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Abstract
Given a hypothesis space, the large volume prin-
ciple by Vladimir Vapnik prioritizes equivalence
classes according to their volume in the hypoth-
esis space. The volume approximation has hith-
erto been successfully applied to binary learning
problems. In this paper, we propose a novel gen-
eralization to multiple classes, allowing applica-
tions of the large volume principle on more learn-
ing problems such as multi-class, multi-label and
serendipitous learning in a transductive manner.
Although the resultant learning method involves
a non-convex optimization problem, the globally
optimal solution is almost surely unique and can
be obtained using O(n3) time. Novel theoretical
analyses are presented for the proposed method,
and experimental results show it compares favor-
ably with the one-vs-rest extension.

1. Introduction
The history of the large volume principle (LVP) goes back
to the early age of the statistical learning theory when Vap-
nik (1982) introduced it for the case of hyperplanes. But it
did not gain much attention until a creative approximation
was proposed in El-Yaniv et al. (2008) to implement LVP
for the case of soft response vectors. From then on, it has
been applied to various binary learning problems success-
fully, such as binary transductive learning (El-Yaniv et al.,
2008), binary clustering (Niu et al., 2013a), and outlier de-
tection (Li & Ng, 2013).
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Figure 1. The large
volume principle and
its approximation.

LVP is a learning-theoretic principle which views learning
as hypothesis selecting from a certain hypothesis space H.
Regardless of the hypothesis form, H can always be parti-
tioned into a finite number of equivalence classes on some
observed data set, where each equivalence class is a set of
hypotheses that generate the same labeling of the observed
data. LVP, as one of the learning-theoretic principles from
the statistical learning theory, prioritizes those equivalence
classes according to the volume they occupy in H. See the
illustration in Figure 1: The blue ellipse represents H, and
it is partitioned into C1, . . . , C4 each occupying a quadrant
of the Cartesian coordinate system R2 intersected with H;
LVP claims that C1 and C3 are more preferable than C2 and
C4, since C1 and C3 have larger volume than C2 and C4.

In practice, the hypothesis space H cannot be as simple as
H in Figure 1. It is often located in very high-dimensional
spaces where exact or even quantifiable volume estimation
is challenging. Therefore, El-Yaniv et al. (2008) proposed
a volume approximation to bypass the volume estimation.
Instead of focusing on the equivalence classes of H, it di-
rectly focuses on the hypotheses in H since learning is re-
garded as hypothesis selecting in LVP. It defines H via an
ellipsoid, measures the angles from hypotheses to the prin-
cipal axes of H, and then prefers hypotheses near the long
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principal axes to those near the short ones. This manner is
reasonable, since the long principal axes of H lie in large-
volume regions. In Figure 1, h and h′ are two hypotheses
and v1/v2 is the long/short principal axis; LVP advocates
that h is more preferable than h′ as h is close to v1 and h′

is close to v2. We can adopt this volume approximation to
regularize our loss function, which has been demonstrated
helpful for various binary learning problems.

Nevertheless, the volume approximation in El-Yaniv et al.
(2008) only fits binary learning problem settings despite its
potential advantage. In this paper we extend it naturally to
a more general definition, which can be applied to several
transductive problem settings, including but not limited to
multi-class learning (Zhou et al., 2003), multi-label learn-
ing (Kong et al., 2013), and serendipitous learning (Zhang
et al., 2011). We adopt the same strategy as El-Yaniv et al.
(2008): For n data and c labels, a hypothesis space is de-
fined in Rn×c and linked to an ellipsoid in Rnc, such that
the equivalence classes and the volume approximation can
be defined accordingly. We name the learning method that
realizes the above approximation multi-class approximate
volume regularization (MAVR). It involves a non-convex
optimization problem, but the globally optimal solution is
almost surely unique and accessible in O(n3) time follow-
ing Forsythe & Golub (1965). Moreover, we theoretically
provide novel stability and error analyses for MAVR, and
experimentally show that MAVR compares favorably with
the one-vs-rest extension of El-Yaniv et al. (2008).

The rest of this paper is organized as follows. In Section 2
the problem settings are discussed. In Section 3 the binary
volume approximation is reviewed and the multi-class vol-
ume approximation is derived. Then the proposed method
MAVR is developed and analyzed in Section 4. At last the
experimental results are reported in Section 5.

2. Transductive Problem Settings
Recall the setting of transductive binary problems (Vapnik,
1998, p. 341). Suppose that X is the domain of input data,
and most often but not necessarily, X ⊂ Rd where d is a
natural number. A fixed setXn = {x1, . . . , xn} of n points
from X is observed, and the labels y1, . . . , yn ∈ {−1,+1}
of these points are also fixed but unknown. A subset Xl ⊂
Xn of size l is picked uniformly at random, and then yi is
revealed if xi ∈ Xl. We call Sl = {(xi, yi) | xi ∈ Xl} the
labeled data and Xu = Xn \Xl the unlabeled data. Using
Sl and Xu, the goal is to predict yi of xi ∈ Xu (while any
unobserved x ∈ X \Xn is currently left out of account).

Transductive learning (TL) (e.g., Blum & Chawla, 2001;
Szummer & Jaakkola, 2001; Joachims, 2003; Zhou et al.,
2003; El-Yaniv et al., 2008) slightly differs from semi-
supervised learning (SSL) (e.g., Bennett & Demiriz, 1998;

Zhu et al., 2003; Grandvalet & Bengio, 2004; Belkin et al.,
2006; Li et al., 2009; Li & Zhou, 2011; Niu et al., 2013b):
TL focuses on predicting Xu while SSL aims at predicting
X \ Xl, and TL is distribution free but SSL is not.1 More
specifically, TL generally makes no assumption about the
underlying distributions, and the true labels are determin-
istic; SSL usually assumes that Sl is sampled from p(x, y)
and Xu is sampled from p(x), and then the true labels are
stochastic. Moreover, if there is any distributional change,
SSL should specify the form of the change, but TL might
deal with it directly. To sum up, SSL is inductive learning
in nature, and the advantage of TL over inductive learning
is conceptually critical for us.

