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Abstract

In recent applications with massive but less
reliable data (e.g., labels obtained by a semi-
supervised learning method or crowdsourc-
ing), non-robustness of the support vector
machine (SVM) often causes considerable
performance deterioration. Although im-
proving the robustness of SVM has been
investigated for long time, robust SVM
(RSVM) learning still poses two major chal-
lenges: obtaining a good (local) solution from
a non-convex optimization problem and op-
timally controlling the robustness-efficiency
trade-off. In this paper, we address these two
issues simultaneously in an integrated way
by introducing a novel homotopy approach to
RSVM learning. Based on theoretical inves-
tigation of the geometry of RSVM solutions,
we show that a path of local RSVM solu-
tions can be computed efficiently when the
influence of outliers is gradually suppressed
as simulated annealing. We experimentally
demonstrate that our algorithm tends to pro-
duce better local solutions than the alterna-
tive approach based on the concave-convex
procedure, with the ability of stable and ef-
ficient model selection for controlling the in-
fluence of outliers.
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Figure 1. Illustrative examples of (a) standard SVM and
(b) robust SVM (RSVM) on a toy dataset. In RSVM, the
classification result is not sensitive to the two red outliers
in the right-hand side of the graphs.

1. Introduction

The support vector machine (SVM) is one of the most
popular classification algorithms that has achieved sig-
nificant empirical success in various real-world appli-
cations (Vapnik, 1996). However, SVM was known
to be sensitive to outliers which limits the usabil-
ity of SVM in recent applications with massive but
less reliable data (e.g., automatically labeled data by
semi-supervised learning or manually labeled data in
crowdsourcing). In order to alleviate adverse influ-
ence of outliers, various robust extensions of SVM
(robust SVM; RSVM) have been proposed (Masnadi-
Shiraze & Vasconcelos, 2000; Shen et al., 2003; Krause
& Singer, 2004; Liu et al., 2005; Liu & Shen, 2006; Xu
et al., 2006; Collobert et al., 2006; Wu & Liu, 2007;
Masnadi-Shirazi & Vasconcelos, 2009; Freund, 2009;
Yu et al., 2010). Figure 1 illustrates the robust behav-
ior of RSVM.

When we use RSVM in practice, we encounter two



Outlier Path

major difficulties. The first one is the non-convexity
of the RSVM optimization problem, which results in
obtaining only a local optimal solution. Another dif-
ficulty is the control of the robustness of the solu-
tion. In RSVM, the robustness of the solution is con-
trolled by a hyper-parameter, and we usually change
the hyper-parameter value gradually and find the best
one by cross-validation. However, due to the non-
convexity, the RSVM solutions with slightly different
hyper-parameter values can be significantly different,
which makes model selection by cross-validation highly
challenging.

In this paper, we introduce a novel approach to RSVM
learning to address these issues. Our basic idea is to
use the homotopy methods (Allgower & George, 1993;
Gal, 1995; Ritter, 1984; Best, 1996) to trace a path of
local optimal solutions when the influence of outliers is
gradually decreased by changing the hinge loss to more
robust ones. Figure 2 illustrates two different ways to
gradually robustify the hinge loss. So far, homotopy-
like methods have been (often implicitly) employed in
sparse modeling and semi-supervised learning (Zhang,
2010; Mazumder et al., 2011; Zhou et al., 2012; Ogawa
et al., 2013). However, to the best of our knowledge,
this is the first work that applies the homotopy method
to RSVM.

After problem formulation in § 2, we derive in § 3 the
necessary and sufficient conditions for an RSVM so-
lution to be locally optimal, and show that there exist
a finite number of discontinuous points in the local so-
lution path. We then propose an efficient algorithm in
§ 4 that can precisely detect such discontinuous points
and jump to find a strictly better local optimal solu-
tion. In § 5, we experimentally demonstrate that our
proposed method, named the outlier path, outperforms
the existing RSVM algorithm based on the concave-
convex procedure or the difference-of-convex program-
ming (Shen et al., 2003; Krause & Singer, 2004; Liu
et al., 2005; Liu & Shen, 2006; Collobert et al., 2006;
Wu & Liu, 2007). Finally, we conclude in § 6.

