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Abstract

We describe a probabilistic, nonparametric method for anomaly detection, based on a squared-loss objective function
which has a simple analytical solution. The method emerges from extending recent work in nonparametric least-
squares classification to include a “none-of-the-above” class which models anomalies in terms of non-anamalous
training data. The method shares the flexibility of other kernel-based anomaly detection methods, yet is typically
much faster to train and test. It can also be used to distinguish between multiple inlier classes and anomalies. The
probabilistic nature of the output makes it straightforward to apply even when test data has structural dependencies; we
show how a hidden Markov model framework can be incorporated in order to identify anomalous subsequences in a
test sequence. Empirical results on datasets from several domains show the method to have comparable discriminative
performance to popular alternatives, but with a clear speed advantage.
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1. Introduction

Anomaly detection is useful in several practical sit-
uations where test data may be subject to unexpected
regimes, for example due to sensor failures, malicious
user behavior, or external changes to the system being
modeled. In this letter we focus on the form of the prob-
lem in which training samples without anomalies are pro-
vided, and the task is to calculate anomaly scores for test
data. This is distinct from the case in which a dataset
contains a mixture of inliers and outliers, and the task
is to separate them (often referred to as outlier detection,
though note that some authors use the terms “anomaly de-
tection” and “outlier detection” interchangeably).

We propose a novel nonparametric method for address-
ing this problem, based on the recently introduced least-
squares probabilistic classifier (LSPC) (Sugiyama, 2010).
As well as having the flexibility and discriminative power
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of a kernel model, our method is fast at training time, due
to the convexity of `2 loss, and very fast at test time, sim-
ply requiring a weighted average of kernel basis functions
for inference. If training data is labeled with multiple in-
lier classes, the method can also be used for robust clas-
sification, i.e. for each test datapoint we can calculate the
probability of that point belonging to each of the inlier
classes as well as to the outlying, anomaly class. Further-
more, being a probabilistic method it is straightforward to
incorporate into models where the test data has structural
dependencies; we demonstrate how it can be incorporated
into a hidden Markov model framework in order to apply
it to anomaly detection in sequences.

In the remainder of this letter, we first review related
work for anomaly detection and the least-squares ap-
proach for probabilistic classification, then show in Sec-
tion 4 how the least-squares formulation can be extended
to assign a probability to a test input of it being anoma-
lous. In Section 5 we explain how this can be incorporated
into a hidden Markov model (HMM) framework in order
to identify anomalies in sequential data. We give exper-
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imental results for the static anomaly detection method
in Section 6 on several standard datasets, showing it to
have competitive accuracy and superior speed compared
to alternative methods, and illustrate sequential anomaly
detection on time series from medicine and engineering.

The Python implementation of the method, including
demonstrations and code to recreate the experiments de-
scribed here, is available at http://cit.mak.ac.ug/
staff/jquinn/software/lsanomaly.html.

2. Related work

There are many existing methods for anomaly detec-
tion, for which an extensive review can be found in Chan-
dola et al. (2009). Different assumptions might be made
about the distribution of anomalous points relative to the
training, inlier points, which yield different methods. For
instance, an assumption that anomalous datapoints have a
large distance from any of the training points leads to the
use of k-nearest neighbor methods for anomaly detection.
An alternative is to make assumptions regarding clusters
in the data, e.g. that normal data points belong to clus-
ters, whereas anomalous data points do not, or that normal
data points are usually closer to the nearest cluster cen-
troid than anomalous data points. Statistical assumptions
might also be made, e.g. that normal data points occur in
high-probability regions of the data space (according to
some stochastic model), whereas anomalous data points
occur in low-probability regions.

Kernel models have been used in a number of anomaly
detection schemes. For example, kernel density estima-
tion can be applied to data from the normal regime; a
low estimated density for test points indicates anomaly.
Kernel recursive least-squares has been used for anomaly
detection by Ahmed et al. (2007), in order to calculate
a codebook of vectors which represent the support of the
normal regime. Multi-scale kernel regression for anomaly
detection was proposed by Gao et al. (2010), in which the
length scales in the kernel model of normality are var-
ied according to the distances between training samples.
Clustering in kernel space can also be used to character-
ize the normal regime, providing stability improvements
over standard methods (Filippone et al., 2010). Gaussian
process models can also be used for kernel-based outlier
detection (Kemmler et al., 2010).