As an extension of El-Yaniv et al. (2008), the volume ap-
proximation to be proposed can be applied to many trans-
ductive problem settings, where the differences are the en-
coding of labels and the decoding of hypotheses. The first
setting is multi-class learning: Instead of yi ∈ {−1,+1},
we have yi ∈ Y where Y = {1, . . . , c} and c is a natural
number. Each of the c labels here have some labeled data
in spite of any distributional change. The second setting is
multi-label learning: yi ⊆ Y with Y = {1, . . . , c} where
yi is a label set, or yi ∈ Y with Y = {−1, 0, 1}c where yi
is a label vector (cf. Kong et al., 2013). The third setting is
serendipitous learning which is a multi-class setting with
missing classes in Sl, that is, some of the c labels have no
labeled data (cf. Zhang et al., 2011). It is non-trivial to see
the distributional change is covariate shift (Yamada et al.,
2010) or class-prior change (du Plessis & Sugiyama, 2012)
from semi-supervised point of view, whereas it is unneces-
sary to specify the form of the change in our settings.

In principle, all transductive methods can solve multi-class
problems with the one-vs-rest extension. But this may not
be a good idea for methods defined in terms of non-convex
optimizations like El-Yaniv et al. (2008). Furthermore, the
encoding of labels for multi-label and serendipitous prob-
lems is an issue when using the one-vs-rest extension. The
volume approximation to be proposed can handle all these
settings in a unified manner, but in this paper we focus on
multi-class and serendipitous learning since they do not re-
quire sophisticated post-processing as Kong et al. (2013).

3. Volume Approximations
In this section we review the binary volume approximation
and propose our multi-class volume approximation.

3.1. Binary volume approximation

The binary volume approximation involves a few key con-
cepts (El-Yaniv et al., 2008): The soft response vector, the
hypothesis space and the equivalence class, and the power

1Some methods lie between them, e.g., Wang et al. (2013).



Transductive Learning with Multi-class Volume Approximation

and volume of equivalence classes.

Given a set of n data Xn = {x1, . . . , xn} where xi ∈ X , a
soft response vector is an n-dimensional vector

h := (h1, . . . , hn)> ∈ Rn, (1)

so that hi stands for a soft or confidence-rated label of xi.
For binary problems, h suggests that xi is from the positive
class if hi > 0, xi is from the negative class if hi < 0, and
the above two cases are equally possible if hi = 0.

A hypothesis space is a collection of hypotheses. The vol-
ume approximation requires a symmetric positive-definite
matrix Q ∈ Rn×n which contains the pairwise information
about Xn. Consider the hypothesis space

HQ := {h | h>Qh ≤ 1}, (2)

where the hypotheses are soft response vectors. The set of
sign vectors {sign(h) | h ∈ HQ} contains all of N = 2n

possible dichotomies of Xn, andHQ can be partitioned in-
to a finite number of equivalence classes C1, . . . , CN , such
that for fixed k, all hypotheses in Ck will generate the same
labeling of Xn.

Then, in statistical learning theory, the power of an equiv-
alence class Ck is defined as the probability mass of all hy-
potheses in it (Vapnik, 1998, p. 708), i.e.,

P(Ck) :=

∫
Ck
p(h)dh, k = 1, . . . , N,

where p(h) is the underlying probability density of h over
HQ. The hypotheses in Ck which has a large power should
be preferred according to Vapnik (1998).

When no specific domain knowledge is available (i.e., p(h)
is unknown), it would be natural to assume the continuous
uniform distribution p(h) = 1/

∑N
k=1 V(Ck), where

V(Ck) :=

∫
Ck

dh, k = 1, . . . , N,

is the volume of Ck. That is, the volume of an equivalence
class is defined as the geometric volume of all hypotheses
in it. As a result, P(Ck) is proportional to V(Ck), and the
larger the value V(Ck) is, the more confident we are of the
hypotheses chosen from Ck.

However, it is very hard to accurately compute the geomet-
ric volume of even a single convex body in Rn, let alone all
2n convex bodies, so El-Yaniv et al. (2008) introduced an
efficient approximation. Let λ1 ≤ · · · ≤ λn be the eigen-
values of Q, and v1, . . . ,vn be the associated orthonormal
eigenvectors. Actually, the hypothesis spaceHQ in Eq. (2)
is geometrically an origin-centered ellipsoid in Rn with vi
and 1/

√
λi as the direction and length of its i-th principal

axis. Note that a small angle from a hypothesis h in Ck to

some vi with a small/large index i (i.e., a long/short prin-
cipal axis) implies that V(Ck) is large/small (cf. Figure 1).
Based on this crucial observation, we define

V (h) :=

n∑
i=1

λi

(
h>vi
‖h‖2

)2

=
h>Qh

‖h‖22
, (3)

where h>vi/‖h‖2 means the cosine of the angle between h
and vi. We subsequently expect V (h) to be small when h
lies in a large-volume equivalence class, and conversely to
be large when h lies in a small-volume equivalence class.

3.2. Multi-class volume approximation

The multi-class volume approximation could deal with the
aforementioned transductive problem settings in a unified
manner. In order to extend the definition Eq. (3), we need
only to extend the hypothesis and the hypothesis space.

To begin with, we allocate a soft response vector in Eq. (1)
for each of the c labels:

h1 = (h1,1, . . . , hn,1)>, . . . ,hc = (h1,c, . . . , hn,c)
>.