2. Parameterized RSVM

Let us consider a binary classification problem with n
instances and d features. We denote the training set as
{(xi, yi)}i∈Nn where xi ∈ X is the input vector in the
input space X ⊂ Rd, yi ∈ {−1, 1} is the binary class
label, and the notation Nn := {1, . . . , n} represents the
set of natural numbers up to n. We write the decision
function as f(x) := w⊤ϕ(x), where ϕ is the feature
map implicitly defined by a kernel K, w is a vector
in the feature space, and ⊤ denotes the transpose of
vectors and matrices.

We introduce the following class of optimization prob-
lems parameterized by θ and s:

min
w

1

2
∥w∥2 + C

n∑
i=1

ℓ(yif(xi); θ, s), (1)

where C > 0 is the regularization parameter. The
loss function ℓ is characterized by a pair of parameters
θ ∈ [0, 1] and s ≤ 0 in the following way:

ℓ(z; θ, s) :=

{
[0, 1− z]+, z ≥ s,
1− θz − s, z < s,

(2)

where [z]+ := max{0, z}. We refer to θ and s as
homotopy parameters. Figure 2 shows the loss func-
tions for several θ and s. The first homotopy param-
eter θ can be interpreted as the weight for an outlier:
θ = 1 indicates that the influences of outliers and in-
liers are same, while θ = 0 indicates that outliers are
completely ignored. The second homotopy parameter
s ≤ 0 is interpreted as the threshold for outliers.

In the following sections, we consider two types of ho-
motopy methods. In the first method, we fix s = 0,
and gradually change θ from 1 to 0 (see the top five
plots in Figure 2). In the second method, we fix θ = 0
and gradually change s from −∞ to 0 (see the bottom
five plots in Figure 2). Note that the loss function
is reduced to the hinge loss for the standard (convex)
SVM when θ = 1 or s = −∞. Therefore, each of
the above two homotopy methods can be interpreted
as the process of tracing a sequence of solutions when
the optimization problem is gradually modified from
convex to non-convex. We expect to find good local
optimal solutions because such a process can be inter-
preted as simulated annealing (Hromkovic, 2001). In
addition, we can adaptively control the degree of ro-
bustness by selecting the best θ or s based on some
model selection scheme.

3. Local Optimality of RSVM

In order to use the homotopy approach, we need to
clarify the continuity of the local solution path. To
this end, we investigate several properties of RSVM
local solutions, and derive the necessary and sufficient
conditions. Interestingly, our analysis reveals that the
local solution path has a finite number of discontinuous
points. The theoretical results presented here form
the basis of our novel homotopy algorithm given in
the next section that can properly handle the above
discontinuity issue.

3.1. Conditionally Optimal Solutions

The basic idea of our theoretical analysis is to refor-
mulate the RSVM learning problem as a combinatorial
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(a) Homotopy computation with decreasing θ from 1 to 0.
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(b) Homotopy computation with decreasing s from −∞ to 0.

Figure 2. Robust loss functions for various homotopy parameters θ and s.

optimization problem. We consider a partition of the
instances Nn := {1, . . . , n} into two disjoint sets I and
O. The instances in I and O are defined as Inliers
and Outliers, respectively. Here, we restrict that the
margin yif(xi) of an inlier should be larger than s,
while that of an outlier should be smaller than s. We
denote the partition as P := {I,O} ∈ 2Nn , where 2Nn

is the power set of Nn. Given a partition P, the above
restrictions define the feasible region of the solution f
in the form of a convex polytope1:

pol(P; s) :=

{
f

∣∣∣∣∣ yif(xi) ≥ s, i ∈ I
yif(xi) ≤ s, i ∈ O

}
. (3)

Using the notion of the convex polytopes, the opti-
mization problem (1) can be rewritten as

min
P∈2Nn

(
min

f∈pol(P;s)
JP(f ; θ)

)
, (4)

where the objective function JP is defined as2

JP(f ; θ) :=
1

2
||w||22

+ C

(∑
i∈I

[1− yif(xi)]+ + θ
∑
i∈O

[1− yif(xi)]+

)
.

When the partition P is fixed, it is easy to confirm
that the inner minimization problem in (4) is convex.

1Note that an instance with the margin yif(xi) = s can
be the member of either I or O.

2Note that we omitted the constant terms irrelevant to
the optimization problem.

