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Abstract

The goal of dimension reduction is to represent high-dimensional data in a lower-
dimensional subspace, while intrinsic properties of the original data are kept as
much as possible. An important challenge in unsupervised dimension reduction
is the choice of tuning parameters, because no supervised information is available
and thus parameter selection tends to be subjective and heuristic. In this paper,
we propose an information-theoretic approach to unsupervised dimension reduction
that allows objective tuning parameter selection. We employ quadratic mutual in-
formation (QMI) as our information measure, which is known to be less sensitive
to outliers than ordinary mutual information, and QMI is estimated analytically
by a least-squares method in a computationally efficient way. Then, we provide an
eigenvector-based efficient implementation for performing unsupervised dimension
reduction based on the QMI estimator. The usefulness of the proposed method is
demonstrated through experiments.
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1 Introduction

Dimension reduction is aimed at reducing the dimensionality of data, while preserving
the “information” contained in the original data as much as possible. In this paper, we
consider the problem of unsupervised dimension reduction where no label information
is available. Unsupervised dimension reduction may be used for various purposes such
as visualization and clustering, as well as a pre-processing step for supervised learning.
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Below, we focus on linear dimension reduction where the dimension of the original data
x ∈ Rd is reduced by using a linear mapping W ∈ Rr×d as

z = Wx ∈ Rr,

where 1 ≤ r ≤ d.
Principal component analysis (PCA) [3] finds the low-dimensional subspace retaining

the maximum variance of the data. PCA is a classical linear unsupervised dimension
reduction method, but it is still one of the most commonly used methods. However, due
to its global preserving nature, local properties of the data such as clusters tend to be
lost by PCA. Locality preserving projection (LPP) [1] seeks a linear transformation that
well preserves the cluster structure of the original data. However, LPP contains tuning
parameters for defining the local structure of the original data, and no objective method is
available for tuning parameter selection. Consequently, the result obtained by LPP tends
to be ad-hoc and subjective. Lack of objective model selection is actually a common
drawback in many unsupervised dimension reduction methods [4].

In this paper, we address this issue by proposing an information-theoretic approach.
More specifically, we adopt quadratic mutual information (QMI) [7] as our information
measure, which is known to be more robust against outliers than ordinary mutual infor-
mation:

QMI :=

∫∫ (
p(z,x)− p(z)p(x)

)2

dzdx,

where p(z,x) is the joint density of z and x, and p(z) and p(x) are the marginal densities.
We find W so that QMI is maximized. Since p(z,x), p(z), and p(x) contained in QMI
are unknown in practice, we utilize a least-squares QMI estimator called LSQMI [2] for
developing a dimension reduction method. An advantage of LSQMI is that all tuning
parameters can be objectively chosen based on cross-validation. Furthermore, by bor-
rowing the idea from [8], we develop a computationally efficient algorithm for dimension
reduction. Through experiments, we demonstrate the usefulness of our proposed method
over competitive approaches.

2 LSQMI Estimation

In this section, we review a QMI estimator called least-squares QMI (LSQMI) [2].
Suppose that we are given a set of paired samples {(zi,xi)}ni=1 independently drawn

from a joint probability distribution with density p(z,x). The key idea in LSQMI is to
directly approximate the following density-difference function without density estimation
of p(z,x), p(z), and p(x) [5]:

f(z,x) := p(z,x)− p(z)p(x).
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Let us model the density difference f(z,x) by

g(z,x) =
n∑

ℓ=1

θℓK(z, zℓ)L(x,xℓ),

where K(z,z′) and L(x,x′) are kernel functions for z and x, respectively. Then θ =
(θ1, ..., θn)

⊤ is learned by least-squares as

min
θ

∫∫ (
g(z,x)− f(z,x)

)2

dzdx. (1)

An empirical and regularized version of the above optimization problem is given as

θ̂ := argmin
θ

[
θ⊤Hθ − 2θ⊤ĥ+ λθ⊤θ

]
,

where λ ≥ 0 is the regularization parameter and H and ĥ are defined as

Hℓ,ℓ′ :=

∫
K(z, zℓ)K(z, zℓ′)dz

∫
L(x,xℓ)L(x,xℓ′)dx,

ĥℓ :=
1

n

n∑
i=1

K(zi, zℓ)L(xi,xℓ)−
1

n2

n∑
i,j=1

K(zi,zℓ)L(xj,xℓ).

The solution θ̂ can be obtained analytically as

θ̂ = (H + λI)−1ĥ,

where I denotes the identity matrix. Finally, following [2], a QMI estimator is given by

Q̂MI := θ̂⊤ĥ.

The performance of LSQMI depends on the choice of the regularization parameter λ
and kernel parameters included K(z, z′) and L(x,x′). These tuning parameters can be
systematically optimized based on cross-validation with respect to the objective function
(1) as follows: First, the sample set S = {(zi,xi)}ni=1 is divided into disjoint subsets

{Sm}Mm=1 of (approximately) the same size. Then an estimator f̂m is obtained from S\Sm

(i.e., all samples without Sm), and its objective value is evaluated using the hold-out
samples Sm as∫∫

f̂m(z,x)
2dzdx− 2

|Sm|
∑

(z,x)∈Sm

f̂m(z,x) +
2

|Sm|2
∑

z,x∈Sm

f̂m(z,x),

where |Sm| denotes the number of elements in the set Sm,
∑

(z,x)∈Sm
indicates the sum-

mation over every paired sample (z,x) in Sm (i.e., summation over |Sm| elements), and∑
z,x∈Sm

indicates the summation over every unpaired samples z and x in Sm (i.e., sum-

mation over |Sm|2 combinations). This procedure is repeated for m = 1, . . . ,M , and the
model that minimizes the average of the above hold-out error over all m is chosen as the
best one.
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3 Unsupervised Dimension Reduction with LSQMI

In this section, we propose a dimension reduction method based on LSQMI.
We focus on linear dimension reduction where original data samples {xi|xi ∈ Rd}ni=1

are transformed by using a linear mapping W ∈ Rr×d as

zi = Wxi ∈ Rr,

where 1 ≤ r ≤ d. We assume that r is fixed in advance and W is an orthogonal matrix,
i.e.,

WW⊤ = I.