The value hi,j is a soft or confidence-rated label of xi con-
cerning the j-th label and it suggests that

• xi should possess the j-th label, if hi,j > 0;

• xi should not possess the j-th label, if hi,j < 0;

• the above two cases are equally possible, if hi,j = 0.

For multi-class and serendipitous problems, yi is predicted
by ŷi = arg maxj hi,j . For multi-label problems, we need
a threshold Th that is either preset or learned since usually
positive and negative labels are imbalanced, and yi can be
predicted by ŷi = {j | hi,j ≥ Th}; or we can employ the
prediction methods proposed in Kong et al. (2013). Then,
a soft response matrix as our transductive hypothesis is an
n-by-c matrix defined by

H = (h1, . . . ,hc) ∈ Rn×c, (4)

and a stacked soft response vector as an equivalent hypoth-
esis is an nc-dimensional vector defined by

h = vec(H) = (h>1, . . . ,h
>
c)
> ∈ Rnc,

where vec(H) is the vectorization ofH formed by stacking
its columns into a single vector.

As the binary definition of the hypothesis space, a symmet-
ric positive-definite matrix Q ∈ Rn×n which contains the
pairwise information aboutXn is provided, and we assume
further that a symmetric positive-definite matrix P ∈ Rc×c
which contains the pairwise information about Y is avail-
able. Consider the hypothesis space

HP,Q := {H | tr(H>QHP ) ≤ 1}, (5)
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where the hypotheses are soft response matrices. Let P ⊗
Q ∈ Rnc×nc be the Kronecker product of P and Q. Due to
the symmetry and the positive definiteness of P and Q, the
Kronecker product P ⊗ Q is also symmetric and positive
definite, andHP,Q in (5) could be defined equivalently as

HP,Q := {H | vec(H)>(P ⊗Q) vec(H) ≤ 1}. (6)

The equivalence between Eqs. (5) and (6) comes from the
fact that tr(H>QHP ) = vec(H)>(P ⊗Q) vec(H) follow-
ing the well-known identity (see, e.g., Theorem 13.26 of
Laub, 2005)

(P>⊗Q) vec(H) = vec(QHP ).

As a consequence, there is a bijection betweenHP,Q and

EP,Q := {h | h>(P ⊗Q)h ≤ 1}
which is geometrically an origin-centered ellipsoid in Rnc.
The set of sign vectors {sign(h) | h ∈ EP,Q} spreads over
all the N = 2nc quadrants of Rnc, and thus the set of sign
matrices {sign(H) | H ∈ HP,Q} contains all of N possi-
ble dichotomies of Xn ×{1, . . . , c}. In other words,HP,Q
can be partitioned into N equivalence classes C1, . . . , CN ,
such that for fixed k, all soft response matrices in Ck will
generate the same labeling of Xn × {1, . . . , c}.
The definition of the power is same as before, and so is the
definition of the volume:

V(Ck) :=

∫
Ck

dH, k = 1, . . . , N.

Because of the bijection betweenHP,Q and EP,Q, V(Ck) is
likewise the geometric volume of all stacked soft response
vectors in the intersection of the k-th quadrant of Rnc and
EP,Q. By a similar argument to the definition of V (h), we
define

V (H) :=
h>(P ⊗Q)h

‖h‖22
=

tr(H>QHP )

‖H‖2Fro
, (7)

where h = vec(H) and ‖H‖Fro means the Frobenius norm
of H . We subsequently expect V (H) to be small when H
lies in a large-volume equivalence class, and conversely to
be large when H lies in a small-volume equivalence class.

Note that V (H) and V (h) are consistent for binary learn-
ing problems. When c = 2, we may constrain h1 + h2 =
0n where 0n means the all-zero vector in Rn. Let P = I2
where I2 means the identity matrix of size 2, then

V (H) =
h>1Qh1 + h>2Qh2

‖h1‖22 + ‖h2‖22
=

h>1Qh1

‖h1‖22
= V (h1),

which coincides with V (h) defined in Eq. (3). Similarly to
V (h), for two soft response matrices H and H ′ from the
same equivalence class, V (H) and V (H ′) may not neces-
sarily be the same value. In addition, the domain of V (H)
could be extended to Rn×c though the definition of V (H)
is originally null for H outsideHP,Q.

4. Multi-class Approximate Volume
Regularization

The proposed volume approximation motivates a family of
new transductive methods taking it as a regularization. We
develop and analyze an instantiation in this section whose
optimization problem is non-convex but can be solved ex-
actly and efficiently.

4.1. Model

First of all, we define the label indicator matrix Y ∈ Rn×c
for convenience whose entries can be from either {0, 1} or
{−1, 0, 1} depending on the problem settings and whether
negative labels ever appear. Specifically, we can set Yi,j =
1 if xi is labeled to have the j-th label and Yi,j = 0 other-
wise, or alternatively we can set Yi,j = 1 if xi is labeled to
have the j-th label, Yi,j = −1 if xi is labeled to not have
the j-th label, and Yi,j = 0 otherwise.

Let ∆(Y,H) be our loss function measuring the difference
between Y and H . The multi-class volume approximation
motivates the following family of transductive methods:

min
H∈HP,Q

∆(Y,H) + γ · tr(H>QHP )

‖H‖2Fro
,

where γ > 0 is a regularization parameter. The denomina-
tor ‖H‖2Fro is annoying so we would like to get rid of it as
in El-Yaniv et al. (2008) or Niu et al. (2013a). We fix τ > 0
as a scale parameter, constrain H to be of norm τ , replace
the feasible regionHP,Q with Rn×c, and it becomes

min
H∈Rn×c

∆(Y,H) + γ tr(H>QHP )

s.t. ‖H‖Fro = τ.
(8)

Although the optimization is done in Rn×c, the regulariza-
tion is relative to HP,Q, since tr(H>QHP ) is a weighted
sum of squared cosines between vec(H) and the principal
axes of EP,Q under the constraint ‖H‖Fro = τ .