Definition 1 (Conditionally optimal solutions)
Given a partition P, the solution of the following
convex problem is said to be the conditionally optimal
solution:

f∗P := argmin
f∈pol(P;s)

JP(f ; θ). (5)

The formulation in (4) is interpreted as a combinato-
rial optimization problem of finding the best solution
from all the 2n conditionally optimal solutions f∗P cor-
responding to all possible 2n partitions3.

Using the representer theorem or convex optimization
theory, we can show that any conditionally optimal
solution can be written as

f∗P(x) :=
∑
j∈Nn

α∗
jyjK(x,xj), (6)

where {α∗
j}j∈Nn are the optimal Lagrange multipliers.

The following lemma summarizes the KKT optimality
conditions of the conditionally optimal solution f∗P .

Lemma 2 The KKT conditions of the convex problem
(5) is written as

yif
∗
P(xi) > 1 ⇒ α∗

i = 0, (7a)

yif
∗
P(xi) = 1 ⇒ α∗

i ∈ [0, C], (7b)

s < yif
∗
P(xi) < 1 ⇒ α∗

i = C, (7c)

yif
∗
P(xi) = s, i ∈ I ⇒ α∗

i ≥ C, (7d)

yif
∗
P(xi) = s, i ∈ O ⇒ α∗

i ≤ Cθ, (7e)

yif
∗
P(xi) < s ⇒ α∗

i = Cθ. (7f)

3For some partitions P, the convex problem (5) might
not have any feasible solutions.
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The proof is omitted because it can be easily derived
based on standard convex optimization theory (Boyd
& Vandenberghe, 2004).

3.2. The necessary and sufficient conditions
for local optimality

From the definition of conditionally optimal solutions,
it is clear that a local optimal solution must be condi-
tionally optimal within the convex polytope pol(P; s).
However, the conditional optimality does not necessar-
ily indicate the local optimality as the following theo-
rem suggests.

Theorem 3 For any θ ∈ [0, 1) and s ≤ 0, consider a
situation where a conditionally optimal solution f∗P is
at the boundary of the convex polytope pol(P; s), i.e.,
there exists at least an instance such that yif

∗
P(xi) = s.

In this situation, if we define a new partition P̃ :=
{Ĩ, Õ} as

Ĩ←I\{i ∈ I|yif∗(xi)=s}∪{i ∈ O|yif∗(xi)=s}, (8a)
Õ←O\{i ∈ O|yif∗(xi)=s}∪{i ∈ I|yif∗(xi)=s}, (8b)

then the new conditionally optimal solution f∗P̃ is
strictly better than the original conditionally optimal
solution f∗P , i.e.,

JP̃(f
∗
P̃ ; θ) < JP(f

∗
P ; θ). (9)

The proof is presented in Appendix A. Theorem 3 indi-
cates that if f∗P is at the boundary of the convex poly-
tope pol(P; s), i.e., if there is one or more instances
such that yif

∗
P(xi) = s, then f∗P is NOT locally opti-

mal because there is a strictly better solution in the
opposite side of the boundary.

The following theorem summarizes the necessary and
sufficient conditions for local optimality. Note that,
in non-convex optimization problems, the KKT condi-
tions are necessary but not sufficient in general.

Theorem 4 For θ ∈ [0, 1) and s ≤ 0,

yif
∗(xi) > 1 ⇒ α∗

i = 0, (10a)

yif
∗(xi) = 1 ⇒ α∗

i ∈ [0, C], (10b)

s < yif
∗(xi) < 1 ⇒ α∗

i = C, (10c)

yif
∗(xi) < s ⇒ α∗

i = Cθ, (10d)

yif
∗(xi) ̸= s, ∀i ∈ Nn, (10e)

are necessary and sufficient for f∗ to be locally opti-
mal.

The proof is presented in Appendix B. The condition
(10e) indicates that the solution at the boundary of

(a) Local solution path (b) Local optimum

(c) Not local optimum (d) Local optimum

Figure 3. Solution space of RSVM. (a) The arrows indicate
a local solution path when θ is gradually moved from θ1 to
θ5 (see § 4 for more details). (b) f∗

P is locally optimal if it is
at the strict interior of the convex polytope pol(P; s). (c)
If f∗

P exists at the boundary, then f∗
P is feasible, but not

locally optimal. A new convex polytope pol(P̃; s) defined
in the opposite side of the boundary is shown in yellow.
(d) A strictly better solution exists in pol(P̃; s).

the convex polytope is not locally optimal. Figure 3
illustrates when a conditionally optimal solution can
be locally optimal with a certain θ or s.

