analyzed
the consistency of VB-LDA, and showed that the consistency does not always hold (see Theorem 1).
Moreover, we derived a general form of the asymptotic free energy, which can be applied to different
asymptotic limits. Specifically, the standard asymptotic theory requires a large number N of words
per document, compared to the number M of documents and the vocabulary size L. This may be
reasonable in some collaborative filtering data such as the Last.FM data used in our experiments in
Section 4. However, L and/or M would be comparable to or larger than N in standard text analysis.

Our general form of the asymptotic free energy also allowed us to elucidate the behavior of the
VB free energy when L and/or M diverges with the same order as N . This attempt successfully
revealed the sparsity of the solution for the case when M diverges while L ∼ O(1). However, when
L diverges, we found that the leading term of the free energy does not contain interesting insight into
the sparsity of the solution. Higher-order asymptotic analysis will be necessary to further understand
the sparsity-inducing mechanism of the LDA model with large vocabulary.

4 Numerical Illustration

In this section, we conduct numerical experiments on artificial and real data for collaborative filter-
ing.

The artificial data were created as follows. We first sample the true document matrix Θ∗ of size
M ×H∗ and the true topic matrix B∗ of size L×H∗. We assume that each row θ̃

∗
m of Θ∗ follows

the Dirichlet distribution with α∗ = 1/H∗, while each column β∗
h of B∗ follows the Dirichlet

distribution with η∗ = 1/L. The document length N (m) is sampled from the Poisson distribution
with its mean N . The word histogram N (m)vm for each document is sampled from the multinomial
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Figure 4: Estimated number Ĥ of topics by VB-LDA for the artificial data with H∗ = 20 and
N ∼ 10000. For the case when L = 500,M = 1000, the maximum estimated rank is limited to
100 for computational reason.

distribution with the parameter specified by the m-th row vector of B∗Θ∗⊤. Thus, we obtain the
L×M matrix V , which corresponds to the empirical word distribution over M documents.

As a real-world dataset, we used the Last.FM dataset.4 Last.FM is a well-known social music web
site, and the dataset includes the triple (“user,” “artist,” “Freq”) which was collected from the play-
lists of users in the community by using a plug-in in users’ media players. This triple means that
“user” played “artist” music “Freq” times, which indicates users’ preferred artists. A user and a
played artist are analogous to a document and a word, respectively. We randomly chose L artists
from the top 1000 frequent artists, and M users who live in the United States. To find a better local
solution (which hopefully is close to the global solution), we adopted a split and merge strategy [22],
and chose the local solution giving the lowest free energy among different initialization schemes.

Figure 2 shows the estimated number Ĥ of topics by different approximation methods, i.e., VB,
PBA, PBB, and MAP, for the Artificial data with L = 100,M = 100, H∗ = 20, and N ∼ 10000.
We can clearly see that the sparsity threshold in PBB and MAP, where Θ is point-estimated, is
larger than that in VB and PBA, where Θ is marginalized. This result supports the statement by
Theorem 2. Figure 3 shows results on the Last.FM data with L = 100,M = 100 and N ∼ 700. We
see a similar tendency to Figure 2 except the region where η < 1 for PBA, in which our theory does
not predict the estimated number of topics.

Finally, we investigate how different asymptotic settings affect the topic sparsity. Figure 4 shows
the sparsity dependence on L and M for the artificial data. The graphs correspond to the four
cases mentioned in Theorem 1, i.e, (a) L,M ≪ N , (b) L ≪ N,M , (c) M ≪ N,L, and (d)
1 ≪ N,L,M . Corollary 1 explains the behavior in (a) and (b), and further analysis is required to
explain the behavior in (c) and (d).

5 Conclusion

In this paper, we considered variational Bayesian (VB) learning in the latent Dirichlet allocation
(LDA) model and analytically derived the leading term of the asymptotic free energy. When the
vocabulary size is small, our result theoretically explains the phase-transition phenomenon. On the
other hand, when vocabulary size is as large as the number of words per document, the leading term
tells nothing about sparsity. We need more accurate analysis to clarify the sparsity in such cases.

Throughout the paper, we assumed that the hyperparameters α and η are pre-fixed. However, α
would often be estimated for each topic h, which is one of the advantages of using the LDA model
in practice [5]. In the future work, we will extend the current line of analysis to the empirical
Bayesian setting where the hyperparameters are also learned, and further elucidate the behavior of
the LDA model.
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A Proof of Lemma 1

The following bounds are known [1]:
(
y − 1

2

)
log y − y +

1

2
log(2π) ≤ logΓ (y) ≤

(
y − 1

2

)
log y − y +

1

2
log(2π) +

1

12y
, (21)

log y − 1

y
≤ Ψ(y) ≤ log y − 1

2y
. (22)

For the Dirichlet distribution p(θ|θ̆) ∝
∏H

h=1 a
θ̆h−1
h , the mean and the variance are given as follows:

θ̂h = ⟨θh⟩p(θ|θ̆) =
θ̆h

θ̆0
, ⟨(θh − θ̂h)

2⟩p(θ|θ̆) =
θ̆h(θ̆0 − θ̆h)

θ̆20(θ̆0 + 1)
,

where θ̆0 =
∑H

h=1 θ̆h.