We try to find W that maximizes Q̂MI:

max
W∈Rr×d

Q̂MI s.t. WW⊤ = I.

A local maximizer may be obtained by a gradient-projection method or a natural gradient
method [6], but we consider a computationally more efficient approach based on [8], which
is described below.

We use the Gaussian kernel for x and the Epanechnikov kernel for z:

L(x,x′) := exp

(
−∥x− x′∥2

2σ2
x

)
,

K(z,z′) := max

(
0, 1− ∥z − z′∥2

2σ2
z

)
.

Here, we approximate the integral in H for the Epanechnikov kernel by using the analytic
form of the Gaussian kernel. Then H can be computed as

Hℓ,ℓ′ ≈ (πσ2
z)

dz/2 exp

(
−∥zℓ − zℓ′∥2

4σ2
z

)
(πσ2

x)
dx/2 exp

(
−∥xℓ − xℓ′∥2

4σ2
x

)
.

Let I(c) be the indicator function, i.e., I(c) = 1 if c is true and zero otherwise. Then,

Q̂MI can be expressed as

Q̂MI = tr(WDW⊤),

where tr(·) is the trace of a matrix and

D =
1

n

n∑
i=1

n∑
ℓ=1

θ̂ℓ(W )I

(
∥Wxi −Wxℓ∥2

2σ2
z

< 1

)
× L(xi,xℓ)

[
1

r
I − 1

2σ2
z

(xi − xℓ)(xi − xℓ)
⊤
]

− 1

n2

n∑
i,j=1

n∑
ℓ=1

θ̂ℓ(W )I

(
∥Wxi −Wxℓ∥2

2σ2
z

< 1

)
× L(xj,xℓ)

[
1

r
I − 1

2σ2
z

(xi − xℓ)(xi − xℓ)
⊤
]
.
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Figure 1: Dimension reduction for toy dataset.

Here, by θ̂ℓ(W ), we explicitly indicated the fact that θ̂ℓ depends on W .

Let us replace D in Q̂MI by D′, which is D with W replaced by the one obtained in
the previous iteration:

tr
(
WD′W⊤) .

Its maximizer can then be analytically obtained as (w1|...|wr)
⊤, where {wi}ri=1 are the r

principal components of D′.
We initialize W by the r principal components of D(0) as (w

(0)
1 |...|w(0)

r )⊤, where D(0)

is D with z replaced by x.

4 Experiments

In this section, we compare the practical performance of the proposed method with PCA
and LPP. In the proposed method, we choose the Gaussian width σ and the regularization
parameter λ based on 5-fold cross-validation. In LPP, we use the Gaussian kernel for
building the similarity matrix and the Gaussian width is set at the median of all pairwise
sample distances. In LPP, we use the k-nearest neighbor similarity.

First, we illustrate the behavior of the dimension reduction methods using a 2-
dimensional toy dataset in Figure 1. PCA only takes into account the global structure of
the data and thus the cluster structure is lost. LPP tries to preserve the cluster structure,
and LPP with k = 50 works relatively well for preserving clusters. However, LPP with
k = 5 cannot separate the clusters well. Note that there is no objective method to choose
k for LPP. On the other hand, tuning parameters in the proposed method can be ob-
jectively chosen by cross-validation and its performance is illustrated to be more reliable
than other methods.
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Figure 2: 2-dimensional embedding results for PIE face data.

Next, we use the PIE face dataset1, which consists of 41,368 images of 68 people under
13 different poses, 43 different illumination conditions, and with 4 different expressions.
We choose the images for 5 people and perform dimension reduction. The obtained
2-dimensional embedding results are exhibited in Figure 2, showing that the proposed
method tends to preserve cluster structures corresponding to the true classes more clearly
than PCA and LPP with k = 50.

Finally, we evaluate the clustering performance after dimension reduction using the
UCI benchmark datasets2. For randomly chosen 90% samples from each dataset, we apply
a dimension reduction method and then perform clustering by the k-means algorithm3.
Then the clustering accuracy is evaluated. Figure 3 depicts the mean and standard
deviation of the clustering accuracy over 10 runs, showing that the proposed method
overall performs well.

5 Conclusion

Tuning parameter selection has been an important problem in unsupervised dimension
reduction. In this paper, we addressed this issue by applying least-squares quadratic
mutual information (LSQMI) to unsupervised dimension reduction, which allows objective
model selection based on cross-validation. Thanks to the high robustness of QMI against
outliers and the computationally efficient implementation based on eigendecomposition,
the proposed method was demonstrated to be useful through experiments.

1http://www.cad.zju.edu.cn/home/dengcai/Data/
FaceData.html

2http://www.ics.uci.edu/˜mlearn/MLRepository.html
3We run the k-means algorithm 10 times with random initialization and chose the best solution with

the minimum objective value.
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(b) sonar (2,60,188)
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(c) glass (6,9,193)
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(d) pima (2,8,692)

2 3 4 5 6
51

52

53

54

55

56

57

58

lower−dimension (r)

A
ve

ra
ge

 a
cc

ur
ac

y 
(%

)

(e) liver-disorders (2,6,311)
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Figure 3: Mean and standard deviation of the clustering accuracy over 10 runs. The three
digits (c, d, n) show the original dimension d, the number of clusters c, and the number
of samples n.
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