Theorem 4 suggests that, whenever the local solution
path computed by the homotopy approach encounters
a boundary of the current convex polytope at a cer-
tain θ or s, the solution is not anymore locally opti-
mal. In such cases, we need to somehow find a new
local optimal solution at that θ or s, and restart the
local solution path from the new one. In other words,
the local solution path has discontinuity at that θ or
s. Fortunately, Theorem 3 tells us how to handle such
a situation. If the local solution path arrives at the
boundary, it can jump to the new conditionally opti-
mal solution f∗P̃ which is located on the opposite side
of the boundary. This jump operation is justified be-
cause the new solution is shown to be strictly better
than the previous one. Figure 3 (c) and (d) illustrate
such a situation.

4. Outlier Path Algorithm

Based on the analysis presented in the previous sec-
tion, we develop a novel homotopy algorithm for
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Algorithm 1 Outlier Path Algorithm

1: Initialize the solution f by solving the standard
SVM.

2: Initialize the partition P := {I,O} as follows:

I ← {i ∈ Nn|yif(xi) ≤ s},
O ← {i ∈ Nn|yif(xi) > s}.

3: θ ← 1 for OP-θ; s← mini∈Nn yif(xi) for OP-s.
4: while θ > 0 for OP-θ; s < 0 for OP-s do
5: if (yif(xi) ̸= s ∀ i ∈ Nn) then
6: Run C-step.
7: else
8: Run D-step.
9: end if

10: end while

RSVM. We call the proposed method the outlier-path
(OP) algorithm. For simplicity, we consider homotopy
path computation involving either θ or s, and denote
the former as OP-θ and the latter as OP-s. OP-θ
computes the local solution path when θ is gradually
decreased from 1 to 0 with fixed s = 0, while OP-s
computes the local solution path when s is gradually
increased from −∞ to 0 with fixed θ = 0.

4.1. Overview

The main flow of the OP algorithm is described in
Algorithm 1. The solution f is initialized by solving
the standard (convex) SVM, and the partition P :=
{I,O} is defined to satisfy the constraints in (3). The
algorithm mainly switches over the two steps called the
continuous step (C-step) and the discontinuous step
(D-step).

In the C-step (Algorithm 2), a continuous path of local
solutions is computed for a sequence of gradually de-
creasing θ (or increasing s) within the convex polytope
pol(P; s) defined by the current partition P. If the lo-
cal solution path encounters a boundary of the convex
polytope, i.e., if there exists at least an instance such
that yif(xi) = s, then the algorithm stops updating θ
(or s) and enters the D-step.

In the D-step (Algorithm 3), a better local solution is
obtained for fixed θ (or s) by solving a convex problem
defined over another convex polytope in the opposite
side of the boundary (see Figure 3(d)). If the new so-
lution is again at a boundary of the new polytope, the
algorithm repeatedly calls the D-step until it finds the
solution in the strict interior of the current polytope.

The C-step can be implemented by any homotopy al-
gorithms for solving a sequence of quadratic problems
(QP). In OP-θ, the local solution path can be exactly

Algorithm 2 Continuous Step (C-step)

1: while (yif(xi) ̸= s ∀ i ∈ Nn) do
2: Solve the sequence of convex problems,

min
f∈pol(P;s)

JP(f ; θ),

for gradually decreasing θ in OP-θ or gradually
increasing s in OP-s.

3: end while

Algorithm 3 Discontinuous Step (D-step)

1: Update the partition P := {I,O} as follows:

I ← I \ {i ∈ I|yif(xi) = s} ∪ {i ∈ O|yif(xi) = s},
O ← O \ {i ∈ O|yif(xi) = s} ∪ {i ∈ I|yif(xi) = s}.

2: Solve the following convex problem for fixed θ and
s:

min
f∈pol(P;s)

JP(f ; θ).

computed because the path within a convex polytope
can be represented as piecewise-linear functions of the
homotopy parameter θ. In OP-s, the C-step is trivial
because the optimal solution is shown to be constant
within a convex polytope. In § 4.2 and § 4.3, we will
describe the details of our implementation of the C-
step for OP-θ and OP-s, respectively.