Our work begins with similar assumptions about the na-
ture of outliers as used in the one-class support vector ma-
chine (Schölkopf et al., 1999) and the kernel Fisher dis-
criminant method for outlier detection (Roth, 2006), as we
describe in Section 4, though our choice of loss function
leads to a method which is comparable in terms of empir-
ical performance on benchmark data but usually faster to
train and test.

3. Least-squares probabilistic classification

We now give a brief review of least-squares probabilis-
tic classification (Sugiyama, 2010). Given labelled train-
ing data of the form {(xi, yi)}Ni=1 where xi ∈Rd is an input
point in the data space, yi ∈ Y is the corresponding class
label and Y = {1, . . . , c} is the set of possible classes, we
wish to be able to estimate the class-conditional probabil-
ity p(y|x). It is possible to construct functions q(y=i|x, θi)
to estimate p(y=i|x) for each i ∈ Y, using an approxima-
tion of the form

q(y=i|x, θi) = θ>i φ(x) ,

where
θi = (θi,1, . . . , θi,B)> ∈ RB

for some number of parameters B, and

φ(x) = (K(x, x1), . . . ,K(x, xB))> ∈ RB

is a vector of kernel basis functions. We can set B = N
to have a kernel basis function at every training point,
or for B < N use some random subset of the training
points. In this work we use the squared exponential kernel
K(x, x′) = exp

(
− 1
σ2 ||x − x′||2

)
.

We fit this model using squared loss:

Ji(θi) =
1
2

∫
(q(y=i|x, θi) − p(y=i|x))2 p(x)dx .

Expanding and using p(y|x) = p(x|y)p(y)/p(x) we obtain

Ji(θi) =
1
2

∫
q(y=i|x, θi)2 p(x)dx

−

∫
q(y=i|x, θi)p(x|y=i)p(y=i)dx + C .

Empirically, we can approximate the expectations by
sample averages, and the prior p(y=i) by sample ratios.

2



Ignoring the constant C, factor 1/N and including an `2-
regularizer, we have the following training criterion:

Ĵi(θi) =
1
2
θ>i Φ

>Φθi − θ
>
i Φmi +

ρ

2
||θi||

2 ,

whereΦ = (φ(x1), . . . ,φ(xN))> and mi is a column vector
indicating membership of class i such that the jth element
is one if y j = i and zero otherwise. Ĵi(θi) is minimized by

θ̂i =
(
Φ>Φ + ρIB

)−1
Φmi , (1)

which is essentially kernel ridge regression. We select ρ
and σ with cross validation. Because of the nature of the
estimator, it is sometimes possible to obtain estimates of
posteriors which are negative. We simply round up to zero
in such cases,

q(y=i|x, θ̂i) = max
(
0, θ̂

>

i φ(x)
)
. (2)

A posterior estimate is then obtained by normalizing over
all classes,

p̂(y=i|x) =
q(y=i|x, θ̂i)∑

j∈Y q(y= j|x, θ̂ j)
.

This least-squares approach is a consistent estimator and
is very fast to compute in practice, finding a global opti-
mum in a single step with no iterative parameter search
required. Consistency is guaranteed even in the case
where estimates are rounded up to zero, as discussed in
(Sugiyama, 2010, §2.2). This formulation is therefore an
alternative to kernel logistic regression, providing similar
theoretical guarantees and empirical accuracy, but with a
speed increase of orders of magnitude (Sugiyama, 2010,
§3).

4. Anomaly model

We now consider the case in which other classes
{c + 1, c + 2, . . .} might be represented in the test data but
not in the training data. We use y=∗, ∗ < Y to denote
any such anomaly class. The supervised anomaly detec-
tion problem is to assign a value to the estimate p̂(y= ∗ |x)
for some test data x given training data only from classes
in Y. Although we do not have explicit training data, we

are free to make assumptions about the possible distribu-
tion of such data relative to the “known” classes, yielding
estimators consistent with those assumptions.

The method we propose is similar in essence to the
one-class support vector machine (Schölkopf et al., 1999).
These methods begin with the assumption that outliers oc-
cupy low-density regions of the data space and that a ker-
nel model can be used to characterize the high-density re-
gions given training data. Any given significance thresh-
old can then be used to separate the inlier and outlier level
sets.