Subsequently, we denote by y1, . . . ,yn and r1, . . . , rn the
c-dimensional vectors that satisfy Y = (y1, . . . ,yn)> and
H = (r1, . . . , rn)>. Consider the following loss functions
to be ∆(Y,H) in optimization (8):

1. Squared losses over all data
∑
Xn
‖yi − ri‖22;

2. Squared losses over labeled data
∑
Xl
‖yi − ri‖22;

3. Linear losses over all data
∑
Xn
−y>i ri;

4. Linear losses over labeled data
∑
Xl
−y>i ri;

They or their binary counterparts have been used in Zhou
et al. (2003), El-Yaniv et al. (2008) and Niu et al. (2013a).
Actually, the third and fourth ones are identical since yi is
zero for xi ∈ Xu, and the first one is equivalent to them
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in (8) since
∑
Xn
‖yi‖22 and

∑
Xl
‖yi‖22 are constants and∑

Xn
‖ri‖22 = τ2 is also a constant. The second one is un-

desirable due to an issue of the time complexity. Thus, we
instantiate ∆(Y,H) :=

∑
Xn
‖yi − ri‖22 = ‖Y −H‖2Fro,

and optimization (8) becomes

min
H∈Rn×c

‖Y −H‖2Fro + γ tr(H>QHP )

s.t. ‖H‖Fro = τ.
(9)

We refer to constrained optimization problem (9) as multi-
class approximate volume regularization (MAVR). An un-
constrained version of MAVR is then

min
H∈Rn×c

‖Y −H‖2Fro + γ tr(H>QHP ). (10)

4.2. Algorithm

Optimization (9) is non-convex, but we can rewrite it using
the stacked soft response vector h = vec(H) as

min
h∈Rnc

‖y −h‖22 + γh>(P ⊗Q)h s.t. ‖h‖2 = τ, (11)

where y = vec(Y ) is the vectorization of Y . In this repre-
sentation, the objective is a second-degree polynomial and
the constraint is an origin-centered sphere, and fortunately
we could solve it exactly and efficiently following Forsythe
& Golub (1965). To this end, a fundamental property of the
Kronecker product is necessary (see, e.g., Theorems 13.10
and 13.12 of Laub, 2005):
Theorem 1. Let λQ,1 ≤ · · · ≤ λQ,n be the eigenvalues
and vQ,1, . . . ,vQ,n be the associated orthonormal eigen-
vectors of Q, λP,1 ≤ · · · ≤ λP,c and vP,1, . . . ,vP,c be
those of P , and the eigen-decompositions of Q and P be
Q = VQΛQV

>
Q and P = VPΛPV

>
P . Then, the eigenvalues

of P ⊗Q are λP,jλQ,i associated with orthonormal eigen-
vectors vP,j ⊗ vQ,i for j = 1, . . . , c, i = 1, . . . , n, and the
eigen-decomposition of P ⊗Q is P ⊗Q = VPQΛPQV

>
PQ,

where ΛPQ = ΛP ⊗ ΛQ and VPQ = VP ⊗ VQ.

After we ignore the constants ‖y‖22 and ‖h‖22 in the objec-
tive of optimization (11), the Lagrange function is

Φ(h, ρ) = −2h>y + γh>(P ⊗Q)h− ρ(h>h− τ2),

where ρ ∈ R is the Lagrangian multiplier for ‖h‖22 = τ2.
The stationary conditions are

∂Φ/∂h = −y + γ(P ⊗Q)h− ρh = 0nc, (12)

∂Φ/∂ρ = h>h− τ2 = 0. (13)

Hence, for any locally optimal solution (h, ρ) where ρ/γ is
not an eigenvalue of P ⊗Q, we have

h = (γP ⊗Q− ρInc)−1y (14)

= VPQ(γΛPQ − ρInc)−1V>PQy
= (VP ⊗ VQ)(γΛPQ − ρInc)−1 vec(V>QY VP ) (15)

Algorithm 1 MAVR
Input: P , Q, Y , γ and τ
Output: H and ρ

1: Eigen-decompose P and Q;
2: Construct the function g(ρ);
3: Find the smallest root of g(ρ);
4: Recover h using ρ and reshape h to H .

based on Eq. (12) and Theorem 1. Next, we search for the
feasible ρ for (12) and (13) which will lead to the globally
optimal h. Let z = vec(V>QY VP ), then plugging (15) into
(13) gives us

z>(γΛPQ − ρInc)−2z − τ2 = 0. (16)

Let us sort the eigenvalues λP,1λQ,1, . . . , λP,cλQ,n into a
non-descending sequence {λPQ,1, . . . , λPQ,nc}, rearrange
{z1, . . . , znc} accordingly, and find the smallest k0 which
satisfies zk0 6= 0. As a result, Eq. (16) implies that

g(ρ) =

nc∑
k=k0

z2k
(γλPQ,k − ρ)2

− τ2 = 0 (17)

for any stationary ρ. By Theorem 4.1 of Forsythe & Golub
(1965), the smallest root of g(ρ) determines a unique h so
that (h, ρ) is the globally optimal solution to Φ(h, ρ), i.e.,
h minimizes the objective of (11) globally. Here, the only
exception where we cannot determine h by Eq. (14) for a
specific value of ρ is when ρ/γ is an eigenvalue of P ⊗Q.
This, however, happens with probability zero. The theorem
below points out the location of the optimal ρ (the proof is
in the appendix):

Theorem 2. The function g(ρ) defined in Eq. (17) has ex-
actly one root in the interval [ρ0, γλPQ,k0) and no root in
the interval (−∞, ρ0), where ρ0 = γλPQ,k0 − ‖y‖2/τ .