In the D-step, we only need to solve a single quadratic
problem (QP). Any QP solver can be used in this step.
We note that the warm-start approach (DeCoste &
Wagstaff, 2000) is quite helpful in the D-step because
the difference between two conditionally optimal so-
lutions in adjacent two convex polytopes is typically
very small. In § 4.4, we describe the details of our
implementation of the D-step. Figure 4 illustrates an
example of the local solution path obtained by OP-θ.

In Algorithm 1, If the conditionally optimal solution
is at the boundary, we again enters to the D-step. The
objective function JP strictly decreases each time as
shown in Theorem 3. Since any local optimal solutions
must be in the strict interior as shown in Theorem 4,
and the number of convex polytopes is finite, the algo-
rithm will finally find a local optimal solution in finite
time.

4.2. Continuous-Step for OP-θ

In the C-step, the partition P := {I,O} is fixed, and
our task is to solve a sequence of convex quadratic
problems (QPs) parameterized by θ within the convex
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Figure 4. An example of the local solution path by OP-θ
on a simple toy data set (with C = 200). The paths of five
Lagrange multipliers α∗

1, · · · , α∗
4 are plotted in the range of

θ ∈ [0, 1]. Open circles represent the discontinuous points
in the path. In this simple example, we had experienced
three discontinuous points at θ = 0.37, 0.67 and 0.77.

polytope pol(P; s). It has been known in optimization
literature that a certain class of parametric convex QP
can be exactly solved by exploiting the piecewise lin-
earity of the solution path (Best, 1996). We can easily
show that the local solution path of OP-θ within a con-
vex polytope is also represented as a piecewise-linear
function of θ. The algorithm presented here is simi-
lar to the SVM regularization path algorithm in Hastie
et al. (2004).

Let us consider a partition of the inliers in I into the
following three disjoint sets:

R := {i|1 < yif(xi)},
E := {i|yif(xi) = 1},
L := {i|s < yif(xi) < 1}.

For a given fixed partition {R, E ,L,O}, the KKT con-
ditions of the convex problem (5) indicate that

αi = 0 ∀ i ∈ R, αi = C ∀ i ∈ L, αi = Cθ ∀ i ∈ O.

The KKT conditions also imply that the remaining La-
grange multipliers {αi}i∈E must satisfy the following
linear system of equations:

yif(xi) =
∑
j∈Nn

αjyiyjK(xi,xj) = 1 ∀ i ∈ E

⇔ QEEαE = 1−QEL1C −QEO1Cθ, (11)

where Q ∈ Rn×n is an n × n matrix whose (i, j)th

entry is defined as Qij := yiyjK(xi,xj). Here, a nota-
tion such as QEL represents a submatrix of Q having
only the rows in the index set E and the columns in
the index set L. By solving the linear system of equa-
tions (11), the Lagrange multipliers αi, i ∈ Nn, can be
written as an affine function of θ.

Noting that yif(xi) =
∑

j∈Nn
αjyiyjK(xi,xj) is also

represented as an affine function of θ, any changes of
the partition {R, E ,L} can be exactly identified when
the homotopy parameter θ is continuously decreased.
Since the solution path linearly changes for each par-
tition of {R, E ,L}, the entire path is represented as a
continuous piecewise-linear function of the homotopy
parameter θ. We denote the points in θ ∈ [0, 1) at
which members of the sets {R, E ,L} change as break-
points θBP .

Using the piecewise-linearity of yif(xi), we can also
identify when we should switch to the D-step. Once
we detect an instance satisfying yif(xi) = s, we exit
the C-step and enter the D-step.

4.3. Continuous-Step for OP-s

Since θ is fixed to 0 in OP-s, the KKT conditions (7)
yields

αi = 0 ∀ i ∈ O.

This means that outliers have no influence on the so-
lution and thus the conditionally optimal solution f∗P
does not change with s as long as the partition P is
unchanged. The only task in the C-step for OP-s is
therefore to find the next s that changes the partition
P. Such s can be simply found as

s ← min
i∈L

yif(xi).

