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Abstract. We consider the learning problem under an online Markov
decision process (MDP), which is aimed at learning the time-dependent
decision-making policy of an agent that minimizes the regret — the dif-
ference from the best fixed policy. The difficulty of online MDP learning
is that the reward function changes over time. In this paper, we show
that a simple online policy gradient algorithm achieves regret O(

√
T )

for T steps under a certain concavity assumption and O(log T ) under a
strong concavity assumption. To the best of our knowledge, this is the
first work to give an online MDP algorithm that can handle continuous
state, action, and parameter spaces with guarantee. We also illustrate
the behavior of the online policy gradient method through experiments.
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1 Introduction

The Markov decision process (MDP) is a popular framework of reinforcement
learning for sequential decision making [6], where an agent takes an action de-
pending on the current state, moves to the next state, receives a reward based
on the last transition, and this process is repeated T times. The goal is to find an
optimal decision-making policy (i.e., a conditional probability density of action
given state) that maximizes the expected sum of rewards over T steps.

In the standard MDP formulation, the reward function is fixed over iterations.
On the other hand, in this paper, we consider an online MDP scenario where
the reward function changes over time — it can be altered even adversarially.
The goal is to find the best time-dependent policy that minimizes the regret, the
difference from the best fixed policy. We expect the regret to be o(T ), by which
the difference from the best fixed policy vanishes as T goes to infinity.

The MDP expert algorithm (MDP-E), which chooses the current best ac-
tion at each state, was shown to achieve regret O(

√
T log |A|) [1, 2], where
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|A| denotes the cardinality of the action space. Although this bound does not
explicitly depend on the cardinality of the state space, the algorithm itself
needs an expert algorithm for each state. Another algorithm called the lazy
follow-the-perturbed-leader (lazy-FPL) divides the time steps into short peri-
ods and policies are updated only at the end of each period using the aver-
age reward function [8]. This lazy-FPL algorithm was shown to have regret
O(T 3/4+ϵ log T (|S|+ |A|)|A|2) for ϵ ∈ (0, 1/3). The online MDP algorithm called
the online relative entropy policy search is considered in [9], which was shown
to have regret O(L2

√
T log(|S||A|/L)) for state space with L-layered structure.

However, the regret bounds of these algorithms explicitly depend on |S| and |A|,
and the algorithms cannot be directly implemented for problems with continuous
state and action spaces. The online algorithm for Markov decision processes was
shown to have regret O(

√
T log |Π| + log |Π|) with changing transition proba-

bility distributions, where |Π| it the cardinality of the policy set [11]. Although
sub-linear bounds still hold for continuous policy spaces, the algorithm cannot
be used with infinite policy candidates directly.

In this paper, we propose a simple online policy gradient (OPG) algorithm
that can be implemented in a straightforward manner for problems with contin-
uous state and action spaces1. Under the assumption that the expected average
reward function is concave, we prove that the regret of our OPG algorithm is
O(

√
T (F 2+N)), which is independent of the cardinality of the state and action

spaces, but is dependent on the diameter F and dimension N of the parameter
space. Furthermore, regret O(N2 log T ) is also proved under a strongly concavity
assumption on the expected average reward function. We numerically illustrate
the superior behavior of the proposed OPG in continuous problems over MDP-E
with different discretization schemes.

2 Online Markov decision process

In this section, we formulate the problem of online MDP learning.
An online MDP is specified by

– State space s ∈ S, which could be either continuous or discrete.
– Action space a ∈ A, which could be either continuous or discrete.
– Transition density p(s′|s,a), which represents the conditional probability

density of next state s′ given current state s and action a to be taken.
– Reward function sequence r1, r2, . . . , rT , which are fixed in advance and will

not change no matter what action is taken.

An online MDP algorithm produces a stochastic policy π(a|s, t)2, which is a
conditional probability density of action a to be taken given current state s at

1 Our OPG algorithm can also be seen as an extension of the online gradient descent
algorithm [10] to online MDPs problems, by decomposing the objective function.

2 The stochastic policy incorporates exploratory actions, and exploration is usually
required for getting a better policy in the learning process.
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time step t. In other words, an online MDP algorithm A outputs parameter
θ = [θ(1), . . . , θ(N)]⊤ ∈ Θ ⊂ RN of stochastic policy π(a|s;θ).

Thus, algorithm A gives a sequence of policies:

π(a|s;θ1), π(a|s;θ2), . . . , π(a|s;θT ).

We denote the expected cumulative rewards over T time steps of algorithm A
by

RA(T ) = E

[
T∑

t=1

rt(st,at)
∣∣∣A] .

Suppose that there exists θ∗ such that policy π(a|s;θ∗) maximizes the expected
cumulative rewards:

Rθ∗(T ) =E

[
T∑

t=1

rt(st,at)
∣∣∣θ∗

]
= sup

θ∈Θ
E

[
T∑

t=1

rt(st,at)
∣∣∣θ] ,

where E denotes the expectation. Our goal is to design algorithm A that mini-
mizes the regret against the best offline policy defined by

LA(T ) = Rθ∗(T )−RA(T ).