For fixed N , R, defined by Eq.(15), diverges to +∞ if Θ̆m,h → +0 for any (m,h) or B̆l,h → +0 for
any (l, h). Therefore, the global minimizer of the free energy (14) is in the interior of the domain,
where the free energy is differentiable. Consequently, the global minimizer is a stationary point.
The stationary condition (12) implies that

Θ̆m,h ≥ α, B̆l,h ≥ η, (23)
H∑

h=1

Θ̆m,h =
H∑

h=1

α+N (m),
L∑

l=1

B̆l,h =
L∑

l=1

η +
M∑

m=1

(Θ̆m,h − α). (24)

Therefore, we have

⟨(Θm,h − Θ̂m,h)
2⟩q(Θ) = Op(N

−2) for all (m,h), (25)
(
max
m

Θ̂m,h

)2
⟨(Bl,h − B̂l,h)

2⟩q(B) = Op(N
−2) for all (l, h), (26)

which leads to Eq.(17).

By using Eq.(22), Q is bounded as follows:

Q ≤ Q ≤ Q,

where

Q = −
M∑

m=1

N (m)
L∑

l=1

Vl,m log

⎛

⎜⎝
H∑

h=1

Θ̆m,h∑H
h′=1

Θ̆m,h′

B̆l,h∑L
l′=1

B̆l′,h

exp

(
− 1

Θ̆m,h

)

exp

(
− 1

2
∑H

h′=1
Θ̆m,h′

)
exp

(
− 1

B̆l,h

)

exp

(
− 1

2
∑L

l′=1
B̆l′,h

)

⎞

⎟⎠ ,

Q = −
M∑

m=1

N (m)
L∑

l=1

Vl,m log

⎛

⎜⎝
H∑

h=1

Θ̆m,h∑H
h′=1

Θ̆m,h′

B̆l,h∑L
l′=1

B̆l′,h

exp

(
− 1

2Θ̆m,h

)

exp

(
− 1∑H

h′=1
Θ̆m,h′

)
exp

(
− 1

2B̆l,h

)

exp

(
− 1∑L

l′=1
B̆l′,h

)

⎞

⎟⎠ .

Using Eqs.(25) and (26), we have Eq.(18), which completes the proof of Lemma 1. ✷

B Proof of Lemma 3

By using the bounds (21) and (22), R can be bounded as

R ≤ R ≤ R, (27)

where

R = −
M∑

m=1

log

(
Γ (Hα)
Γ (α)H

)
−

H∑

h=1

log

(
Γ (Lη)
Γ (η)

L)
− M(H − 1) +H(L− 1)

2
log(2π)

+
M∑

m=1

{(
Hα− 1

2

)
log

H∑

h=1

Θ̆m,h −
H∑

h=1

(
α− 1

2

)
log Θ̆m,h

}
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+
H∑

h=1

{(
Lη − 1

2

)
log

L∑

l=1

B̆l,h −
L∑

l=1

(
η − 1

2

)
log B̆l,h

}

+
M∑

m=1

{
−

H∑

h=1

1

12Θ̆m,h

−
H∑

h=1

(
Θ̆m,h − α

)( 1

Θ̆m,h

− 1

2
∑H

h′=1 Θ̆m,h′

)}

+
H∑

h=1

{
−

L∑

l=1

1

12B̆l,h

−
L∑

l=1

(
B̆l,h − η

)( 1

B̆l,h

− 1

2
∑L

l′=1 B̆l′,h

)}
, (28)

R = −
M∑

m=1

log

(
Γ (Hα)
Γ (α)H

)
−

H∑

h=1

log

(
Γ (Lη)
Γ (η)

L)
− M(H − 1) +H(L− 1)

2
log(2π)

+
M∑

m=1

{(
Hα− 1

2

)
log

H∑

h=1

Θ̆m,h −
H∑

h=1

(
α− 1

2

)
log Θ̆m,h

}

+
H∑

h=1

{(
Lη − 1

2

)
log

L∑

l=1

B̆l,h −
L∑

l=1

(
η − 1

2

)
log B̆l,h

}

+
M∑

m=1

{
1

12
∑H

h=1 Θ̆m,h

−
H∑

h=1

(
Θ̆m,h − α

)( 1

2Θ̆m,h

− 1
∑H

h′=1 Θ̆m,h′

)}

+
H∑

h=1

{
1

12
∑L

l=1 B̆l,h

−
L∑

l=1

(
B̆l,h − η

)( 1

2B̆l,h

− 1
∑L

l′=1 B̆l′,h

)}
. (29)

Eqs.(23) and (24) imply that

R =
M∑

m=1

{(
Hα− 1

2

)
log

H∑

h=1

Θ̆m,h −
H∑

h=1

(
α− 1

2

)
log Θ̆m,h

}

+
H∑

h=1

{(
Lη − 1

2

)
log

L∑

l=1

B̆l,h −
L∑

l=1

(
η − 1

2

)
log B̆l,h

}
+Op(H(M + L)),

which leads to Eq.(20). This completes the proof of Lemma 3. ✷

C Proof of Theorem 1

Lemma 2 and Lemma 3 imply that the free energy can be written as follows:

F − S =
{
M
(
Hα− 1

2

)
+ Ĥ

(
Lη − 1

2

)
−
∑Ĥ

h=1

(
M̂ (h)

(
α− 1

2

)
+ L̂(h)

(
η − 1

2

))}
logN

+ (H − K̂)
(
Lη − 1

2

)
logL+Op(ĴN + LM). (30)

Below, we investigate the leading term of the free energy (30) in different asymptotic limits.