4.4. Discontinuous-Step (for Both OP-θ and
OP-s)

As mentioned before, any convex QP solver can be
used for the D-step. When the algorithm enters the
D-step, we have the conditionally optimal solution f∗P
for the partition P := {I,O}. Our task here is to find
another conditionally optimal solution f∗P̃ for P̃ :=

{Ĩ, Õ} given by (8).

Given that the difference between the two solutions f∗P
and f∗P̃ is typically small, the D-step can be efficiently
implemented by a technique used in the context of
incremental learning (Cauwenberghs & Poggio, 2001).

Let us define

∆I→O := {i ∈ I | yifP(xi) = s},
∆O→I := {i ∈ O | yifP(xi) = s},

and α(bef) be the corresponding α at the beginning of
the D-Step. Then, we consider the following parame-
terized problem with parameter µ ∈ [0, 1]:

fP̃(xi;µ) := fP̃(xi) + µ∆fi ∀ i ∈ Nn,
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Table 1. Benchmark data sets. n and d denote the number
of instances and the input dimensionality, respectively.

Data n d
D1 BreastCancerDiagnostic 569 30
D2 AustralianCreditApproval 690 14
D3 German.Numer 1000 24
D4 SVMGuide1 3089 4
D5 Spambase 4601 57
D6 Musk 6598 166
D7 Gisette 6000 5000
D8 w5a 9888 300
D9 a6a 11220 122
D10 a7a 16100 122

where

∆fi := yi
[
Ki,∆I→O Ki,∆O→I

] [ α
(bef)
∆I→O

− 1Cθ

α
(bef)
∆O→I

− 1C

]
.

We can show that fP̃(xi;µ) is reduced to fP(xi) when
µ = 1, while it is reduced to fP̃(xi) when µ = 0 for
all i ∈ Nn. By using a similar technique to incremen-
tal learning (Cauwenberghs & Poggio, 2001), we can
efficiently compute the path of solutions when µ is con-
tinuously changed from 1 to 0. This algorithm behaves
similarly to the C-step in OP-θ. The implementation
detail of the D-step is described in Appendix C.

5. Numerical Experiments

In this section, we compared the proposed outlier-path
(OP) algorithm with the concave-convex procedure
(CCCP) (Yuille & Rangarajan, 2002). In most of the
existing RSVM studies, CCCP or a variant called dif-
ference of convex (DC) programming are used for op-
timizing RSVM (Shen et al., 2003; Krause & Singer,
2004; Liu et al., 2005; Liu & Shen, 2006; Collobert
et al., 2006; Wu & Liu, 2007).

Setup We used the 10 benchmark data sets listed in
Table 1. We randomly divided each data set into the
training (40%), validation (30%), and test (30%) sets
for training, model selection (including the selection of
θ or s), and performance evaluation, respectively. In
the training and validation data, we flipped 15% of the
labels as outliers.

Generalization Performance First, we compared
the generalization performance. We used the linear
kernel and the radial basis function (RBF) kernel de-
fined as K(xi,xj) = exp

(
−γ∥xi − xj∥2

)
, where γ is

a kernel parameter fixed to γ = 1/d with d being
the input dimensionality. Model selection was car-
ried out by finding the best hyperparameter combi-
nation that minimizes the validation error. We have a

Table 2. The mean of test error and standard deviation
(linear). Smaller test error is better. The numbers in bold
face indicate the better method in terms of the test error.

Data C-SVM CCCP-θ OP-θ CCCP-s OP-s
D1 .056(.016) .050(.014) .049(.016) .055(.018) .050(.016)
D2 .151(.018) .145(.007) .151(.018) .145(.007) .152(.010)
D3 .281(.028) .270(.033) .270(.023) .262(.013) .266(.013)
D4 .066(.007) .047(.007) .047(.005) .053(.010) .042(.006)
D5 .108(.010) .088(.009) .088(.009) .088(.010) .084(.007)
D6 .072(.005) .058(.006) .064(.003) .061(.007) .060(.003)
D7 .185(.013) .184(.010) .184(.010) .184(.010) .184(.010)
D8 .020(.002) .020(.003) .020(.002) .021(.003) .020(.003)
D9 .173(.004) .181(.009) .173(.005) .165(.004) .164(.004)

D10 .173(.008) .176(.006) .173(.007) .160(.004) .161(.005)

Table 3. The mean of test error and standard deviation
(RBF).
Data C-SVM CCCP-θ OP-θ CCCP-s OP-s

