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Abstract

The discovery of non-linear causal relationship under additive non-Gaussian noise
models has attracted considerable attention recently because of their high flexibility.
In this paper, we propose a novel causal inference algorithm called least-squares
independence regression (LSIR). LSIR learns the additive noise model through the
minimization of an estimator of the squared-loss mutual information between inputs
and residuals. A notable advantage of LSIR is that tuning parameters such as the
kernel width and the regularization parameter can be naturally optimized by cross-
validation, allowing us to avoid overfitting in a data-dependent fashion. Through
experiments with real-world datasets, we show that LSIR compares favorably with
a state-of-the-art causal inference method.
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1 Introduction

Learning causality from data is one of the important challenges in the artificial intelli-
gence, statistics, and machine learning communities (Pearl, 2000). A traditional method
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of learning causal relationship from observational data is based on the linear-dependence
Gaussian-noise model (Geiger and Heckerman, 1994). However, the linear-Gaussian as-
sumption is too restrictive and may not be fulfilled in practice. Recently, non-Gaussianity
and non-linearity have been shown to be beneficial in causal inference, allowing one to
break symmetry between observed variables (Shimizu et al., 2006; Hoyer et al., 2009).
Since then, much attention has been paid to the discovery of non-linear causal relation-
ship through non-Gaussian noise models (Mooij et al., 2009).

In the framework of non-linear non-Gaussian causal inference, the relation between
a cause X and an effect Y is assumed to be described by Y = f(X) + E, where f is
a non-linear function and E is non-Gaussian additive noise which is independent of the
cause X. Given two random variables X and X ′, the causal direction between X and X ′

is decided based on a hypothesis test of whether the causal model X ′ = f(X) +E or the
alternative model X = f ′(X ′)+E ′ fits the data well—here, the goodness of fit is measured
by independence between inputs and residuals (i.e., estimated noise). Hoyer et al. (2009)
proposed to learn the functions f and f ′ by Gaussian process (GP) regression (Bishop,
2006), and evaluate the independence between inputs and residuals by the Hilbert-Schmidt
independence criterion (HSIC) (Gretton et al., 2005).

However, since standard regression methods such as GP are designed to handle Gaus-
sian noise, they may not be suited for discovering causality in the non-Gaussian additive
noise formulation. To cope with this problem, a novel regression method called HSIC
regression (HSICR) has been introduced recently (Mooij et al., 2009). HSICR learns a
function so that the dependence between inputs and residuals is directly minimized based
on HSIC. Since HSICR does not impose any parametric assumption on the distribution of
additive noise, it is suited for non-linear non-Gaussian causal inference. Indeed, HSICR
was shown to outperform the GP-based method in experiments (Mooij et al., 2009).

However, HSICR still has limitations for its practical use. The first weakness of HSICR
is that the kernel width of HSIC needs to be determined manually. Since the choice of the
kernel width heavily affects the sensitivity of the independence measure (Fukumizu et al.,
2009), lack of systematic model selection strategies is critical in causal inference. Setting
the kernel width to the median distance between sample points is a popular heuristic
in kernel methods (Schölkopf and Smola, 2002), but this does not always perform well
in practice. Another limitation of HSICR is that the kernel width of the regression
model is fixed to the same value as HSIC. This crucially limits the flexibility of function
approximation in HSICR.

To overcome the above weaknesses, we propose an alternative regression method for
causal inference called least-squares independence regression (LSIR). As HSICR, LSIR
also learns a function so that the dependence between inputs and residuals is directly
minimized. However, a difference is that, instead of HSIC, LSIR adopts an independence
criterion called least-squares mutual information (LSMI) (Suzuki et al., 2009), which is
a consistent estimator of the squared-loss mutual information (SMI) with the optimal
convergence rate. An advantage of LSIR over HSICR is that tuning parameters such as
the kernel width and the regularization parameter can be naturally optimized through
cross-validation (CV) with respect to the LSMI criterion.
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Furthermore, we propose to determine the kernel width of the regression model based
on CV with respect to SMI itself. Thus, the kernel width of the regression model is
determined independent of that in the independence measure. This allows LSIR to have
higher flexibility in non-linear causal inference than HSICR. Through experiments with
benchmark and real-world biological datasets, we demonstrate the superiority of LSIR.

A preliminary version of this work appeared in Yamada and Sugiyama (2010); here
we provide a more comprehensive derivation and discussion of LSIR, as well as a more
detailed experimental section.