With some abuse of notation, we estimate the condi-
tional probability of an outlier p(y= ∗ |x, θi) with

q(y= ∗ |x, θ∗) = 1 − θ>∗ φ(x) . (3)

The problem of identifying outliers can then be equated
with learning θ∗ such that Eq. (3) is close to zero when x
is within a region in which training data has high density,
and is close to one anywhere else. To achieve this we
minimize the following loss function:

J∗(θ∗) =
1
2

∫ (
1 − θ>∗ φ(x)

)2
p(x)dx +

ρ

2
||θ∗||

2 . (4)

The integral term specifies the first part of the objective,
that Eq. (3) should be close to zero for inlying regions.
For x in highly outlying regions where φ(x) approaches
the origin, Eq. (3) approaches one for any choice of θ∗.
However, the term ρ

2 ||θ∗||
2 rewards choices of θ∗ for which

Eq. (3) approaches one in outlying regions more quickly.
The objective function in this form is analogous to that in
Schölkopf et al. (1999), which uses a support vector ma-
chine to separate training data from the origin with maxi-
mum margin.

Expanding Eq. (4) and approximating empirically for
finite training data gives

Ĵ∗(θ∗) =
1
2

+
1
2
θ>∗Φ

>Φθ∗ −
N∑

i=1

θ>∗ φ(xi) +
ρ

2
||θ∗||

2 , (5)
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which is minimized by

θ̂∗ =
(
Φ>Φ + ρIB

)−1
N∑

i=1

φ(xi)

=
(
Φ>Φ + ρIB

)−1 ∑
j∈Y

Φ>mj

=
∑
j∈Y

θ̂ j .

Therefore

q(y= ∗ |x, θ̂1, . . . , θ̂S ) = 1 −
∑
j∈Y

θ̂
>

j φ(x)

= 1 −
∑
j∈Y

q(y= j|x, θ̂ j) .

We round up to zero as before in case of negative esti-
mates,

q(y= ∗ |x, θ̂1, . . . , θ̂c) = max

0, 1 −∑
j∈Y

q
(
y=i|x, θ̂ j

) .
(6)

An intuition for this result is that since q (yt=i|xt) is an es-
timator of the conditional probability p (yt=i|xt), the sum
of these terms for all i ∈ S can be interpreted as an ap-
proximation to p(yt ∈ S|xt) the conditional probability of
being in any one of the known states. The complement
of the sum could therefore be viewed as an estimate of
p(yt < Y|xt), the conditional probability of an unknown
state given the assumptions about classwise distribution
of x encoded in the choice of kernel parameter σ and reg-
ularization parameter ρ.

In this method, the effect of increasing the size of pa-
rameter ρ is both to regularize (intuitively, to model the
densities of known classes as more of a smooth “ball”
around the most inlying training points) and to increase
the sensitivity to outliers. Figure 1 plots the contours of
p̂(y = ∗|x) for different settings of ρ in a one-class prob-
lem where inlying training data is drawn from a 2D Gaus-
sian distribution to illustrate this. The choice of the ker-
nel length scale parameter σ is equivalent to that in any
kernel modeling problem, for which a number of heuris-
tics have been found to be successful, such as using the
median distance between pairs of training data points or

the average distance between kth nearest neighbors in the
training data.

In summary, the assumptions we make in this section
lead us to a method for assigning probabilities to test data
instances that they belong to an anomaly class which oc-
cupies a region of data space with low density in the train-
ing data. To assign such probabilities, we do not need to
do any extra parameter estimation than was already car-
ried out in the conventional supervised learning process
described in Section 3. This anomaly detection method
therefore shares the advantages of LSPC in terms of speed
of training and inference and the flexibility of a nonpara-
metric kernel-based method.

5. Sequential anomaly detection

Anomaly detection is often applied in a sequential set-
ting, where we have temporal information to aid the infer-
ence process (Chandola et al., 2012; Quinn and Williams,
2007; Song et al., 2013; Tan et al., 2011). For example,
inlier or outlier states might be expected to have long du-
rations relative to the frequency of observations, such that
if we knew there was an anomaly at time t, we may ex-
pect an anomaly a time t + 1 with high probability before
having seen any data.