The algorithm of MAVR is summarized in Algorithm 1. It
is easy to see that fixing ρ = −1 in Algorithm 1 instead of
finding the smallest root of g(ρ) suffices to solve optimiza-
tion (10). Moreover, for a special case P = Ic where Ic is
the identity matrix of size c, any stationary H is simply

H = (γQ− ρIn)−1Y = VQ(γΛQ − ρIn)−1V>QY.

Let z = V>QY 1c where 1c means the all-one vector in Rc,
and k0 is the smallest number that satisfies zk0 6= 0. Then
the smallest root of g(ρ) =

∑n
k=k0

z2k/(γλQ,k − ρ)2 − τ2
gives us the feasible ρ leading to the globally optimal H .

The asymptotic time complexity of Algorithm 1 is O(n3).
More specifically, eigen-decomposing Q in the first step of
Algorithm 1 costs O(n3), and this is the dominating com-
putation time. Eigen-decomposing P just needs O(c3) and
is negligible under the assumption that n� c without loss
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of generality. In the second step, it requires O(nc log(nc))
for sorting the eigenvalues of P ⊗Q and O(n2c) for com-
puting z. Finding the smallest root of g(ρ) based on a bi-
nary search algorithm uses O(log(‖y‖2)) in the third step.
In the fourth step, recovering h is essentially same as com-
puting z and costs O(n2c).

We would like to comment a little more on the asymptotic
time complexity of MAVR. Given fixed P and Q but dif-
ferent Y , γ and τ , the computational complexity is O(n2c)
if we reuse the eigen-decompositions of P and Q and the
sorted eigenvalues of P ⊗ Q. This property is particular-
ly advantageous for trying different hyperparameters. It is
also quite useful for choosing different Xl ⊂ Xn to be la-
beled following transductive problem settings. Finally, the
asymptotic time complexity O(n3) for solving MAVR ex-
actly can hardly be improved based on existing techniques.
Even if ρ is fixed in optimization (10), the stationary con-
dition Eq. (12) is a discrete Sylvester equation which con-
sumes O(n3) for solving it (Sima, 1996).

4.3. Theoretical analyses

We provide two theoretical results. Under certain assump-
tions, the stability analysis upper bounds the difference of
two optimal H and H ′ trained with two different label in-
dicator matrices Y and Y ′, and the error analysis bounds
the difference of H from the ground truth.

Theorem 2 guarantees that ρ < γλPQ,k0 . In fact, with high
probability over the choice of Y , it holds that k0 = 1 (we
did not meet k0 > 1 in our experiments). For this reason,
we make the following assumption:
Fix P and Q, and allow Y to change according to the par-
tition of Xn into different Xl and Xu. There is Cγ,τ > 0,
which just depends on γ and τ , such that for all optimal ρ
trained with different Y , ρ ≤ γλPQ,1 − Cγ,τ .

Note that for unconstrained MAVR, there must be Cγ,τ >
1 since γλPQ,1 > 0 and ρ = −1. We can prove the the-
orem below based on the assumption above and the lower
bound of ρ in Theorem 2.
Theorem 3 (Stability of MAVR). Assume the existence of
Cγ,τ . Let (H, ρ) and (H ′, ρ′) be two globally optimal so-
lutions trained with two different label indicator matrices
Y and Y ′ respectively. Then,

‖H −H ′‖Fro ≤ ‖Y − Y ′‖Fro/Cγ,τ
+ |ρ− ρ′|min{‖Y ‖Fro, ‖Y ′‖Fro}/C2

γ,τ .
(18)

Consequently, for MAVR in optimization (9) we have

‖H −H ′‖Fro ≤ ‖Y − Y ′‖Fro/Cγ,τ
+ ‖Y ‖Fro‖Y ′‖Fro/τC2

γ,τ ,

and for unconstrained MAVR in optimization (10) we have

‖H −H ′‖Fro ≤ ‖Y − Y ′‖Fro/Cγ,τ .

In order to present an error analysis, we assume there is a
ground-truth soft response matrix H∗ with two properties.
Firstly, the value of V (H∗) should be bounded, namely,

V (H∗) = tr(H∗>QH∗P )/‖H∗‖2Fro ≤ Ch,
where Ch > 0 is a small number. This ensures that H∗ lies
in a large-volume region. Otherwise MAVR implementing
the large volume principle can by no means learn some H
close to H∗. Secondly, Y should contain certain informa-
tion about H∗. MAVR makes use of P , Q and Y only and
the meanings of P and Q are fixed already, so MAVR may
access the information about H∗ only through Y . To make
Y and H∗ correlated, we assume that Y = H∗ + E where
E ∈ Rn×c is a noise matrix of the same size as Y and H∗.
All entries of E are independent with zero mean, and the
variance of them is σl or σu depending on its correspon-
dence to a labeled or an unlabeled position in Y . We could
expect that σl � σu, such that the entries of Y in labeled
positions are close to the corresponding entries of H∗, but
the entries of Y in unlabeled positions are completely cor-
rupted and uninformative for recovering H∗. Notice that
we need this generating mechanism of Y even if Ch/γ is
the smallest eigenvalue of P ⊗ Q, since P ⊗ Q may have
multiple smallest eigenvalues and ±H have totally differ-
ent meanings. Based on these assumptions, we can prove
the theorem below.
Theorem 4 (Accuracy of MAVR). Assume the existence of
Cγ,τ , Ch, and the generating process of Y fromH∗ and E.
Let l̃ and ũ be the numbers of the labeled and unlabeled
positions in Y and assume that EE‖Y ‖2Fro ≤ l̃ where the
expectation is with respect to the noise matrix E. For each
possible Y , let H be the globally optimal solution trained
with it. Then,

EE‖H −H∗‖Fro ≤ (
√
ChγλPQ,1/Cγ,τ )‖H∗‖Fro

+ (max{
√
l̃/τ − γλPQ,1 − 1, γλPQ,1 − Cγ,τ + 1}/Cγ,τ )

· ‖H∗‖Fro +

√
l̃σ2
l + ũσ2

u/Cγ,τ (19)

for MAVR in optimization (9), and

EE‖H −H∗‖2Fro ≤ (Ch/4)‖H∗‖2Fro + l̃σ2
l + ũσ2

u (20)

for unconstrained MAVR in optimization (10).