D1 .055(.017) .043(.022) .042(.017) .037(.016) .038(.013)
D2 .149(.010) .148(.010) .147(.010) .146(.013) .142(.013)
D3 .276(.024) .267(.026) .266(.024) .271(.015) .261(.020)
D4 .052(.009) .048(.009) .044(.006) .047(.008) .040(.005)
D5 .117(.012) .109(.013) .107(.012) .107(.011) .094(.008)
D6 .046(.007) .045(.007) .045(.007) .045(.007) .043(.006)
D7 .044(.003) .044(.003) .044(.003) .044(.003) .044(.003)
D8 .022(.003) .022(.003) .022(.003) .022(.003) .021(.002)
D9 .169(.003) .170(.005) .169(.004) .168(.005) .162(.003)

D10 .163(.003) .163(.003) .163(.003) .162(.002) .160(.004)

pair of hyperparameters in each setup. In all the se-
tups, the regularization parameter C was chosen from
{0.01, 0.1, 1, 10, 100}, while the candidates of the ho-
motopy parameter θ or s were set as follows:

• In OP-θ, all the break-points θBP were considered
as the candidates (note that the local solutions at
each break-point have been already computed in
the homotopy computation).

• In OP-s, all the break-points for sBP between
sinit := mini∈Nn yif(xi) and 0 are considered as
the candidates.

• In CCCP-θ (which is compared with OP-θ), the
homotopy parameter θ was selected from θ ∈
{1, 0.75, 0.5, 0.25, 0}.

• In CCCP-s (which is compared with OP-s), the
homotopy parameter s was selected from

s ∈ {sinit, 0.75sinit, 0.5sinit, 0.25sinit, 0}.

Note that both OP and CCCP were initialized by using
the standard SVM.

Tables 2 and 3 represent the average and the standard
deviation of the test errors on 10 different random data
splits. These results indicate that OP could find bet-
ter local solutions and the degree of robustness was
appropriately controlled.
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(a) Elapsed time for CCCP and proposed OP (linear)
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(b) Elapsed time for CCCP and proposed OP (RBF)

Figure 5. Elapsed time when the number of (θ, s)-candidates is increased. Changing the number of hyperparameter
candidates affects the computation time of CCCP, but not OP because the entire path of solutions is computed with the
infinitesimal resolution.

Computational Time Finally, we compared the
computational costs of the entire model-building pro-
cess of each method. The results are shown in Fig-
ure 5. Note that the computational cost of the OP
algorithm does not depend on the number of hyperpa-
rameter candidates of θ or s, because the entire path
of local solutions has already been computed with the
infinitesimal resolution in the homotopy computation.
On the other hand, the computational cost of CCCP
depends on the number of hyperparameter candidates.
In our implementation of CCCP, we used the warm-
start approach, i.e., we initialized CCCP with the pre-
vious solution for efficiently computing a sequence of
solutions. The results indicate that the proposed OP
algorithm enables stable and efficient control of robust-
ness, while CCCP suffers a trade-off between model
selection performance and computational costs.

6. Conclusions

In this paper, we proposed a novel robust SVM learn-
ing algorithm based on the homotopy approach that

allows efficient computation of the sequence of local
optimal solutions when the influence of outliers is grad-
ually deemphasized. The algorithm is built on our the-
oretical findings about the geometric property and the
optimality conditions of an RSVM local solution. Ex-
perimental results indicate that our algorithm tends
to find better local solutions possibly due to the sim-
ulated annealing-like effect and the stable control of
robustness. One of the important future works is to
adopt scalable homotopy algorithms or approximate
parametric programming algorithms (Giesen et al.,
2012) as the building block of our algorithm to fur-
ther improve the computational efficiency.
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A. Proof of Theorem 3

Although f∗P is a feasible solution, it is not a local
optimum for θ ∈ [0, 1) and s ≤ 0 because

αi ≤ Cθ for i ∈ Ĩ ∩ O, (12a)

αi ≥ C for i ∈ Õ ∩ I, (12b)

violate the KKT conditions (7) for P̃. These feasibility
and sub-optimality indicates that

JP̃(f
∗
P̃ ; θ) < JP(f

∗
P ; θ), (13)

we arrive at (9). Q.E.D.