In this section, we therefore consider the estimation of
a latent sequence of class labels y1:T = {yt ∈ Y ∪ ∗}

T
t=1

from a sequence of observed vectors x1:T =
{
xt ∈ Rd

}T

t=1
.

We assume that each observation is independently drawn
from the distribution p(xt |yt), and that yt has first order
Markovian dynamics such that p(yt |y1:t−1) = p(yt |yt−1).
The values yt can take on are as above in the static classifi-
cation problem. ThusYmight contain a single inlier class
and the corresponding inference problem is that of iden-
tifying anomalous subsequences in x1:T . There could also
be multiple inlier classes, Y = {1, . . . , c}, in which case
we may be interested in determining at each time frame t
whether yt is one of these known inlier classes (and if so,
which one) or whether yt = ∗.

The densities p(yt |yt−1) and p(xt |yt) and the initial
class probabilities p(y1) together define a Hidden Markov
Model (Rabiner, 1989). The HMM forward-backward al-
gorithm can be used to estimate the probability of each
state at each time frame, p(yt=i|x1:T ). We briefly review
the algorithm here, using the following shorthand: A de-
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Figure 1: Contours of outlier probability density at different regularization levels, given 10 inlier samples from a 2D Gaussian distribution. Larger
values of ρ increase the sensitivity to outliers.

notes a (c + 1) × (c + 1) matrix of class transition proba-
bilities, such that Ai j = p(yt= j|yt−1=i) and π ∈ Rc+1 is a
vector of initial state probabilities such that πi = p(y1=i).
These parameters are straightforward to estimate if la-
beled training data is available (Rabiner, 1989), and do-
main knowledge can be used to choose suitable values for
π∗, {Ai∗}

c+1
i=1 ,{A∗i}ci=1 with respect to the anomaly class.

The first stage of the algorithm involves recursively
calculating forward messages αt(i) for each of the states
i ∈ Y ∪ ∗:

αi(1) = πi p(x1|y1=i) , (7)

αi(t) =

 ∑
j∈Y∪∗

α j(t − 1)A ji

 p(xt |yt=i) , (8)

t = 2, . . . ,T.

The forward messages can be interpreted as the poste-
rior probability of each class given observations up to that
time frame, and the process of calculating them is known
as filtering. For numerical stability or to interpret these
quantities as probability measures it is necessary to nor-
malize the messages α1(t), . . . , αc+1(t) so that they sum to
1.

To carry out smoothing (calculation of p(yt=i|x1:T )) the
backwards messages βt(i) must first be similarly calcu-
lated:

βi(T ) = 1 , (9)

βi(t) =
∑

j∈Y∪∗

Ai j p(xt+1|yt+1= j)β j(t + 1) , (10)

t = T − 1, . . . , 1.

The two types of messages are then combined to give the
final result

γi(t) = p(yt=i|x1:T ) =
αi(t)βi(t)∑

j∈Y∪∗ α j(t)β j(t)
. (11)

In order to carry out these inference steps in practice, we
have to calculate the p(xt |yt=i) terms. To do this, we use
the relationship p(xt |yt=i) ∝ p(yt=i|xt)/p(yt=i). At test
time, to compute Eqs. (7,8,10) we therefore substitute
q(yt=i|xt)/πyt for p(xt |yt=i), calculating q(yt=i|xt) with Eq.
(2) for inlier classes i ∈ Y and with Eq. (6) for the
anomaly class i = ∗. This means that to estimate param-
eters we only have to calculate θ̂1, . . . , θ̂c from training
data exactly as is done for the classifier in Section 3 (in
addition to choosing A, π as above).

We note that a mathematically equivalent way to view
this inference is that the relationship p(xt |yt=i)

p(xt |yt= j) =
π j p(yt=i|xt)
πi p(yt= j|xt)

can be used in order to apply the density ratio formulation
of the HMM (Quinn and Sugiyama, 2013).

6. Experiments

We now give experimental results using the above
methods when applied to several real-world datasets.
First, we analyse the performance of the anomaly detec-
tion method for i.i.d. data compared to standard alterna-
tive methods, then we illustrate the sequential inference
method on two times series monitoring applications.