The proofs of Theorems 3 and 4 are in the appendix. Con-
sidering the instability bounds in Theorem 3 and the error
bounds in Theorem 4, unconstrained MAVR is superior to
constrained MAVR in both cases. That being said, bounds
are just bounds. We will demonstrate the potential of con-
strained MAVR in the next section by experiments.

5. Experiments
In this section, we numerically evaluate MAVR. The base-
line methods include the one-vs-rest extension of the bina-
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Figure 2. Serendipitous learning by MAVR.

ry approximate volume regularization (BAVR) as well as a
multi-class transductive method named learning with local
and global consistency (LGC) (Zhou et al., 2003).

5.1. Serendipitous learning

We show how to handle serendipitous problems by MAVR
directly without performing clustering (Hartigan & Wong,
1979; Ng et al., 2001; Sugiyama et al., 2014) or estimating
the class-prior change (du Plessis & Sugiyama, 2012). The
experimental results are displayed in Figure 2. There are 5
artificial data sets in total where the latter 3 data sets come
from Zelnik-Manor & Perona (2004). The matrix Q was
specified as the normalized graph Laplacian (see, e.g., von
Luxburg, 2007)2

Q = Lnor = In −D−1/2WD−1/2,

where W ∈ Rn×n is a similarity matrix and D ∈ Rn×n is
the degree matrix of W . The matrix P was specified by

P1 =


1 0 0 0
0 1 0 0
0 0 3 1
0 0 1 1

, P2 =


1 0 0 0
0 3 0 1
0 0 1 0
0 1 0 1

, P3 =


1 0 0 0
0 1 0 1
0 0 1 1
0 1 1 3

,

P4 =


1 1/2 1/2 1/2

1/2 2 0 1/2
1/2 0 2 1/2
1/2 1/2 1/2 3

, P5 =

 1 1/2 1/2
1/2 1 0
1/2 0 1

.

For data sets 1 and 2 we used the Gaussian similarity

Wi,j = exp(−‖xi − xj‖22/(2σ2)), Wi,i = 0

with the kernel width σ = 0.25, and for data sets 3 to 5 we
applied the local-scaling similarity (Zelnik-Manor & Per-
ona, 2004)

Wi,j = exp(−‖xi − xj‖22/(2σiσj)), Wi,i = 0

2Though the graph Laplacian matrices have zero eigenvalues,
they would not cause algorithmic problems when used as Q.

(a) Data 1 (b) Data 2 (c) Data 3 (d) Data 4 (e) Data 5

Figure 3. Serendipitous learning by LGC.

with the nearest-neighbor number k = 7, where each σi =

‖xi − x(k)i ‖2 is the scale parameter of xi and x(k)i is the k-
th nearest neighbor of xi in Xn. For the hyperparameters,
we set γ = 99 and τ =

√
l. Furthermore, a class-balance

regularization was imposed for data sets 2 to 5, which tries
to minimize

γ′ tr(H>(1n1
>
n)H(Ic − 1c1

>
c/c)).

The detailed derivation is omitted due to the limited space,
but the idea is to encourage balanced total responses among
c classes. For this regularization, the regularization param-
eter was set to γ′ = 1.

We can see that in Figure 2, MAVR successfully classified
the data belonging to the known classes and simultaneously
clustered the data belonging to the unknown classes. More-
over, we can control the influence of the known classes on
the unknown classes by specifying different P , as shown in
subfigures (f), (g) and (h) of Figure 2. On the other hand,
BAVR cannot benefit from the class-balance regularization
and LGC with the class-balance regularization for data sets
2 to 5 in Figure 3 was not as perfect as MAVR.

5.2. Multi-class learning

As commented in the end of our theoretical analyses, we
would demonstrate the potential of constrained MAVR by
experiments. Actually, LGC could be subsumed in MAVR
as a special case of unconstrained MAVR: Although LGC
is motivated by the label propagation point of view, it can
be rewritten as the following optimization problem

min
H∈Rn×c

‖Y −H‖2Fro + γ tr(H>LnorH).

Therefore, unconstrained MAVR will be reduced exactly to
LGC if P = Ic andQ = Lnor. Now we specify P = Ic and
Q = Lnor and illustrate the nuance of constrained MAVR,
LGC, and BAVR using an artificial data set.

The artificial data set 3circles is generated as follows. We
have three classes with the class ratio 1/6 : 1/3 : 1/2. Let
yi be the ground-truth label of xi, then xi is generated by

xi = (6yi cos(ai) + εi,1, 5yi sin(ai) + εi,2)> ∈ R2,

where ai is an angle drawn i.i.d. from the uniform distribu-
tion U(0, 2π), and εi,1 and εi,2 are noises drawn i.i.d. from
the normal distribution N (0, σ2

ε ). In our experiments, we
varied one factor while fixed all other factors. The default
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Figure 4. Visualization of the artificial data set 3circles.
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(e) Varying γ
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(f) Varying τ

Figure 5. Means with standard errors of LGC, BAVR and MAVR on 3circles.

values of factors were σε = 0.5, σ = 0.5, l = 3, n = 300,
γ = 99, and τ =

√
l, and the ranges of these factors were

• σε ∈ 0.5 · exp{−1.5,−1.4,−1.3 . . . , 0.5};
• l ∈ {3, 4, 5, . . . , 20};
• n ∈ {120, 138, 156, . . . , 480};
• σ ∈ 0.5 · exp{−1,−0.9,−0.8, . . . , 1};
• γ ∈ 99 · exp{−4,−3,−2, . . . , 16};
• τ ∈

√
l · exp{−2,−1, 0, . . . , 18}.