2 Dependence Minimizing Regression by LSIR

In this section, we formulate the problem of dependence minimizing regression and propose
a novel regression method, least-squares independence regression (LSIR). Suppose random
variables X ∈ R and Y ∈ R are connected by the following additive noise model (Hoyer
et al., 2009):

Y = f(X) + E,

where f : R→ R is some non-linear function and E ∈ R is a zero-mean random variable
independent of X. The goal of dependence minimizing regression is, from i.i.d. paired
samples {(xi, yi)}ni=1, to obtain a function f̂ such that input X and estimated additive

noise Ê = Y − f̂(X) are independent.
Let us employ a linear model for dependence minimizing regression:

fβ(x) =
m∑
l=1

βlψl(x) = β
⊤ψ(x), (1)

where m is the number of basis functions, β = (β1, . . . , βm)
⊤ are regression parameters, ⊤

denotes the transpose, and ψ(x) = (ψ1(x), . . . , ψm(x))
⊤ are basis functions. We use the

Gaussian basis function in our experiments:

ψl(x) = exp

(
−(x− cl)2

2τ 2

)
,

where cl is the Gaussian center chosen randomly from {xi}ni=1 without overlap and τ is
the kernel width. In dependence minimizing regression, we learn the regression parameter
β as

min
β

[
I(X, Ê) +

γ

2
β⊤β

]
,

where I(X, Ê) is some measure of independence between X and Ê, and γ ≥ 0 is the
regularization parameter to avoid overfitting.

In this paper, we use the squared-loss mutual information (SMI) (Suzuki et al., 2009)
as our independence measure:

SMI(X, Ê) =
1

2

∫∫ (
p(x, ê)

p(x)p(ê)
− 1

)2

p(x)p(ê)dxdê. (2)



Least-Squares Independence Regression 4

SMI(X, Ê) is the Pearson divergence (Pearson, 1900) from p(x, ê) to p(x)p(ê), and it van-

ishes if and only if p(x, ê) agrees with p(x)p(ê), i.e., X and Ê are statistically independent.
Note that ordinary mutual information (MI) (Cover and Thomas, 2006),

MI(X, Ê) =

∫∫
p(x, ê) log

p(x, ê)

p(x)p(ê)
dxdê, (3)

corresponds to the Kullback-Leibler divergence (Kullback and Leibler, 1951) from p(x, ê)
and p(x)p(ê), and it can also be used as an independence measure. Nevertheless, we
adhere to using SMI since it allows us to obtain an analytic-form estimator, as explained
below.

2.1 Estimation of Squared-Loss Mutual Information

SMI cannot be directly computed since it contains unknown densities p(x, ê), p(x), and
p(ê). Here, we briefly review an SMI estimator called least-squares mutual information
(LSMI) (Suzuki et al., 2009).

Since density estimation is known to be a hard problem (Vapnik, 1998), avoiding
density estimation is critical for obtaining better SMI approximators (Kraskov et al.,
2004). A key idea of LSMI is to directly estimate the density ratio,

r(x, ê) =
p(x, ê)

p(x)p(ê)
,

without going through density estimation of p(x, ê), p(x), and p(ê).
In LSMI, the density ratio function r(x, ê) is directly modeled by the following linear

model:

rα(x, ê) =
b∑

l=1

αlφl(x, ê) = α
⊤φ(x, ê), (4)

where b is the number of basis functions, α = (α1, . . . , αb)
⊤ are parameters, and φ(x, ê) =

(φ1(x, ê), . . . , φb(x, ê))
⊤ are basis functions. We use the Gaussian basis function:

φl(x, ê) = exp

(
−(x− ul)2 + (ê− v̂l)2

2σ2

)
,

where (ul, v̂l) is the Gaussian center chosen randomly from {(xi, êi)}ni=1 without replace-
ment, and σ is the kernel width.

The parameter α in the density-ratio model rα(x, ê) is learned so that the following
squared error J0(α) is minimized:

J0(α) =
1

2

∫∫
(rα(x, ê)− r(x, ê))2p(x)p(ê)dxdê

=
1

2

∫∫
r2α(x, ê)p(x)p(ê)dxdê−

∫∫
rα(x, ê)p(x, ê)dxdê+ C,
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where C is a constant independent of α and therefore can be safely ignored. Let us denote
the first two terms by J(α):

J(α) = J0(α)− C =
1

2
α⊤Hα− h⊤α, (5)

where

H =

∫∫
φ(x, ê)φ(x, ê)⊤p(x)p(ê)dxdê,

h =

∫∫
φ(x, ê)p(x, ê)dxdê.

Approximating the expectations inH and h by empirical averages, we obtain the following
optimization problem:

α̂ = argmin
α

[1
2
α⊤Ĥα− ĥ⊤α+

λ

2
α⊤α

]
,

where a regularization term λ
2
α⊤α is included for avoiding overfitting, and

Ĥ =
1

n2

n∑
i,j=1

φ(xi, êj)φ(xi, êj)
⊤,

ĥ =
1

n

n∑
i=1

φ(xi, êi).

Differentiating the above objective function with respect to α and equating it to zero, we
can obtain an analytic-form solution:

α̂ = (Ĥ + λIb)
−1ĥ, (6)

where Ib denotes the b-dimensional identity matrix. It was shown that LSMI is consistent
under mild assumptions and it achieves the optimal convergence rate (Kanamori et al.,
2012).