In the limit when N → ∞ with L,M ∼ O(1)

In this case, the minimizer should satisfy

B̂Θ̂
⊤
= B∗Θ∗⊤ +Op(N

−1), (31)

making Ĵ = 0 with probability 1, and the leading term of the order of Op(logN):

F − S =
{
M
(
Hα− 1

2

)
+ Ĥ

(
Lη − 1

2

)
−
∑Ĥ

h=1

(
M̂ (h)

(
α− 1

2

)
+ L̂(h)

(
η − 1

2

))}
logN +Op(1).

Note that Eq.(31) implies the consistency of the predictive distribution.

In the limit when N,M → ∞ with M
N , L ∼ O(1)

In this case,
Ĵ = op(logN), (32)

making the leading term of the order of Op(N logN):

F − S =
{
M
(
Hα− 1

2

)
−
∑Ĥ

h=1 M̂
(h)
(
α− 1

2

)}
logN + op(N logN).

Eq.(32) implies that the predictive distribution is not necessarily consistent—op(logN) components can devi-
ate from the true matrix B∗Θ∗⊤ by the order of Op(1).
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In the limit when N,L → ∞ with L
N ,M ∼ O(1)

In this case, Eq.(32) holds, and the leading term of the free energy is of the order of Op(N logN):

F − S = HLη logN + op(N logN).

In the limit when N,L,M → ∞ with L
N , M

N ∼ O(1)

In this case,

Ĵ = op(N logN), (33)

and the leading term of the free energy is of the order of Op(N
2 logN):

F − S = H (Mα+ Lη) logN + op(N
2 logN).

This completes the proof of Theorem 1. ✷

D Proof of Corollary 1

From the compact representation when Ĥ = H∗, M̂ (h) = M∗(h), and L̂(h) = L∗(h), we can decompose a
singular component into two, keeping B̂Θ̂

⊤
unchanged, so that

Ĥ → Ĥ + 1, (34)
∑H

h=1 M̂
(h) →

∑H∗

h=1 M̂
(h) +∆M for minh M∗(h) ≤ ∆M ≤ maxh M∗(h), (35)

∑H
h=1 L̂

(h) →
∑H∗

h=1 L̂
(h) +∆L for 0 ≤ ∆L ≤ maxh L∗(h). (36)

Here the lower-bound for ∆M in Eq.(35) corresponds to the case that the least frequent topic is chosen to be
decomposed, while the upper-bound to the case that the most frequent topic is chosen. The lower-bound for
∆L in Eq.(36) corresponds to the decomposition such that some of the word-occurrences are moved to a new
topic, while the upper-bound to the decomposition such that the topic with the widest vocabulary is copied to
a new topic. Note that the bounds both for ∆M and ∆L are not always achievable simultaneously, when we
choose one topic to decompose.

Below, we investigate the relation between the sparsity of the solution and the hyperparameter setting in differ-
ent asymptotic limits.

In the limit when N → ∞ with L,M ∼ O(1)

The coefficient of the leading term of the free energy is

λ = M
(
Hα− 1

2

)
+
∑Ĥ

h=1

(
Lη − 1

2 − M̂ (h)
(
α− 1

2

)
− L̂(h)

(
η − 1

2

))
. (37)

Note that the solution is sparse if Eq.(37) is increasing of Ĥ , and dense if it is decreasing. Eqs.(34)–(36) imply
the following:

1. When 0 < η ≤ 1
2L and α ≤ 1

2 , the solution is sparse if

Lη − 1
2
−min

h
M∗(h)

(
α− 1

2

)
> 0, or equivalently,α <

1
2
− 1

minh M∗(h)

(
1
2
− Lη

)
,

and dense if

α >
1
2
− 1

minh M∗(h)

(
1
2
− Lη

)
.

2. When 0 < η ≤ 1
2L and α > 1

2 , the solution is sparse if

Lη − 1
2
−max

h
M∗(h)

(
α− 1

2

)
> 0, or equivalently,α <

1
2
− 1

maxh M∗(h)

(
1
2
− Lη

)
,

and dense if

α >
1
2
− 1

maxh M∗(h)

(
1
2
− Lη

)
.

Therefore, the solution is always dense in this case.
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3. When 1
2L < η ≤ 1

2 and α < 1
2 , the solution is sparse if

Lη − 1
2
−min

h
M∗(h)

(
α− 1

2

)
> 0, or equivalently,α <

1
2
+

1

minh M∗(h)

(
Lη − 1

2

)
,

and dense if

α >
1
2
+

1

minh M∗(h)

(
Lη − 1

2

)
.

Therefore, the solution is always sparse in this case.
4. When 1

2L < η ≤ 1
2 and α ≥ 1

2 , the solution is sparse if

Lη − 1
2
−max

h
M∗(h)

(
α− 1

2

)
> 0, or equivalently,α <

1
2
+

1

maxh M∗(h)

(
Lη − 1

2

)
,

and dense if

α >
1
2
+

1

maxh M∗(h)

(
Lη − 1

2

)
.

5. When η > 1
2 and α < 1

2 , the solution is sparse if

Lη − 1
2
−max

h

(
M∗(h)

(
α− 1

2

)
+ L∗(h)

(
η − 1

2

))
> 0, (38)

and dense if

Lη − 1
2
−max

h

(
M∗(h)

(
α− 1

2

)
+ L∗(h)

(
η − 1

2

))
< 0. (39)

Therefore, the solution is sparse if

Lη − 1
2
−min

h
M∗(h)

(
α− 1

2

)
−max

h
L∗(h)

(
η − 1

2

)
> 0,

or equivalently, α <
1
2
+

1

minh M∗(h)

(
Lη − 1

2
−max

h
L∗(h)

(
η − 1

2

))
,

and dense if

Lη − 1
2
−max

h
M∗(h)

(
α− 1

2

)
−max

h
L∗(h)

(
η − 1

2

)
< 0,

or equivalently, α >
1
2
+

1

maxh M∗(h)

(
Lη − 1

2
−max

h
L∗(h)

(
η − 1

2

))
.