Note that there was a distributional change, since we sam-
pled labeled data as balanced as possible across three class-
es. Figure 4 exhibits several realizations of 3circles given
different values of factors.

Figure 5 shows the experimental results, where the mean-
s with the standard errors of the classification error rates
are plotted. For each task that corresponds to a full specifi-
cation of those factors, three methods were repeatedly run
on 100 random samplings. We can see from Figure 5 that
the performance of LGC or BAVR was usually not as good

as MAVR. The drawback of LGC is that we would always
have ρ = −1 since it is unconstrained. Though ρ is adap-
tive in BAVR, we would have c different ρ values since it
is based on the one-vs-rest extension.

6. Conclusions
We proposed a multi-class volume approximation that can
be applied to several transductive problem settings such as
multi-class, multi-label and serendipitous learning. The re-
sultant learning method is non-convex, but can however be
solved exactly and efficiently. The method was theoretical-
ly justified by stability and error analyses and empirically
demonstrated a promising approach via experiments.
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A. Proofs
A.1. Proof of Theorem 2

The derivative of g(ρ) is

g′(ρ) =

nc∑
k=k0

2z2k
(γλPQ,k − ρ)3

.

Hence, g′(ρ) > 0 whenever ρ < γλPQ,k0 , and g(ρ) is strictly increasing in the interval (−∞, γλPQ,k0). Moreover,

lim
ρ→−∞

g(ρ) = −τ2 and lim
ρ→γλPQ,k0

g(ρ) = +∞,

and thus g(ρ) has exactly one root in (−∞, γλPQ,k0). Notice that ‖z‖2 = ‖ vec(V>QY VP )‖2 = ‖V>PQy‖2 = ‖y‖2 since
VPQ is an orthonormal matrix, and then ρ0 = γλPQ,k0 − ‖y‖2/τ = γλPQ,k0 − ‖z‖2/τ . As a result,

g(ρ0) =

nc∑
k=k0

z2k
(γλPQ,k − ρ0)2

− τ2

=

nc∑
k=k0

z2k
(γλPQ,k − γλPQ,k0 + ‖z‖2/τ)2

− τ2

≤
nc∑
k=k0

z2k
(‖z‖2/τ)2

− τ2

=

(∑nc
k=k0

z2k
‖z‖22

− 1

)
τ2

≤ 0,

where the first inequality is because λPQ,k ≥ λPQ,k0 for k ≥ k0. The fact that g(ρ0) ≤ 0 concludes that the only root in
(−∞, γλPQ,k0) is in [ρ0, γλPQ,k0) but not (−∞, ρ0).

A.2. Proof of Theorem 3

Denote by h = vec(H), y = vec(Y ) and M = (γP ⊗Q− ρInc), and denote by h′, y′ and M ′ similarly. Let λmin(·) and
λmax(·) be two functions extracting the smallest and largest eigenvalues of a matrix. Under our assumption,

λmin(M) = γλPQ,1 − ρ ≥ Cγ,τ > 0

which means that M is positive definite, and so is M ′. By Eq. (14),

h− h′ = M−1y −M ′−1y′

= M−1(y − y′) + (M−1 −M ′−1)y′

= M−1(y − y′) +M−1(M ′ −M)M ′−1y′

= M−1(y − y′) + (ρ′ − ρ)M−1M ′−1y′.

Note that ‖Av‖2 ≤ λmax(A)‖v‖2 for any symmetric positive-definite matrix A and any vector v, as well as λmax(AB) ≤
λmax(A)λmax(B) for any symmetric positive-definite matrices A and B. Hence,

‖h− h′‖2 = ‖M−1(y − y′) + (ρ′ − ρ)M−1M ′−1y′‖2
≤ ‖M−1(y − y′)‖2 + |ρ− ρ′|‖M−1M ′−1y′‖2
≤ λmax(M−1)‖y − y′‖2 + λmax(M−1)λmax(M ′−1)|ρ− ρ′|‖y′‖2

≤ ‖y − y′‖2
Cγ,τ

+
|ρ− ρ′|‖y′‖2

C2
γ,τ

,
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where the first inequality is the triangle inequality, the second inequality is becauseM−1 andM ′−1 are symmetric positive
definite, and the third inequality follows from λmax(M−1) = 1/λmin(M) and λmax(M ′−1) = 1/λmin(M ′). Due to the
symmetry of h and h′,

‖h− h′‖2 ≤
‖y − y′‖2
Cγ,τ

+
|ρ− ρ′|min{‖y‖2, ‖y′‖2}

C2
γ,τ

.

This inequality is the vectorization of (18).

For MAVR in optimization (9), Theorem 2 together with our assumption indicates that

γλPQ,1 − ‖y‖2/τ ≤ ρ < γλPQ,1,

γλPQ,1 − ‖y′‖2/τ ≤ ρ′ < γλPQ,1,

so |ρ′ − ρ| ≤ max{‖y‖2/τ, ‖y′‖2/τ} and

‖h− h′‖2 ≤
‖y − y′‖2
Cγ,τ

+
max{‖y‖2, ‖y′‖2}min{‖y‖2, ‖y′‖2}

τC2
γ,τ

=
‖y − y′‖2
Cγ,τ

+
‖y‖2‖y′‖2
τC2

γ,τ

.