Given a density ratio estimator r̂ = rα̂, SMI defined by Eq.(2) can be simply approx-
imated by samples via the Legendre-Fenchel convex duality of the divergence functional
as follows (Rockafellar, 1970; Suzuki and Sugiyama, 2013):

ŜMI(X, Ê) =
1

n

n∑
i=1

r̂(xi, êi)−
1

2n2

n∑
i,j=1

r̂(xi, êj)
2 − 1

2

= ĥ⊤α̂− 1

2
α̂⊤Ĥα̂− 1

2
. (7)
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2.2 Model Selection in LSMI

LSMI contains three tuning parameters: the number of basis functions b, the kernel
width σ, and the regularization parameter λ. In our experiments, we fix b = min(200, n)
(i.e., φ(x, e) ∈ Rb), and choose σ and λ by cross-validation (CV) with grid search as
follows. First, the samples Z = {(xi, êi)}ni=1 are divided into K disjoint subsets {Zk}Kk=1

of (approximately) the same size (we set K = 2 in experiments). Then, an estimator α̂Zk

is obtained using Z\Zk (i.e., without Zk), and the approximation error for the hold-out
samples Zk is computed as

J
(K-CV)
Zk

=
1

2
α̂⊤Zk

ĤZk
α̂Zk
− ĥ⊤Zk

α̂Zk
, (8)

where, for Zk = {(x(k)i , ê
(k)
i }

nk
i=i,

ĤZk
=

1

n2
k

nk∑
i=1

nk∑
j=1

φ(x
(k)
i , ê

(k)
j )φ(x

(k)
i , ê

(k)
j )⊤,

ĥZk
=

1

nk

nk∑
i=1

φ(x
(k)
i , ê

(k)
i ).

This procedure is repeated for k = 1, . . . , K, and its average J (K-CV) is calculated as

J (K-CV) =
1

K

K∑
k=1

J
(K-CV)
Zk

. (9)

We compute J (K-CV) for all model candidates (the kernel width σ and the regularization
parameter λ in the current setup), and choose the density-ratio model that minimizes
J (K-CV). Note that J (K-CV) is an almost unbiased estimator of the objective function (5),
where the almost-ness comes from the fact that the number of samples is reduced in the
CV procedure due to data splitting (Schölkopf and Smola, 2002).

The LSMI algorithm is summarized in Figure 1.

2.3 Least-Squares Independence Regression

Given the SMI estimator (7), our next task is to learn the parameter β in the regression
model (1) as

β̂ = argmin
β

[
ŜMI(X, Ê) +

γ

2
β⊤β

]
.

We call this method least-squares independence regression (LSIR).
For regression parameter learning, we simply employ a gradient descent method:

β ←− β − η

(
∂ŜMI(X, Ê)

∂β
+ γβ

)
, (10)
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Input: Paired samples Z = {(xi, ei)}ni=1,
Gaussian widths {σr}Rr=1,
regularization parameters {λs}Ss=1,
the number of basis functions b

Output: SMI estimator ŜMI(X,E)

Split Z into K disjoint subsets {Zk}Kk=1

For each Gaussian width candidate σr
For each regularization parameter candidate λs

For each split k = 1, . . . , K
Compute α̂Zk

by Eq.(6) with Z\Zk, σr and λs
Compute hold-out error J

(K-CV)
Zk

(r, s) by Eq.(8)
End
Compute average hold-out error J (K-CV)(r, s) by Eq.(9)

End
End
(r̂, ŝ)← argmin (r,s) J

(K-CV)(r, s)
Compute α̂ by Eq.(6) with Z, σr̂ and λŝ
Compute SMI estimator ŜMI(X,E) by Eq.(7)

Figure 1: Pseudo code of LSMI with CV.

where η is a step size which may be chosen in practice by some approximate line search
method such as Armijo’s rule (Patriksson, 1999).

The partial derivative of ŜMI(X, Ê) with respect to β can be approximately expressed
as

∂ŜMI(X, Ê)

∂β
≈

b∑
l=1

α̂l
∂ĥl
∂β
− 1

2

b∑
l,l′=1

α̂lα̂
′
l

∂Ĥl,l′

∂β
,

where

∂ĥl
∂β

=
1

n

n∑
i=1

∂φl(xi, êi)

∂β
,

∂Ĥl,l′

∂β
=

1

n2

n∑
i,j=1

(
∂φl(xi, êj)

∂β
φl′(xj, êi) + φl(xi, êj)

∂φl′(xj, êi)

∂β

)
,

∂φl(x, ê)

∂β
= − 1

2σ2
φl(x, ê)(ê− v̂l)ψ(x).

In the above derivation, we ignored the dependence of α̂l on β. It is possible to exactly
compute the derivative in principle, but we use this approximated expression since it is
computationally efficient and the approximation performs well in experiments.
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We assumed that the mean of the noise E is zero. Taking into account this, we modify
the final regressor as

f̂(x) = fβ̂(x) +
1

n

n∑
i=1

(
yi − fβ̂(xi)

)
.