6.1. Static anomaly detection
We compared anomaly detection performance of the

least squares method on static data with standard anomaly
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detection methods. These methods were the one-class
support vector machine (Schölkopf et al., 1999), the dis-
tance to the kth nearest neighbor (Chandola et al., 2009,
§5), and k-means clustering followed by finding the dis-
tance from test data to the nearest cluster centre (Chandola
et al., 2009, §6). These methods were applied to 22 clas-
sification datasets made available on the libsvm website1.
For each dataset, data points with the first class label were
treated as inliers and data points with the second class la-
bel were treated as outliers. For multi-class datasets, any
other classes were ignored. Anomaly detection was eval-
uated by carrying out a stratified 5-fold cross validation
(i.e. keeping the proportion of inliers to outliers constant
in each fold). For each fold, the anomaly detection meth-
ods were trained with only examples from the inlier class.
On the test set, the anomaly scores were used to calculate
AUC values.

For least squares anomaly detection, we set ρ = 0.1,
B = min(N, 500), and σ to be the median distance be-
tween each data point and its kth nearest neighbour (k =

7) in a subset of the training data. For the one class sup-
port vector machine (OCSVM), we used the scikit-learn2

implementation (based on libsvm) with its default values
ν = 0.5 and the same kernel width as for the least squares
method. For k-NN we used k = 10, for k-means we used
k = 20, and for both algorithms we again used the scikit-
learn implementations.

The average AUC values are shown in Table 1. The
least squares method had either the highest average AUC
or performance not significantly different from the highest
scoring method (calculated using a paired t-test with sig-
nificance level 0.05) for 16 of the 22 datasets. Although
the least squares method did not have significantly higher
AUCs than the baseline methods across all datasets, it
was much faster to run. For each method, the bottom
row of Table 1 shows the total time required for running
the experiments, relative to the time taken by our least
squares method. All the baseline methods are signifi-
cantly slower overall, and although the least squares was
not the fastest in all cases (particularly for small datasets,
in which case the k-NN algorithm has smaller overhead),

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/
2http://scikit-learn.org

the gain became larger with increasing dataset size. For
example, when processing MNIST data, OCSVM was
8.1 times slower than least squares, k-NN was 4.1 times
slower, and k-means was 23.3 times slower). Further-
more, the OCSVM used the highly optimised libsvm C
code, whereas our least squares implementation ran in
Python. The k-NN implementation was also heavily op-
timised, for example with heuristics to choose between
KD-tree or ball-tree data structures as well as leaf size
parameters based on the training data. We therefore con-
clude that the performance of our method on static data is
competitive with alternative methods in terms of accuracy
and superior in terms of speed for large datasets.

6.2. Sequential anomaly detection

We evaluated the sequential anomaly detection tech-
nique first using the NASA shuttle valve dataset (Fer-
rell and Santuro, 2005), which contains sequences of
solenoid current readings from fuel control valves. Four
sequences are measured under normal operating condi-
tions, and eight sequences during which some fault was
induced in the valve. Each sequence contains 1000 mea-
surements taken at 1ms intervals.

We constructed a density ratio HMM with one state
modeling normal dynamics and one anomaly state, set-
ting A =

[
.999 .001
.1 .9

]
, π = [0.5, 0.5] and creating obser-

vation subsequences such that xt = [xt, xt+50], where the
scalar xt is the measurement in the original dataset. The
only preprocessing applied to the original data was a mov-
ing median filter of width 10 to remove transient spikes.
The model was trained using single example sequences
of normal dynamics. In each case, after training with one
normal sequence, we applied the model to the remaining
three normal sequences and eight abnormal sequences.

Sample output is shown in Figure 2(a). For each of
the four test sets, we calculated the total probability mass
of the abnormal state in each of sequences. In all cases,
this probability measure perfectly segmented the normal
and abnormal test sequences, i.e. the probability mass
for the normal test sequences was always lower than that
of the abnormal test sequences. For comparison, previ-
ous work (Chan and Mahoney, 2005) has shown other
anomaly detection methods unable to perfectly separate
normal and abnormal sequences even when training on
three normal sequences, and perfect separation to be pos-
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Table 1: Results of anomaly detection on static data (average AUC after stratified k-fold cross validation). LSAD denotes least squares anomaly
detection, OCSVM denotes the one-class support vector machine, KNN denotes k-nearest neighbour, and KM denotes k-means. Where there is
a unique maximal average AUC value, it is indicated in bold. Italics indicate results which were not significantly different from the best scoring
method according to a paired t-test at significance level 0.05.