Therefore, the solution is always sparse in this case.
6. When η > 1

2 and α ≥ 1
2 , the solution is sparse if Eq.(38) holds, and dense if Eq.(39) holds. There-

fore, the solution is sparse if

Lη − 1
2
−max

h
M∗(h)

(
α− 1

2

)
−max

h
L∗(h)

(
η − 1

2

)
> 0,

or equivalently, α <
1
2
+

1

maxh M∗(h)

(
Lη − 1

2
−max

h
L∗(h)

(
η − 1

2

))
,

and dense if

Lη − 1
2
−min

h
M∗(h)

(
α− 1

2

)
−max

h
L∗(h)

(
η − 1

2

)
< 0,

or equivalently, α >
1
2
+

1

minh M∗(h)

(
Lη − 1

2
−max

h
L∗(h)

(
η − 1

2

))
.

Thus, we can conclude that, in this case, the solution is sparse if

α <
1
2
+

L− 1

2maxh M∗(h) ,

and dense if

α >
1
2
+

Lη − 1
2

minh M∗(h) .

Summarizing the above, we have the following lemma:

Lemma 4 When 0 < η ≤ 1
2L , the solution is sparse if α < 1

2−
1
2−Lη

minh M∗(h) , and dense if α > 1
2−

1
2−Lη

minh M∗(h) .

When 1
2L < η ≤ 1

2 , the solution is sparse if α < 1
2 +

Lη− 1
2

maxh M∗(h) , and dense if α > 1
2 +

Lη− 1
2

maxh M∗(h) . When

η > 1
2 , the solution is sparse if α < 1

2 + L−1
2maxh M∗(h) , and dense if α > 1

2 +
Lη− 1

2

minh M∗(h) .
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In the limit when N,M → ∞ with M
N , L ∼ O(1)

The coefficient of the leading term of the free energy is given by

λ = M
(
Hα− 1

2

)
−
∑Ĥ

h=1 M̂
(h)
(
α− 1

2

)
. (40)

Although the predictive distribution does not necessarily converges to the true distribution, we can investigate
the sparsity of the solution by considering the duplication rules (34)–(36) that keep B̂Θ̂

⊤
unchanged. It is

clear that Eq.(40) is increasing of Ĥ if α < 1
2 , and decreasing if α > 1

2 . Combing this result with Lemma 4
completes the proof of Corollary 1. ✷

E Proof of Theorem 2

We analyze PBA learning, PBB learning, and MAP estimation, and then summarize the results.

E.1 PBA Learning

The free energy for PBA learning is given as follows:

FPBA = χB +RPBA +QPBA, (41)

where χB is a large constant corresponding to the negative entropy of the delta functions, and

RPBA =
〈
log q(Θ)q(B)

p(Θ|α)p(B|η)

〉

qPBA(Θ,B)

=
M∑

m=1

(
log

Γ (
∑H

h=1 Θ̆PBA
m,h )

∏H
h=1 Γ (Θ̆PBA

m,h )

Γ (α)H

Γ (Hα) +
∑H

h=1

(
Θ̆PBA

m,h − α
)(

Ψ(Θ̆PBA
m,h )− Ψ(

∑H
h′=1 Θ̆

PBA
m,h′)

))

+
H∑

h=1

(
log Γ (η)L

Γ (Lη) +
∑L

l=1 (1− η)
(
log(B̆PBA

l,h )− log(
∑L

l′=1 B̆
PBA
l′,h )

))
, (42)

QPBA =
〈
log q({z(n,m)})

p({w(n,m)},{z(n,m)}|Θ,B)

〉

qPBA(Θ,B,{z(n,m)})

= −
M∑

m=1

N (m)
L∑

l=1

Vl,m log

(
H∑

h=1

exp(Ψ(Θ̆PBA
m,h ))

exp
(
Ψ(
∑H

h′=1
Θ̆PBA

m,h′ )
)

B̆PBA
l,h∑L

l′=1
B̆PBA

l′,h

)
. (43)

Let us first consider the case when η < 1. In this case, F diverges to F → −∞ with fixed N , when
B̆l,h = O(1) for any (l, h) and B̆l′,h → +0 for all other l′ ̸= l. Therefore, the solution is useless.

When η ≥ 1, the solution satisfies the following stationary condition:

Θ̆PBA
m,h = α+

∑N(m)

n=1 ẑPBA(n,m)
h , B̆PBA

l,h = η − 1 +
∑M

m=1

∑N(m)

n=1 w(n,m)
l ẑPBA(n,m)

h , (44)

ẑPBA(n,m)
h =

exp(Ψ(Θ̆PBA
m,h ))

∏L
l=1(B̆

PBA
l,h )w

(n,m)
l

∑H
h′=1

(
exp
(
Ψ(Θ̆PBA

m,h′ )
)∏L

l=1(B̆
PBA
l,h′ )w

(n,m)
l

) . (45)

In the same way as for VB learning, we can obtain the following lemma:

Lemma 5 Let B̂
PBA

Θ̂
PBA⊤

= ⟨BΘ⊤⟩qPBA(Θ,B). Then, it holds that

⟨(BΘ⊤ − B̂
PBA

Θ̂
PBA⊤

)2l,m⟩qPBA(Θ,B) = Op(N
−2), (46)

QPBA = −
∑M

m=1 N
(m)

∑L
l=1 Vl,m log(B̂

PBA
Θ̂

PBA⊤
)l,m +Op(N−1). (47)

QPBA is minimized when B̂
PBA

Θ̂
PBA⊤

= B∗Θ∗⊤ +Op(N−1), and it holds that

QPBA = S +Op(ĴN + LM).