2.4 Model Selection in LSIR

LSIR contains three tuning parameters—the number of basis functions m, the kernel
width τ , and the regularization parameter γ. In our experiments, we fix m = min(200, n),
and choose τ and γ by CV with grid search as follows. First, the samples S = {(xi, yi)}ni=1

are divided into T disjoint subsets {St}Tt=1 of (approximately) the same size (we set T = 2
in experiments), where St = {(xt,i, yt,i)}nt

i=1 and nt is the number of samples in the subset

St. Then, an estimator β̂St is obtained using S\St (i.e., without St), and the noise for the
hold-out samples St is computed as

êt,i = yt,i − f̂St(xt,i), i = 1, . . . , nt,

where f̂St(x) is the estimated regressor by LSIR.
Let Zt = {(xt,i, êt,i)}nt

i=1 be the hold-out samples of inputs and residuals. Then the
independence score for the hold-out samples Zt is given as

I
(T -CV)
Zt

= ĥ⊤Zt
α̂Zt −

1

2
α̂⊤Zt

ĤZtα̂Zt −
1

2
, (11)

where α̂Zt is the estimated model parameter by LSMI. Note that, the kernel width σ and
the regularization parameter λ for LSMI are chosen by CV using the hold-out samples
Zt.

This procedure is repeated for t = 1, . . . , T , and its average I(T -CV) is computed as

I(T -CV) =
1

T

T∑
t=1

Î
(T -CV)
Zt

. (12)

We compute I(T -CV) for all model candidates (the kernel width τ and the regularization
parameter γ in the current setup), and choose the LSIR model that minimizes I(T -CV).

The LSIR algorithm is summarized in Figure 2. A MATLABR⃝ implementation of
LSIR is available from

‘http://sugiyama-www.cs.titech.ac.jp/˜yamada/lsir.html’.

2.5 Causal Direction Inference by LSIR

In the previous section, we gave a dependence minimizing regression method, LSIR, that
is equipped with CV for model selection. In this section, following Hoyer et al. (2009),
we explain how LSIR can be used for causal direction inference.
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Input: Paired samples {(xi, yi)}ni=1,
Gaussian width τ ,
regularization parameter γ,
the number of basis functions m

Output: LSIR parameter β̂

Initialize β by kernel regression with τ and γ (Schölkopf and Smola, 2002)
Computing a residual êi with current β
While convergence

Estimate ŜMI(x, e) by LSMI with {(x, êi)}ni=1

Update β by Eq.(10) with τ and γ
Compute a residual êi with current β
If β has converged

Return the current β as β̂
End

End

Figure 2: Pseudo code of LSIR.

Input: Paired samples S = {(xi, yi)}ni=1,
Gaussian widths {τp}Pp=1,

regularization parameters {γq}Qq=1,
the number of basis functions m

Output: LSIR parameter β̂

Split S into T disjoint subsets {St}Tt=1, St = {(xt,i, yt,i)}nt
i=1

For each Gaussian width candidate τp
For each regularization parameter candidate γq

For each split t = 1, . . . , T

Compute β̂St by LSIR with S\Sk, τp and γq
Compute a residual êt,i and make a set Zt = {(xt,i, êt,i)}nt

i=1

Compute hold-out independence criterion I
(T -CV)
Zk

(r, s) by Eq.(11)
End
Compute average hold-out independence criterion I(T -CV)(p, q) by Eq.(12)

End
End
(p̂, q̂)← argmin (p,q) I

(T -CV)(p, q)

Compute β̂ by LSIR with S, τp̂, and γq̂

Figure 3: Pseudo code of LSIR with CV.
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Our final goal is, given i.i.d. paired samples {(xi, yi)}ni=1, to determine whether X
causes Y or vice versa. To this end, we test whether the causal model Y = fY (X) + EY

or the alternative model X = fX(Y ) + EX fits the data well, where the goodness of
fit is measured by independence between inputs and residuals (i.e., estimated noise).
Independence of inputs and residuals may be decided in practice by the permutation test
(Efron and Tibshirani, 1993).

More specifically, we first run LSIR for {(xi, yi)}ni=1 as usual, and obtain a regression

function f̂ . This procedure also provides an SMI estimate for {(xi, êi) | êi = yi−f̂(xi)}ni=1.
Next, we randomly permute the pairs of input and residual {(xi, êi)}ni=1 as {(xi, êκ(i))}ni=1,
where κ(·) is a randomly generated permutation function. Note that the permuted pairs
of samples are independent of each other since the random permutation breaks the depen-
dency between X and Ê (if it exists). Then we compute SMI estimates for the permuted
data {(xi, êκ(i))}ni=1 by LSMI. This random permutation process is repeated many times
(in experiments, the number of repetitions is set at 1000), and the distribution of SMI
estimates under the null-hypothesis (i.e., independence) is constructed. Finally, the p-
value is approximated by evaluating the relative ranking of the SMI estimate computed
from the original input-residual data over the distribution of SMI estimates for randomly
permuted data.