Dataset Method

d N LSAD OCSVM KNN KM

australian 14 690 0.6911 0.6945 0.7027 0.6631
breast-cancer 10 683 0.9866 0.9867 0.9879 0.9833
cod-rna 8 59535 0.8262 0.8408 0.8488 0.7702
colon-cancer 2000 62 0.7000 0.6987 0.6450 0.7638
diabetes 8 768 0.7042 0.7242 0.7456 0.7246
dna 180 1532 0.7796 0.7026 0.7657 0.7637
duke 7129 44 0.5400 0.5400 0.5375 0.4525
gisette 5000 7000 0.5199 0.4990 0.5324 0.5385
glass 9 146 0.7961 0.7778 0.6467 0.7920
heart 13 270 0.6200 0.6447 0.7075 0.6253
ijcnn1 22 49990 0.6947 0.7300 0.6172 0.6160
ionosphere 34 351 0.9621 0.9658 0.9622 0.9547
letter 16 1161 0.9990 0.9988 0.9921 0.9938
leukemia 7129 72 0.7160 0.6782 0.6378 0.6747
mnist 780 14780 0.8348 0.8600 0.8341 0.8666
mushrooms 112 8124 0.9900 0.9908 0.9881 0.9924
pendigits 16 1559 0.9987 0.9989 0.9988 0.9992
satimage 36 1551 0.9999 0.9999 0.9998 0.9998
sonar 60 208 0.6746 0.6524 0.6492 0.7184
usps 256 2199 0.9595 0.9618 0.9536 0.9781
vowel 10 180 0.9963 0.9951 0.6630 0.9864
wine 13 130 0.9904 0.9892 0.9868 0.9868

Time 1.00 4.21 1.98 13.80

sible when training on two normal sequences at a time us-
ing a 3-d feature vector and heuristic anomaly detection
algorithm. Therefore the density ratio HMM not only re-
quires less training data than previous methods to achieve
perfect performance on this dataset, but requires very little
feature engineering or parameter adjustment to do so.

We give another illustration of anomaly detection when
applying our method to electrocardiogram (ECG) data
from the MIT PhysioNet database (Goldberger et al.,
2000). To demonstrate that the effectiveness of anomaly
detection is not sensitive to parameter settings, we applied
the same parameters A, π and subsequence construction
xt = [xt, xt+50] as we did to the shuttle data. The data was
preprocessed by subtracting the results of a moving me-
dian filter of window size 300 on both channels in order

to remove drift. Training the model with a sequence of
length 2000 containing only normal heartbeats, we then
applied it to the subsequent measurements in the record-
ing containing an arrhythmia. The model correctly identi-
fies the period of unusual dynamics, shown in Figure 2(b).

7. Discussion

In this letter we have introduced a novel method for
anomaly detection, based on recent work in probabilis-
tic classification using `2 loss. We have demonstrated
that our method achieves practical anomaly detection per-
formance comparable to currently popular methods, with
significant improvements in training and testing time.
Therefore we particularly recommend its application to
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Figure 2: Anomaly detection examples. Panel (a) shows part of the
shuttle dataset, with three normal sequences and three fault sequences
concatenated. Here p∗ denotes p(yt= ∗ |x1:T ), the probability of the ob-
servation at time t being governed by an anomalous dynamical regime,
where solid red indicates probability close to 1. These results were ob-
tained after training on one separate normal sequence. Panel (b) shows
an ECG recording, where the model identifies a cardiac arrhythmia.

the discovery of anomalies in large static and sequential
datasets, or wherever CPU power available at test time
is very limited. We have further shown that because the
method is probabilistic, it is straightforward to incorpo-
rate into a hidden Markov model framework for sequen-
tial inference. This principle could be applied more gen-
erally, however, to other cases in which test data is subject
to some kind of structural dependency. Specific examples
of interest for future work are spatial and spatio-temporal
modeling.
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