RPBA is written as follows:

RPBA =
{
M

(
Hα− 1

2

)
+ ĤL (η − 1)−

∑Ĥ
h=1

(
M̂ (h)

(
α− 1

2

)
+ L̂(h) (η − 1)

)}
logN

+ (H − Ĥ)L (η − 1) logL+Op(H(M + L)). (48)
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Taking the different asymptotic limits, we obtain the following theorem:

Theorem 3 When η < 1, each column vector of B̂
PBA

has only one non-zero entry. Assume below
that η ≥ 1. In the limit when N → ∞ with L,M ∼ O(1), it holds that Ĵ = 0 with probability 1,
and

FPBA = S +
{
M

(
Hα− 1

2

)
+ ĤL (η − 1)−

∑Ĥ
h=1

(
M̂ (h)

(
α− 1

2

)
+ L̂(h) (η − 1)

)}
logN

+Op(1).

In the limit when N,M → ∞ with M
N , L ∼ O(1), it holds that Ĵ = op(logN), and

FPBA = S +
{
M

(
Hα− 1

2

)
−

∑Ĥ
h=1 M̂

(h)
(
α− 1

2

)}
logN + op(N logN).

In the limit when N,L → ∞ with L
N ,M ∼ O(1), it holds that Ĵ = op(logN), and

FPBA = S +HL(η − 1) logN + op(N logN).

In the limit when N,L,M → ∞ with L
N , M

N ∼ O(1), it holds that Ĵ = op(N logN), and

FPBA = S +H(Mα+ L(η − 1)) logN + op(N2 logN).

Note that Theorem 3 provides no information on the sparsity of the PBA solution for η < 1. Below,
we investigate the sparsity of the solution for η ≥ 1.

In the limit when N → ∞ with L,M ∼ O(1)

The coefficient of the leading term of the free energy is

λPBA = M
(
Hα− 1

2

)
+
∑Ĥ

h=1

(
L(η − 1)− M̂ (h)

(
α− 1

2

)
− L̂(h) (η − 1)

)
.

The solution is sparse if λPBA is increasing of Ĥ , and dense if it is decreasing. We focus on the case
when η ≥ 1. Eqs.(34)–(36) imply the following:

1. When α < 1
2 , the solution is sparse if

L(η − 1)−max
h

(
M∗(h)

(
α− 1

2

)
+ L∗(h) (η − 1)

)
> 0, (49)

and dense if

L(η − 1)−max
h

(
M∗(h)

(
α− 1

2

)
+ L∗(h) (η − 1)

)
< 0. (50)

Therefore, the solution is sparse if

L(η − 1)−min
h

M∗(h)
(
α− 1

2

)
−max

h
L∗(h) (η − 1) > 0,

or equivalently, α <
1

2
+

(
L−maxh L∗(h)) (η − 1)

minh M∗(h) ,

and dense if

L(η − 1)−max
h

M∗(h)
(
α− 1

2

)
−max

h
L∗(h) (η − 1) < 0,

or equivalently, α >
1

2
+

(
L−maxh L∗(h)) (η − 1)

maxh M∗(h) .

Therefore, the solution is always sparse in this case.
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2. When α ≥ 1
2 , the solution is sparse if Eq.(49) holds, and dense if Eq.(50) holds. Therefore,

the solution is sparse if

L(η − 1)−max
h

M∗(h)
(
α− 1

2

)
−max

h
L∗(h) (η − 1) > 0,

or equivalently, α <
1

2
+

(
L−maxh L∗(h)) (η − 1)

maxh M∗(h) ,

and dense if

L(η − 1)−min
h

M∗(h)
(
α− 1

2

)
−max

h
L∗(h) (η − 1) < 0,

or equivalently, α >
1

2
+

(
L−maxh L∗(h)) (η − 1)

minh M∗(h) .

Thus, we can conclude that, in this case, the solution is sparse if

α <
1

2
,

and dense if

α >
1

2
+

L(η − 1)

minh M∗(h) .

Summarizing the above, we have the following lemma:

Lemma 6 Assume that η ≥ 1. The solution is sparse if α < 1
2 , and dense if α > 1

2 + L(η−1)
minh M∗(h) .

In the limit when N,M → ∞ with M
N , L ∼ O(1)

The coefficient of the leading term of the free energy is given by

λ = M
(
Hα− 1

2

)
−
∑Ĥ

h=1 M̂
(h)

(
α− 1

2

)
. (51)

Although the predictive distribution does not necessarily converges to the true distribution, we can
investigate the sparsity of the solution by considering the duplication rules (34)–(36) that keep B̂Θ̂

⊤

unchanged. It is clear that Eq.(51) is increasing of Ĥ if α < 1
2 , and decreasing if α > 1

2 . Combing
this result with Lemma 6, we obtain the following corollary:

Corollary 2 Assume that η ≥ 1. In the limit when N → ∞ with L,M ∼ O(1), the PBA solution is
sparse if α < 1

2 , and dense if α > 1
2+

L(η−1)
minh M∗(h) . In the limit when N,M → ∞ with M

N , L ∼ O(1),
the PBA solution is sparse if α < 1

2 , and dense if α > 1
2 .