Although not every causal mechanism can be described by an additive noise model,
we assume that it is unlikely that the causal structure Y → X induces an additive noise
model from X to Y , except for simple distributions like bivariate Gaussians. Janzing and
Steudel (2010) support this assumption by an algorithmic information theory approach.
In order to decide the causal direction based on the assumption, we first compute the
p-values pX→Y and pX←Y for both directions X → Y (i.e., X causes Y ) and X ← Y (i.e.,
Y causes X). Then, for a given significance level δ1 and δ2 (δ2 ≥ δ1), we determine the
causal direction as follows:

• If pX→Y > δ2 and pX←Y ≤ δ1, the causal model X → Y is chosen.

• If pX←Y > δ2 and pX→Y ≤ δ1, the causal model X ← Y is selected.

• If pX→Y , pX←Y ≤ δ1, the causal relation is not an additive noise model.

• If pX→Y , pX←Y > δ1, the joint distribution seems to be close to one of the few
exceptions that admit additive noise models in both directions.

In our preliminary experiments, we empirically observed that SMI estimates obtained
by LSIR tend to be affected by the basis function choice in LSIR. To mitigate this problem,
we run LSIR and compute an SMI estimate 5 times by randomly changing basis functions.
Then the regression function that gives the smallest SMI estimate among 5 repetitions is
selected and the permutation test is performed for that regression function.
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Figure 4: Illustrative example. The solid line denotes the true function, the circles denote
samples, and the dashed line denotes the regressor obtained by LSIR.

2.6 Illustrative Examples

Let us consider the following additive noise model:

Y = X3 + E,

where X is subject to the uniform distribution on (−1, 1) and E is subject to the exponen-
tial distribution with rate parameter 1 (and its mean is adjusted to be zero). We drew 300
paired samples of X and Y following the above generative model (see Figure 4), where the
ground truth is that X and E are independent of each other. Thus, the null-hypothesis
should be accepted (i.e., the p-values should be large).

Figure 4 depicts the regressor obtained by LSIR, giving a good approximation to the
true function. We repeated the experiment 1000 times with the random seed changed.
For the significance level 5%, LSIR successfully accepted the null-hypothesis 992 times
out of 1000 runs.

As Mooij et al. (2009) pointed out, beyond the fact that the p-values frequently exceed
the pre-specified significance level, it is important to have a wide margin beyond the
significance level in order to cope with, e.g., multiple variable cases. Figure 5(a) depicts
the histogram of pX→Y obtained by LSIR over 1000 runs. The plot shows that LSIR
tends to produce much larger p-values than the significance level; the mean and standard
deviation of the p-values over 1000 runs are 0.6114 and 0.2327, respectively.

Next, we consider the backward case where the roles of X and Y are swapped. In this
case, the ground truth is that the input and the residual are dependent (see Figure 4).
Therefore, the null-hypothesis should be rejected (i.e., the p-values should be small).
Figure 5(b) shows the histogram of pX←Y obtained by LSIR over 1000 runs. LSIR rejected
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Figure 5: LSIR performance statistics in illustrative example.

the null-hypothesis 989 times out of 1000 runs; the mean and standard deviation of the
p-values over 1000 runs are 0.0035 and 0.0094, respectively.

Figure 5(c) depicts the p-values for both directions in a trial-wise manner. The graph
shows that LSIR perfectly estimates the correct causal direction (i.e., pX→Y > pX←Y ),
and the margin between pX→Y and pX←Y seems to be clear (i.e., most of the points are
clearly below the diagonal line). This illustrates the usefulness of LSIR in causal direction
inference.
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Finally, we investigate the values of independence measure ŜMI, which are plotted in
Figure 5(d) again in a trial-wise manner. The graph implies that the values of ŜMI may
be simply used for determining the causal direction, instead of the p-values. Indeed, the
correct causal direction (i.e., ŜMIX→Y < ŜMIX←Y ) can be found 999 times out of 1000
trials by this simplified method. This would be a practically useful heuristic since we can
avoid performing the computationally intensive permutation test.

3 Existing Method: HSIC Regression

In this section, we review the Hilbert-Schmidt independence criterion (HSIC) (Gretton
et al., 2005) and HSIC regression (HSICR) (Mooij et al., 2009).

3.1 Hilbert-Schmidt Independence Criterion (HSIC)

The Hilbert-Schmidt independence criterion (HSIC) (Gretton et al., 2005) is a state-of-
the-art measure of statistical independence based on characteristic functions (see also
Feuerverger, 1993; Kankainen, 1995). Here, we review the definition of HSIC and explain
its basic properties.