If the regret is bounded by a sub-linear function with respect to T , the algorithm
A is shown to be asymptotically as powerful as the best offline policy.

3 Online policy gradient (OPG) algorithm

In this section, we introduce an online policy gradient algorithm for solving the
online MDP problem.

Different from the previous works, we do not use the expert algorithm in
our method, because it is not suitable to handling continuous state and action
problems. Instead, we consider a gradient-based algorithm which updates the
parameter of policy θ along the gradient direction of the expected average reward
function at time step t.

More specifically, we assume that the target MDP {S,A, p, π, r} is ergodic.
Then it has the unique stationary state distribution dθ(s):

dθ(s) = lim
T→∞

p(sT = s|θ).

Note that the stationary state distribution satisfies

dθ(s
′) =

∫
s∈S

dθ(s)

∫
a∈A

π(a|s;θ)p(s′|s,a)dads.

Let ρt(θ) be the expected average reward function of policy π(a|s;θ) at time
step t:

ρt(θ) =

∫
s∈S

dθ(s)

∫
a∈A

rt(s,a)π(a|s;θ)dads. (1)

Then our online policy gradient (OPG) algorithm is given as follows:
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– Initialize policy parameter θ1.

– for t = 1 to ∞
1. Observe current state st = s.

2. Take action at = a according to current policy π(a|s;θt).
3. Observe reward rt from the environment.

4. Move to next state st+1.

5. Update the policy parameter as

θt+1 = P (θt + ηt∇θρt(θt)) , (2)

where P (ϑ) = argminθ∈Θ ∥ϑ− θ∥ is the projection function, ηt =
1√
t
is

the step size, and ∇θρt(θ) is the gradient of ρt(θ):

∇θρt(θ) ≡
[
∂ρt(θ)

∂θ(1)
, . . . ,

∂ρt(θ)

∂θ(N)

]⊤
=

∫
s∈S

∫
a∈A

dθ(s)π(a|s;θ)(∇θ ln dθ(s) +∇θ lnπ(a|s;θ))

× rt(s,a)dads.

If it is time-consuming to obtain the exact stationary state distribution, gra-
dients estimated by a reinforcement learning algorithm may be used instead in
practice.

When the reward function does not changed over time, the OPG algorithm
is reduced to the ordinary policy gradient algorithm [7], which is an efficient and
natural algorithm for continuous state and action MDPs. The OPG algorithm
can also be regarded as an extension of the online gradient descend algorithm

[10], which maximizes
∑T

t=1 ρt(θt), not E
[∑T

t=1 rt(st,at)|A
]
. As we will prove

in Section 4, the regret bound of the OPG algorithm is O(
√
T ) under a certain

concavity assumption and O(log T ) under a strong concavity assumption. Unlike
previous works, this bound does not depend on the cardinality of state and action
spaces. Therefore, the OPG algorithm would be suitable to handling continuous
state and action online MDPs.

4 Regret analysis under concavity

In this section, we provide a regret bound for the OPG algorithm.

4.1 Assumptions

First, we introduce the assumptions required in the proofs. Some assumptions
have already been used in related works for discrete state and action MDPs, and
we extend them to continuous state and action MDPs.
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Assumption 1 For two arbitrary distributions d and d′ over S and for every
policy parameter θ, there exists a positive number τ such that∫

s∈S

∫
s′∈S

|d(s)− d′(s)|p(s′|s;θ)ds′ds ≤e−1/τ

∫
s∈S

|d(s)− d′(s)|ds,

where

p(s′|s;θ) =
∫
a∈A

π(a|s;θ)p(s′|s,a)da,

and τ is called the mixing time [1, 2].

Assumption 2 For two arbitrary policy parameters θ and θ′ and for every
s ∈ S, there exists a constant C1 > 0 depending on the specific policy model π
such that ∫

a∈A

|π(a|s;θ)− π(a|s;θ′)|da ≤ C1∥θ − θ′∥1.

The Gaussian policy is a common choice in continuous state and action MDPs.
Below, we consider the Gaussian policy with mean µ(s) = θ⊤ϕ(s) and standard
deviation σ, where θ is the policy parameter and ϕ(s) : S → RN is the basis
function. The KL-divergence between these two policies is

D(p(·|s; θ)||p(·|s; θ′)) =
∫
a∈A

Nθ,σ(a) {logNθ,σ(a)− logNθ′,σ(a)}da

=

∫
a∈A

Nθ,σ(a)

{
1

2σ2

(
−(a− θ)2 + (a− θ′)2

)}
da

=
∥ϕ(s)∥∞

2σ
∥θ − θ′∥2.

By Pinsker’s inequality, the following inequality holds:

∥p(·|s, θ)− p(·|s, θ′)∥1 ≤ ∥ϕ(s)∥∞
σ

∥θ − θ′∥1. (3)

This implies that the Gaussian policy model satisfies Assumption 2 with C1 =
∥ϕ(s)∥∞

σ . Note that we do not specify any policy model in the analysis, and
therefore other stochastic policy models could also be used in our algorithm.

Assumption 3 All the reward functions in online MDPs are bounded. For sim-
plicity, we assume that the reward functions satisfy

rt(s,a) ∈ [0, 1],∀s ∈ S, ∀a ∈ A,∀t = 1, . . . , T.