E.2 PBB Learning

The free energy for PBB learning is given as follows:

FPBB = χΘ +RPBB +QPBB, (52)

where χΘ is a large constant corresponding to the negative entropy of the delta functions, and

RPBB =
〈
log q(Θ)q(B)

p(Θ|α)p(B|η)

〉

qPBB(Θ,B)

=
M∑

m=1

(
log Γ (α)H

Γ (Hα) +
∑H

h=1 (1− α)
(
log(Θ̆PBB

m,h )− log(
∑H

h′=1 Θ̆
PBB
m,h′)

))

+
H∑

h=1

(
log

Γ (
∑L

l=1 B̆PBB
l,h )

∏L
l=1 Γ (B̆PBB

l,h )

Γ (η)L

Γ (Lη) +
∑L

l=1

(
B̆PBB

l,h − η
)(

Ψ(B̆PBB
l,h )− Ψ(

∑L
l′=1 B̆

PBB
l′,h )

))
,

(53)
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QPBB =
〈
log q({z(n,m)})

p({w(n,m)},{z(n,m)}|Θ,B)

〉

qPBB(Θ,B,{z(n,m)})

= −
M∑

m=1

N (m)
L∑

l=1

Vl,m log

(
H∑

h=1

Θ̆PBB
m,h∑H

h′=1
Θ̆PBB

m,h′

exp(Ψ(B̆PBB
l,h ))

exp
(
Ψ(
∑L

l′=1
B̆PBB

l′,h )
)

)
. (54)

Let us first consider the case when α < 1. In this case, F diverges to F → −∞ with fixed N , when
Θ̆m,h = O(1) for any (m,h) and Θ̆m,h′ → +0 for all other h′ ̸= h. Therefore, the solution is
sparse (so sparse that the estimator is useless).

When α ≥ 1, the solution satisfies the following stationary condition:

Θ̆PBB
m,h = α− 1 +

∑N(m)

n=1 ẑPBB(n,m)
h , B̆PBB

l,h = η +
∑M

m=1

∑N(m)

n=1 w(n,m)
l ẑPBB(n,m)

h , (55)

ẑPBB(n,m)
h =

Θ̆PBB
m,h exp

{∑L
l=1 w(n,m)

l (Ψ(B̆PBB
l,h )−Ψ(

∑L
l′=1 B̆PBB

l′,h ))
}

∑H
h′=1

Θ̆PBB
m,h′ exp

{∑L
l=1 w(n,m)

l

(
Ψ(B̆PBB

l,h′ )−Ψ
(∑L

l′=1
B̆PBB

l′,h′

))} . (56)

In the same way as for VB and PBA learning, we can obtain the following lemma:

Lemma 7 Let B̂
PBB

Θ̂
PBB⊤

= ⟨BΘ⊤⟩qPBB(Θ,B). Then, it holds that

⟨(BΘ⊤ − B̂
PBB

Θ̂
PBB⊤

)2l,m⟩qPBB(Θ,B) = Op(N
−2), (57)

QPBB = −
∑M

m=1 N
(m)

∑L
l=1 Vl,m log(B̂

PBB
Θ̂

PBB⊤
)l,m +Op(N−1). (58)

QPBB is minimized when B̂
PBB

Θ̂
PBB⊤

= B∗Θ∗⊤ +Op(N−1), and it holds that

QPBB = S +Op(ĴN + LM).

RPBB is written as follows:

RPBB =
{
MH (α− 1) + Ĥ

(
Lη − 1

2

)
−

∑Ĥ
h=1

(
M̂ (h) (α− 1) + L̂(h)

(
η − 1

2

))}
logN

+ (H − Ĥ)
(
Lη − 1

2

)
logL+Op(H(M + L)). (59)

Taking the different asymptotic limits, we obtain the following theorem:

Theorem 4 When α < 1, each row vector of Θ̂
PBB

has only one non-zero entry, and the PBB
solution is sparse. Assume below that α ≥ 1. In the limit when N → ∞ with L,M ∼ O(1), it holds
that Ĵ = 0 with probability 1, and

FPBB = S +
{
MH (α− 1) + Ĥ

(
Lη − 1

2

)
−
∑Ĥ

h=1

(
M̂ (h) (α− 1) + L̂(h)

(
η − 1

2

))}
logN

+Op(1).

In the limit when N,M → ∞ with M
N , L ∼ O(1), it holds that Ĵ = op(logN), and

FPBB = S +
{
MH (α− 1)−

∑Ĥ
h=1 M̂

(h) (α− 1)
}
logN + op(N logN).

In the limit when N,L → ∞ with L
N ,M ∼ O(1), it holds that Ĵ = op(logN), and

FPBB = S +HLη logN + op(N logN).

In the limit when N,L,M → ∞ with L
N , M

N ∼ O(1), it holds that Ĵ = op(N logN), and

FPBB = S +H(M(α− 1) + Lη) logN + op(N2 logN).

Theorem 4 states that the PBB solution is sparse when α < 1. Below, we investigate the sparsity of
the solution for α ≥ 1.
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In the limit when N → ∞ with L,M ∼ O(1)

The coefficient of the leading term of the free energy is

λPBB = MH (α− 1) +
∑Ĥ

h=1

(
Lη − 1

2 − M̂ (h) (α− 1)− L̂(h)
(
η − 1

2

))
.