Let F be a reproducing kernel Hilbert space (RKHS) with reproducing kernel K(x, x′)
(Aronszajn, 1950), and G be another RKHS with reproducing kernel L(e, e′). Let C be a
cross-covariance operator from G to F , i.e., for all f ∈ F and g ∈ G,

⟨f, Cg⟩F =

∫∫ ([
f(x)−

∫
f(x)p(x)dx

][
g(e)−

∫
g(e)p(e)de

])
p(x, e)dxde,

where ⟨·, ·⟩F denotes the inner product in F . Thus, C can be expressed as

C =

∫∫ ([
K(·, x)−

∫
K(·, x)p(x)dx

]
⊗
[
L(·, e)−

∫
L(·, e)p(e)de

])
p(x, e)dxde,

where ‘⊗’ denotes the tensor product, and we used the reproducing properties:

f(x) = ⟨f,K(·, x)⟩F and g(e) = ⟨g, L(·, e)⟩G.

The cross-covariance operator is a generalization of the cross-covariance matrix be-
tween random vectors. When F and G are universal RKHSs (Steinwart, 2001) defined
on compact domains X and E , respectively, the largest singular value of C is zero if and
only if x and e are independent. Gaussian RKHSs are examples of the universal RKHS.

HSIC is defined as the squared Hilbert-Schmidt norm (the sum of the squared singular
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values) of the cross-covariance operator C:

HSIC :=

∫∫∫∫
K(x, x′)L(e, e′)p(x, e)p(x′, e′)dxdedxde′

+

[∫∫
K(x, x′)p(x)p(x′)dxdx′

] [∫∫
L(e, e′)p(e)p(e′)dede′

]
− 2

∫∫ [∫
K(x, x′)p(x′)dx′

] [∫
L(e, e′)p(e′)de′

]
p(x, e)dxde.

The above expression allows one to immediately obtain an empirical estimator—with
i.i.d. samples Z = {(xk, ek)}nk=1 following p(x, e), a consistent estimator of HSIC is given
as

ĤSIC(X,E) :=
1

n2

n∑
i,i′=1

K(xi, xi′)L(ei, ei′) +
1

n4

n∑
i,i′,j,j′=1

K(xi, xi′)L(ej, ej′)

− 2

n3

n∑
i,j,k=1

K(xi, xk)L(ej, ek)

=
1

n2
tr(KΓLΓ), (13)

where

Ki,i′ = K(xi, xi′), Li,i′ = L(ei, ei′), and Γ = In −
1

n
1n1

⊤
n .

In denotes the n-dimensional identity matrix, and 1n denotes the n-dimensional vector
with all ones.

ĤSIC depends on the choice of the universal RKHSs F and G. In the original HSIC
paper (Gretton et al., 2005), the Gaussian RKHS with width set at the median distance
between sample points was used, which is a popular heuristic in the kernel method com-
munity (Schölkopf and Smola, 2002). However, to the best of our knowledge, there is no
strong theoretical justification for this heuristic. On the other hand, the LSMI method is
equipped with cross-validation, and thus all the tuning parameters such as the Gaussian
width and the regularization parameter can be optimized in an objective and systematic
way. This is an advantage of LSMI over HSIC.

3.2 HSIC Regression

In HSIC regression (HSICR) (Mooij et al., 2009), the following linear model is employed:

fθ(x) =
n∑

l=1

θlϕl(x) = θ
⊤ϕ(x), (14)
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where θ = (θ1, . . . , θn)
⊤ are regression parameters and ϕ(x) = (ϕ1(x), . . . , ϕn(x))

⊤ are
basis functions. Mooij et al. (2009) proposed to use the Gaussian basis function:

ϕl(x) = exp

(
−(x− xl)2

2ρ2

)
,

where the kernel width ρ is set at the median distance between sample points:

ρ = 2−1/2median({∥xi − xj∥}ni,j=1).

Given the HSIC estimator (13), the parameter θ in the regression model (14) is ob-
tained by

θ̂ = argmin
θ

[
ĤSIC(X,Y − fθ(X)) +

ξ

2
θ⊤θ

]
, (15)

where ξ ≥ 0 is the regularization parameter to avoid overfitting. This optimization
problem can be efficiently solved by using the L-BFGS quasi-Newton method (Liu and
Nocedal, 1989) or gradient descent. Then, the final regressor is given as

f̂(x) = fθ̂(x) +
1

n

n∑
i=1

(
yi − fθ̂(xi)

)
.

In the HSIC estimator, the Gaussian kernels,

K(x, x′) = exp

(
−(x− x′)2

2σ2
x

)
and L(e, e′) = exp

(
−(e− e′)2

2σ2
e

)
,

are used and their kernel widths are fixed at the median distance between sample points
during the optimization (15):

σx = 2−1/2median({∥xi − xj∥}ni,j=1),

σe = 2−1/2median({∥êi − êj∥}ni,j=1),

where {êi}ni=1 are initial rough estimates of the residuals. This implies that, if the initial
choices of σx and σe are poor, the overall performance of HSICR will be degraded. On the
other hand, the LSIR method is equipped with cross-validation, and thus all the tuning
parameters can be optimized in an objective and systematic way. This is a significant
advantage of LSIR over HSICR.