B. Proof of Theorem 4

Sufficiency: If (10e) is true, i.e., if there are NO in-
stances with yif

∗
P(xi) = s, then any convex problems

defined by different partitions P̃ ̸= P do not have fea-
sible solutions in the neighborhood of f∗P . This means
that if f∗P is a conditionally optimal solution, then it is
locally optimal. (10a)-(10d) are sufficient for f∗P to be
conditionally optimal for the given partition P. Thus,
(10) is sufficient for f∗P to be locally optimal.

Necessity: From Theorem 3, if there exists an in-
stance such that yif

∗
P(xi) = s, then f∗P is a feasible

but not locally optimal. Then (10e) is necessary for
f∗P to be locally optimal. In addition, (10a)-(10d) are
also necessary for local optimality, because of every lo-
cal optimal solutions are conditionally optimal for the
given partition P. Thus, (10) is necessary for f∗P to be
locally optimal.

Q.E.D.

C. Implementation of D-step

In D-step, we work with the following convex problem

f∗P̃ := argmin
f∈pol(P̃;s)

JP̃(f ; θ). (14)

where, P̃ is updated from P as (8).

Let us define a partition Π := {R, E ,L, Ĩ ′, Õ′, Ô′′} of
Nn such that

i ∈ R ⇒ yif(xi) > 1, (15a)

i ∈ E ⇒ yif(xi) = 1, (15b)

i ∈ L ⇒ s < yif(xi) < 1, (15c)

i ∈ Ĩ ′ ⇒ yif(xi) = s and i ∈ Ĩ, (15d)

i ∈ Õ′ ⇒ yif(xi) = s and i ∈ Õ, (15e)

i ∈ Õ′′ ⇒ yif(xi) < s. (15f)

If we write the conditionally optimal solution as

f∗P̃(x) :=
∑
j∈Nn

α∗
jyjK(x,xj), (16)

{α∗
j}j∈Nn must satisfy the following KKT conditions

yif
∗
P̃(xi) > 1 ⇒ α∗

i = 0 (17a)

yif
∗
P̃(xi) = 1 ⇒ α∗

i ∈ [0, C], (17b)

s < yif
∗
P̃(xi) < 1 ⇒ α∗

i = C (17c)

yif
∗
P̃(xi) = s, i ∈ Ĩ ′ ⇒ α∗

i ≥ C, (17d)

yif
∗
P̃(xi) = s, i ∈ Õ′ ⇒ α∗

i ≤ Cθ, (17e)

yif
∗
P̃(xi) < s, i ∈ Õ′′ ⇒ α∗

i = Cθ. (17f)

At the beginning of the D-step, f∗P̃(xi) violates the
KKT conditions by

∆fi := yi
[
Ki,∆I→O Ki,∆O→I

] [ α
(bef)
∆I→O

− 1Cθ

α
(bef)
∆O→I

− 1C

]
.

where α(bef) is the corresponding α at the beginning
of the D-step, while ∆I→O and ∆O→I denote the dif-
ference in P̃ and P defined as

∆I→O := {i ∈ I | yifP(xi) = s},
∆O→I := {i ∈ O | yifP(xi) = s}.

Then, we consider the following another parametrized
problem with a parameter µ ∈ [0, 1]:

fP̃(xi;µ) := fP̃(xi) + µ∆fi ∀ i ∈ Nn.

In order to always satisfy the KKT conditions for
fP̃(xi;µ), we solve the following linear system

QA,A

 αE
αĨ′

αÕ′

 =

 1
s
s

−QA,L1C −QA,Õ′′1Cθ

−
[
QA,∆I→O QA,∆O→I

] [ α
(bef)
∆I→O

− 1Cθ

α
(bef)
∆O→I

− 1C

]
µ,

where A := {E , Ĩ ′, Õ′}. This linear system can also
be solved by using the piecewise-linear parametric pro-
gramming while the scalar parameter µ is continuously
moved from 1 to 0.

In this parametric problem, we can show that
f∗P̃(xi;µ) = f∗P(xi) if µ = 1 and f∗P̃(xi;µ) = f∗P̃(xi) if
µ = 0 for all i ∈ Nn.

Since the number of elements in ∆I→O and ∆O→I
are typically small, the D-step can be efficiently im-
plemented by a technique used in the context of incre-
mental learning (Cauwenberghs & Poggio, 2001).