The solution is sparse if λPBB is increasing of Ĥ , and dense if it is decreasing. We focus on the case
when α ≥ 1. Eqs.(34)–(36) imply the following:

1. When 0 < η ≤ 1
2L , the solution is sparse if

Lη − 1

2
−max

h
M∗(h) (α− 1) > 0, or equivalently,α < 1− 1

maxh M∗(h)

(
1

2
− Lη

)
,

and dense if

α > 1− 1

maxh M∗(h)

(
1

2
− Lη

)
.

Therefore, the solution is always dense in this case.
2. When 1

2L < η ≤ 1
2 , the solution is sparse if

Lη − 1

2
−max

h
M∗(h) (α− 1) > 0, or equivalently,α < 1 +

Lη − 1
2

maxh M∗(h) ,

and dense if

α > 1 +
Lη − 1

2

maxh M∗(h) .

3. When η > 1
2 , the solution is sparse if

Lη − 1

2
−max

h

(
M∗(h) (α− 1) + L∗(h)

(
η − 1

2

))
> 0, (60)

and dense if

Lη − 1

2
−max

h

(
M∗(h) (α− 1) + L∗(h)

(
η − 1

2

))
< 0. (61)

Therefore, the solution is sparse if

Lη − 1

2
−max

h
M∗(h) (α− 1)−max

h
L∗(h)

(
η − 1

2

)
> 0,

or equivalently, α < 1 +
1

maxh M∗(h)

(
Lη − 1

2
−max

h
L∗(h)

(
η − 1

2

))
,

and dense if

Lη − 1

2
−min

h
M∗(h) (α− 1)−max

h
L∗(h)

(
η − 1

2

)
< 0,

or equivalently, α > 1 +
1

minh M∗(h)

(
Lη − 1

2
−max

h
L∗(h)

(
η − 1

2

))
.

Thus, we can conclude that, in this case, the solution is sparse if

α < 1 +
L− 1

2maxh M∗(h) ,

and dense if

α > 1 +
Lη − 1

2

minh M∗(h) .

Summarizing the above, we have the following lemma:

Lemma 8 Assume that α ≥ 1. When 0 < η ≤ 1
2L , the solution is always dense. When 1

2L < η ≤ 1
2 ,

the solution is sparse if α < 1 +
Lη− 1

2

maxh M∗(h) , and dense if α > 1 +
Lη− 1

2

maxh M∗(h) . When η > 1
2 , the

solution is sparse if α < 1 + L−1
2maxh M∗(h) , and dense if α > 1 +

Lη− 1
2

minh M∗(h) .
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In the limit when N,M → ∞ with M
N , L ∼ O(1)

The coefficient of the leading term of the free energy is given by

λ = M (Hα− 1)−
∑Ĥ

h=1 M̂
(h) (α− 1) . (62)

Although the predictive distribution does not necessarily converges to the true distribution, we can
investigate the sparsity of the solution by considering the duplication rules (34)–(36) that keep B̂Θ̂

⊤

unchanged. It is clear that Eq.(62) is decreasing of Ĥ if α > 1. Combing this result with Theorem 4,
which states that the PBB solution is sparse when α < 1, and Lemma 8, we obtain the following
corollary:

Corollary 3 Consider the limit when N → ∞ with L,M ∼ O(1). When 0 < η ≤ 1
2L , the PBB

solution is sparse if α < 1, and dense if α > 1. When 1
2L < η ≤ 1

2 , the PBB solution is sparse if

α < 1 +
Lη− 1

2

maxh M∗(h) , and dense if α > 1 +
Lη− 1

2

maxh M∗(h) . When η > 1
2 , the PBB solution is sparse

if α < 1 + L−1
2maxh M∗(h) , and dense if α > 1 +

Lη− 1
2

minh M∗(h) . In the limit when N,M → ∞ with
M
N , L ∼ O(1), the PBB solution is sparse if α < 1, and dense if α > 1.

E.3 MAP Learning

The free energy for MAP learning is given as follows:

FMAP = χΘ + χB +RMAP +QMAP, (63)

where χΘ and χB are large constants corresponding to the negative entropies of the delta functions,
and

RMAP =
〈
log q(Θ)q(B)

p(Θ|α)p(B|η)

〉

qMAP(Θ,B)

=
M∑

m=1

(
log Γ (α)H

Γ (Hα) +
∑H

h=1 (1− α)
(
log(Θ̆MAP

m,h )− log(
∑H

h′=1 Θ̆
MAP
m,h′ )

))

+
H∑

h=1

(
log Γ (η)L

Γ (Lη) +
∑L

l=1 (1− η)
(
log(B̆MAP

l,h )− log(
∑L

l′=1 B̆
MAP
l′,h )

))
, (64)

QMAP =
〈
log q({z(n,m)})

p({w(n,m)},{z(n,m)}|Θ,B)

〉

qMAP(Θ,B,{z(n,m)})

= −
M∑

m=1

N (m)
L∑

l=1

Vl,m log

(
H∑

h=1

Θ̆MAP
m,h∑H

h′=1
Θ̆MAP

m,h′

B̆MAP
l,h∑L

l′=1
B̆MAP

l′,h

)
. (65)

Let us first consider the case when α < 1. In this case, F diverges to F → −∞ with fixed N ,
when Θ̆m,h = O(1) for any (h,m) and Θ̆m,h′ → +0 for all other h′ ̸= h. Therefore, the solution
is sparse (so sparse that the estimator is useless). Similarly, assume that η < 1. Then, F diverges
to F → −∞ with fixed N , when B̆l,h = O(1) for any (l, h) and B̆l′,h → +0 for all other l′ ̸= l.
Therefore, the solution is useless.