4 Experiments

In this section, we evaluate the performance of LSIR using benchmark datasets and real-
world gene expression data.
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4.1 Benchmark Datasets

Here, we evaluate the performance of LSIR on the ‘Cause-Effect Pairs’ task1. The task
contains 80 datasets2, each has two statistically dependent random variables possessing
inherent causal relationship. The goal is to identify the causal direction from observational
data. Since these datasets consist of real-world samples, our modeling assumption may be
only approximately satisfied. Thus, identifying causal directions in these datasets would
be highly challenging. The ‘pair0001’ to ‘pair0006’ datasets are illustrated in Figure 6.

Table 1 shows the results for the benchmark data with different threshold values δ1
and δ2. As can be observed, LSIR compares favorably with HSICR. For example, when
δ1 = 0.05 and δ2 = 0.10, LSIR found the correct causal direction for 20 out of 80 cases
and the incorrect causal direction for 6 out of 80 cases, while HSICR found the correct
causal direction for 14 out of 80 cases and the incorrect causal direction for 15 out of
80 cases. Also, the correct identification rate (the number of correct causal directions
detected/the number of all causal directions detected) of LSIR and HSICR are 0.77 and
0.48, respectively. We note that the cases with pX→Y , pY→X < δ1 and pX→Y , pY→X ≥ δ1
happened frequently both for LSIR and HSICR. Thus, although many cases were not
identifiable, LSIR still compares favorably with HSICR.

Moreover, we compare LSIR with HSICR on the binary causal direction detection
setting3 (see Mooij et al. (2009)). In this experiment, we compare the p-values and choose
the direction with a larger p-value as the causal direction. The p-values for each dataset
and each direction are summarized in Figures 7(a) and 7(b), where the horizontal axis
denotes the dataset index. When the correct causal direction can be correctly identified,
we indicate the data by ‘∗’. The results show that LSIR can successfully find the correct
causal direction for 49 out of 80 cases, while HSICR gave the correct decision only for 31
out of 80 cases.

Figure 7(c) shows that merely comparing the values of ŜMI is actually sufficient to
decide the correct causal direction in LSIR; using this heuristic, LSIR successfully iden-
tified the correct causal direction 54 out of 80 cases. Thus, this heuristic allows us to
identify the causal direction in a computationally efficient way. On the other hand, as
shown in Figure 7(d), HSICR gave the correct decision only for 36 out of 80 cases with
this heuristic.

4.2 Gene Function Regulations

Finally, we apply our proposed LSIR method to real-world biological datasets, which
contain known causal relationships about gene function regulations from transcription
factors to gene expressions.

Causal prediction is biologically and medically important because it gives us a clue
for disease-causing genes or drug-target genes. Transcription factors regulate expression

1http://webdav.tuebingen.mpg.de/cause-effect/
2There are 86 datasets in total, but since ‘pair0052’–‘pair0055’ and ‘pair0071’ are a multivariate and

‘pair0070’ is categorical, we decided to exclude them from our experiments.
3http://www.causality.inf.ethz.ch/cause-effect.php
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Figure 6: Datasets of the ‘Cause-Effect Pairs ’ task.

Table 1: Results for the ‘Cause-Effect Pairs ’ task. Each cell in the tables denotes ‘the
number of correct causal directions detected/the number of incorrect causal directions
detected (the number of correct causal directions detected/the number of all causal di-
rections detected)’.

(a) LSIR
HHHHHHδ1

δ2 0.01 0.05 0.10 0.15 0.20

0.01 23/9 (0.72) 17/5 (0.77) 12/4 (0.75) 9/3 (0.75) 7/3 (0.70)
0.05 — 26/8 (0.77) 20/6 (0.77) 15/5 (0.75) 12/4 (0.75)
0.10 — — 23/9 (0.72) 18/8 (0.69) 14/6 (0.70)
0.15 — — — 19/9 (0.68) 15/7 (0.68)
0.20 — — — — 16/7 (0.70)

(b) HSICR
HHHHHHδ1

δ2 0.01 0.05 0.10 0.15 0.20

0.01 18/17 (0.51) 14/14 (0.50) 11/12 (0.48) 10/11 (0.48) 10/7 (0.59)
0.05 — 18/18 (0.50) 14/15 (0.48) 13/13 (0.50) 11/8 (0.58)
0.10 — — 16/18 (0.47) 15/15 (0.50) 13/10 (0.57)
0.15 — — — 17/16 (0.52) 14/11 (0.56)
0.20 — — — — 14/11 (0.56)
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Figure 7: Results for the ‘Cause-Effect Pairs ’ task. The horizontal axis denotes the
dataset index. When the true causal direction can be correctly identified, we indicate the
data by ‘∗’.
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Figure 8: Datasets of the E. coli task (Faith et al., 2007).

levels of their relating genes. In other words, when the expression level of transcription
factor genes is high, genes regulated by the transcription factor become highly expressed
or suppressed.