For unconstrained MAVR in optimization (10), we have

‖h− h′‖2 ≤
‖y − y′‖2
Cγ,τ

,

since ρ = ρ′ = −1.

A.3. Proof of Theorem 4

Denote by h = vec(H), y = vec(Y ), h∗ = vec(H∗), e = vec(E), and M = γP ⊗ Q. The Kronecker product P ⊗ Q
is symmetric and positive definite, and then M1/2 is a well-defined symmetric and positive-definite matrix. We can know
based on V (H∗) ≤ Ch that

‖M1/2h∗‖2 =

√
γh∗

>
(P ⊗Q)h∗ ≤

√
γCh‖h∗‖22 =

√
γCh‖h∗‖2.

Let λmin(·) and λmax(·) be two functions extracting the smallest and largest eigenvalues of a matrix. In the following, we
will frequently use that ‖Av‖2 ≤ λmax(A)‖v‖2 for any symmetric positive-definite matrix A and any vector v.

Consider unconstrained MAVR in optimization (10) first. Since ρ = −1,

h− h∗ = (M + Inc)
−1y − h∗

= (M + Inc)
−1(h∗ + e)− (M + Inc)

−1(M + Inc)h
∗

= −(M + Inc)
−1Mh∗ + (M + Inc)

−1e.

As a consequence,
E‖h− h∗‖22 = ‖(M + Inc)

−1Mh∗‖22 + E‖(M + Inc)
−1e‖22,

since E[(M + Inc)
−1e] = (M + Inc)

−1Ee = 0nc. Subsequently,

‖(M + Inc)
−1Mh∗‖2 ≤ λmax((M + Inc)

−1M1/2) · ‖M1/2h∗‖2
≤ λmax((γP ⊗Q+ Inc)

−1(γP ⊗Q)1/2) ·
√
γCh‖h∗‖2

=
√
γChλmax

( √
γ

γ + 1
(ΛPQ + Inc)

−1Λ
1/2
PQ

)
‖h∗‖2

≤
√
Chλmax((ΛPQ + Inc)

−1Λ
1/2
PQ)‖h∗‖2

≤ 1

2

√
Ch‖h∗‖2,
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where the last inequality is because the eigenvalues of (ΛPQ + Inc)
−1Λ

1/2
PQ are

√
λPQ,1

λPQ,1+1 , . . . ,

√
λPQ,nc

λPQ,nc+1 and

supλ≥0

√
λ

λ+ 1
=

1

2
.

On the other hand,

E‖(M + Inc)
−1e‖22 ≤ (λmax((M + Inc)

−1))2 · E‖e‖22

=
E[e>e]

(λmin(M + Inc))2

≤ l̃σ2
l + ũσ2

u.

Hence,

E‖h− h∗‖22 ≤
1

4
Ch‖h∗‖22 + l̃σ2

l + ũσ2
u,

which completes the proof of inequality (20).

Next, consider MAVR in optimization (9). We would have

h− h∗ = (M − ρInc)−1y − h∗

= (M − ρInc)−1(h∗ + e)− (M − ρInc)−1(M − ρInc)h∗

= −(M − ρInc)−1(M − (ρ+ 1)Inc)h
∗ + (M − ρInc)−1e.

In general, E[(M − ρInc)−1e] 6= 0nc since ρ depends on e. Furthermore, M − (ρ+ 1)Inc may have negative eigenvalues
when γλPQ,1 − 1 < ρ ≤ γλPQ,1 − Cγ,τ . Taking the expectation of ‖h− h∗‖2,

E‖h− h∗‖2 ≤ E‖(M − ρInc)−1(M − (ρ+ 1)Inc)h
∗‖2 + E‖(M − ρInc)−1e‖2

≤ E‖(M − ρInc)−1Mh∗‖2 + E[|ρ+ 1|‖(M − ρInc)−1h∗‖2] + E‖(M − ρInc)−1e‖2.

Subsequently,

E‖(M − ρInc)−1Mh∗‖2 ≤ supρ λmax((M − ρInc)−1M1/2) ·
√
γCh‖h∗‖2

= supρ
√
Chλmax

(
(ΛPQ − ρ/γInc)−1Λ

1/2
PQ

)
‖h∗‖2

≤
√
Ch‖h∗‖2 · supρ≤γλPQ,1−Cγ,τ supλ≥λPQ,1

( √
λ

λ− ρ/γ

)

≤
√
ChγλPQ,1
Cγ,τ

‖h∗‖2.

On the other hand,

E[|ρ+ 1|‖(M − ρInc)−1h∗‖2] ≤ E|ρ+ 1| · supρ λmax((M − ρInc)−1)‖h∗‖2

≤ ‖h
∗‖2

Cγ,τ
· Emax{−ρ− 1, supρ ρ+ 1}

≤ ‖h
∗‖2

Cγ,τ
·max{E‖y‖2/τ − γλPQ,1 − 1, γλPQ,1 − Cγ,τ + 1}

=
‖h∗‖2
Cγ,τ

·max{
√
l̃/τ − γλPQ,1 − 1, γλPQ,1 − Cγ,τ + 1}.

where we used the fact that supρ ρ is independent of e, and applied Jensen’s inequality to obtain that

E‖y‖2 ≤
√
E‖y‖22 ≤

√
l̃.
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In the end,

E‖(M − ρInc)−1e‖2 ≤ supρ λmax((M − ρInc)−1) · E‖e‖2

≤ E
√
e>e

Cγ,τ

≤
√

E[e>e]

Cγ,τ

=

√
l̃σ2
l + ũσ2

u

Cγ,τ
,

where the third inequality is due to Jensen’s inequality. Therefore, inequality (19) follows by combining the three upper
bounds of expectations.