When α ≥ 1 and η ≥ 1, the solution satisfies the following stationary condition:

Θ̆MAP
m,h = α− 1 +

∑N(m)

n=1 ẑMAP(n,m)
h , B̆MAP

l,h = η − 1 +
∑M

m=1

∑N(m)

n=1 w(n,m)
l ẑMAP(n,m)

h ,

(66)

ẑMAP(n,m)
h =

Θ̆MAP
m,h

∏L
l=1(B̆

MAP
l,h )w

(n,m)
l

∑H
h′=1

(
Θ̆MAP

m,h′
∏L

l=1(B̆
MAP
l,h′ )w

(n,m)
l

) . (67)

In the same way as for VB, PBA, and PBB learning, we can obtain the following lemma:

19



Lemma 9 Let B̂
MAP

Θ̂
MAP⊤

= ⟨BΘ⊤⟩qMAP(Θ,B). Then, QMAP is minimized when

B̂
MAP

Θ̂
MAP⊤

= B∗Θ∗⊤ +Op(N−1), and it holds that

QMAP = S +Op(ĴN + LM).

RMAP is written as follows:

RMAP =
{
MH (α− 1) + ĤL (η − 1)−

∑Ĥ
h=1

(
M̂ (h) (α− 1) + L̂(h) (η − 1)

)}
logN

+ (H − Ĥ)L (η − 1) logL+Op(H(M + L)). (68)

Taking the different asymptotic limits, we obtain the following theorem:

Theorem 5 When α < 1, each row vector of Θ̂
MAP

has only one non-zero entry, and the MAP
solution is sparse. When η < 1, each column vector of B̂

MAP
has only one non-zero entry. Assume

below that α, η ≥ 1. In the limit when N → ∞ with L,M ∼ O(1), it holds that Ĵ = 0 with
probability 1, and

FMAP = S +
{
MH (α− 1) + ĤL (η − 1)−

∑Ĥ
h=1

(
M̂ (h) (α− 1) + L̂(h) (η − 1)

)}
logN

+Op(1).

In the limit when N,M → ∞ with M
N , L ∼ O(1), it holds that Ĵ = op(logN), and

FMAP = S +
{
MH (α− 1)−

∑Ĥ
h=1 M̂

(h) (α− 1)
}
logN + op(N logN).

In the limit when N,L → ∞ with L
N ,M ∼ O(1), it holds that Ĵ = op(logN), and

FMAP = S +HL(η − 1) logN + op(N logN).

In the limit when N,L,M → ∞ with L
N , M

N ∼ O(1), it holds that Ĵ = op(N logN), and

FMAP = S +H(M(α− 1) + L(η − 1)) logN + op(N2 logN).

Theorem 5 states that the MAP solution is sparse when α < 1. However it provides no information
on the sparsity of the MAP solution for η < 1. Below, we investigate the sparsity of the solution for
α, η ≥ 1.

In the limit when N → ∞ with L,M ∼ O(1)

The coefficient of the leading term of the free energy is

λMAP = MH (α− 1) +
∑Ĥ

h=1

(
L(η − 1)− M̂ (h) (α− 1)− L̂(h) (η − 1)

)
.

The solution is sparse if λMAP is increasing of Ĥ , and dense if it is decreasing. We focus on the
case when α, η ≥ 1. Eqs.(34)–(36) imply the following:

The solution is sparse if

L(η − 1)−max
h

(
M∗(h) (α− 1) + L∗(h) (η − 1)

)
> 0, (69)

and dense if

L(η − 1)−max
h

(
M∗(h) (α− 1) + L∗(h) (η − 1)

)
< 0. (70)

Therefore, the solution is sparse if

L(η − 1)−max
h

M∗(h) (α− 1)−max
h

L∗(h) (η − 1) > 0,

or equivalently, α < 1 +
(L−maxh L∗(h))(η − 1)

maxh M∗(h) ,
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ad dense if

L(η − 1)−min
h

M∗(h) (α− 1)−max
h

L∗(h) (η − 1) < 0,

or equivalently, α > 1 +
(L−maxh L∗(h))(η − 1)

minh M∗(h) .

Thus, we can conclude that the solution is sparse if

α < 1,

and dense if

α > 1 +
L(η − 1)

minh M∗(h) .

Summarizing the above, we have the following lemma:

Lemma 10 Assume that η ≥ 1. The solution is sparse if α < 1, and dense if α > 1 + L(η−1)
minh M∗(h) .

In the limit when N,M → ∞ with M
N , L ∼ O(1)

The coefficient of the leading term of the free energy is given by

λMAP = MH (α− 1)−
∑Ĥ

h=1 M̂
(h) (α− 1) . (71)

Although the predictive distribution does not necessarily converges to the true distribution, we can
investigate the sparsity of the solution by considering the duplication rules (34)–(36) that keep B̂Θ̂

⊤

unchanged. It is clear that Eq.(71) is decreasing of Ĥ if α > 1. Combing this result with Theorem 5,
which states that the MAP solution is sparse if α < 1, and Lemma 10, we obtain the following
corollary:

Corollary 4 Assume that η ≥ 1. In the limit when N → ∞ with L,M ∼ O(1), the MAP solution is
sparse if α < 1, and dense if α > 1+ L(η−1)

minh M∗(h) . In the limit when N,M → ∞ with M
N , L ∼ O(1),

the MAP solution is sparse if α < 1, and dense if α > 1.

E.4 Summary of Results

Summarizing Corollary 1, Corollary 2, Corollary 3, and Corollary 4 completes the proof of Theo-
rem 2. ✷
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