In this experiment, we select 9 well-known gene regulation relationships of E. coli
(Faith et al., 2007), where each data contains expression levels of the genes over 445
different environments (i.e., 445 samples, see Figure 8).

The experimental results are summarized in Table 2. In this experiment, we denote
the estimated direction by ‘⇒’ if pX→Y > 0.05 and pY→X < 10−3. If pX→Y > pY→X , we
denote the estimated direction by ‘→’. As can be observed, LSIR can successfully detect
3 out of 9 cases, while HSICR can only detect 1 out of 9 cases. Moreover, in binary
decision setting (i.e., comparison between p values), LSIR and HSICR successfully found
the correct causal directions for 7 out of 9 cases and 6 out of 9 cases, respectively. In
addition, all the correct causal directions can be efficiently chosen by LSIR and HSICR
if the heuristic of comparing the values of ŜMI is used. Thus, the proposed method and
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Table 2: Results for the ‘E. coli’ task. If pX→Y > 0.05 and pY→X < 10−3, we denote the
estimated direction by ⇒. If pX→Y > pY→X , we denote the estimated direction by →.
When the p-values of both directions are less than 10−3, we concluded that the causal
direction cannot be determined (indicated by ‘?’). Estimated directions in the brackets

are determined based on comparing the values of ŜMI or ĤSIC.

(a) LSIR

Dataset p-values ŜMI Direction
X Y X → Y X ← Y X → Y X ← Y Estimated Truth

lexA uvrA < 10−3 < 10−3 0.0177 0.0255 ? (→) →
lexA uvrB < 10−3 < 10−3 0.0172 0.0356 ? (→) →
lexA uvrD 0.043 < 10−3 0.0075 0.0227 → (→) →
crp lacA 0.143 < 10−3 -0.0004 0.0399 ⇒ (→) →
crp lacY 0.003 < 10−3 0.0118 0.0247 → (→) →
crp lacZ 0.001 < 10−3 0.0122 0.0307 → (→) →
lacI lacA 0.787 < 10−3 -0.0076 0.0184 ⇒ (→) →
lacI lacZ 0.002 < 10−3 0.0096 0.0141 → (→) →
lacI lacY 0.746 < 10−3 -0.0082 0.0217 ⇒ (→) →

(b) HSICR

Dataset p-values ĤSIC Direction
X Y X → Y X ← Y X → Y X ← Y Estimated Truth

lexA uvrA 0.005 < 10−3 0.0013 0.0037 → (→) →
lexA uvrB < 10−3 < 10−3 0.0026 0.0037 ? (→) →
lexA uvrD < 10−3 < 10−3 0.0020 0.0041 ? (→) →
crp lacA 0.017 < 10−3 0.0013 0.0036 → (→) →
crp lacY 0.002 < 10−3 0.0018 0.0051 → (→) →
crp lacZ 0.008 < 10−3 0.0013 0.0054 → (→) →
lacI lacA 0.031 < 10−3 0.0012 0.0043 → (→) →
lacI lacZ < 10−3 < 10−3 0.0019 0.0020 ? (→) →
lacI lacY 0.052 < 10−3 0.0011 0.0027 ⇒ (→) →

HSICR are comparably useful for this task.

5 Conclusions

In this paper, we proposed a new method of dependence minimization regression called
least-squares independence regression (LSIR). LSIR adopts the squared-loss mutual infor-
mation as an independence measure, and it is estimated by the method of least-squares
mutual information (LSMI). Since LSMI provides an analytic-form solution, we can ex-
plicitly compute the gradient of the LSMI estimator with respect to regression parameters.

A notable advantage of the proposed LSIR method over the state-of-the-art method of
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dependence minimization regression (Mooij et al., 2009) is that LSIR is equipped with a
natural cross-validation procedure, allowing us to objectively optimize tuning parameters
such as the kernel width and the regularization parameter in a data-dependent fashion.

We experimentally showed that LSIR is promising in real-world causal direction infer-
ence. We note that the use of LSMI instead of HSIC does not necessarily provide perfor-
mance improvement of causal direction inference; indeed, experimental performances of
LSMI and HSIC were on par if fixed Gaussian kernel widths are used. This implies that
the performance improvement of the proposed method was brought by data-dependent
optimization of kernel widths via cross-validation.

In this paper, we solely focused on the additive noise model, where noise is independent
of inputs. When this modeling assumption is violated, LSIR (as well as HSICR) may not
perform well. In such a case, employing a more elaborate model such as the post-nonlinear
causal model would be useful (Zhang and Hyvärinen, 2009). We will extend LSIR to be
applicable to such a general model in the future work.
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