Assumption 4 For all t = 1, . . . , T , the second derivative of the expected aver-
age reward function satisfies

∇2
θρt(θ) ≤ 0. (4)

This assumption means that the expected average reward function is concave,
which is currently our sufficient condition to guarantee the O(

√
T )-regret bound

for the OPG algorithm.



6 Yao Ma1, Tingting Zhao1, Kohei Hatano2, and Masashi Sugiyama1

4.2 Regret bound

We have the following theorem.

Theorem 1. The regret against the best offline policy of the OPG algorithm is
bounded as

LA(T ) ≤
√
T
F 2

2
+

√
TC2N + 2

√
Tτ2C1C2N + 4τ,

where F is the diameter of Θ and C2 = 2C1−C1e
−1/τ

1−e−1/τ .

To prove the above theorem, we decompose the regret in the same way as
the previous work [1–4]:

LA(T ) =Rθ∗(T )−RA(T )

≤

(
Rθ∗(T )−

T∑
t=1

ρt(θ
∗)

)
+

(
T∑

t=1

ρt(θ
∗)−

T∑
t=1

ρt(θt)

)

+

(
T∑

t=1

ρt(θt)−RA(T )

)
. (5)

In the OPG method, ρt(θ) is used for optimization, and the expected average
reward is calculated by the stationary state distribution dθ(s) of the policy
parameterized by θ. However, the expected reward at time step t is calculated
by dθ,t, which is the state distribution at time step t following policy π(a|s;θ).
This difference affects the first and third terms of the decomposed regret (5).

Below, we bound each of the three terms in Lemma 1, Lemma 2, and Lemma 3,
which are proved later.

Lemma 1. ∣∣∣∣∣Rθ∗(T )−
T∑

t=1

ρt(θ
∗)

∣∣∣∣∣ ≤ 2τ.

The first term has already been analyzed for discrete state and action online
MDPs in [1, 2], and we extended it to continuous state and action spaces in
Lemma 1.

Lemma 2. The expected average reward function satisfies∣∣∣∣∣
T∑

t=1

(ρt(θ
∗)− ρt(θt))

∣∣∣∣∣ ≤ √
T
F 2

2
+
√
TC2N.

Lemma 2 is obtained by using the result of [10].

Lemma 3. ∣∣∣∣∣RA(T )−
T∑

t=1

ρt(θt)

∣∣∣∣∣ ≤ 2τ2C1C2N
√
T + 2τ.



An Online Policy Gradient Algorithm for Continuous MDPs 7

Lemma 3 is similar to Lemma 5.2 in [2], but our bound does not depend on the
cardinality of state and action spaces.

Combining Lemma 1, Lemma 2, and Lemma 3, we can immediately obtain
Theorem 1.

If the reward function is strongly concave for all t = 1, . . . , T , the bound of
the OPG algorithm is O(log T ) which is proved in Section 5.

4.3 Proof of Lemma 1

The following proposition holds, which can be obtained by recursively using
Assumption 1:

Proposition 1. For any policy parameter θ, the state distribution dθ,t at time
t and stationary state distribution dθ satisfy∫

s∈S

|dθ,t(s)− dθ(s)|ds ≤ 2e−t/τ .

The first part of the regret bound in Theorem 1 is caused by the difference
between the state distribution at time t and the stationary state distribution
following the best offline policy parameter θ∗.∣∣∣∣∣Rθ∗(T )−

T∑
t=1

ρt(θ
∗)

∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

[∫
s∈S

dθ∗,t(s)

∫
a∈A

rt(s,a)π(a|s;θ∗)dsda

−
∫
s∈S

dθ∗(s)

∫
a∈A

rt(s,a)π(a|s;θ∗)dsda

]∣∣∣∣
≤

T∑
t=1

∫
s∈S

|dθ∗,t(s)− dθ∗(s)| ds

≤ 2

T∑
t=1

e−t/τ

≤ 2τ,

which concludes the proof.

4.4 Proof of Lemma 2

The following proposition is a continuous extension of Lemma 6.3 in [2]:

Proposition 2. For two policies with different parameters θ and θ′, an arbi-
trary distribution d over S, and the constant C1 > 0 given in Assumption 2, it
holds that∫

s∈S

d(s)

∫
s′∈S

|p(s′|s;θ)− p(s′|s;θ′)|ds′ds ≤ C1∥θ − θ′∥1,
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where

p(s′|s;θ) =
∫
a∈A

π(a|s;θ)p(s′|s,a)da.

Then we have the following proposition, which is proved in Section 4.6:

Proposition 3. For all t = 1, . . . , T , the expected average reward function ρt(θ)
for two different parameters θ and θ′ satisfies

|ρt(θ)− ρt(θ
′)| ≤ C2∥θ − θ′∥1.

From Proposition 3, we have the following proposition:

Proposition 4. Let

θ = [θ(1), . . . , θ(i), . . . , θ(N)],

θ′ = [θ(1), . . . , θ(i)
′
, . . . , θ(N)],

and suppose that the expected average reward ρt(θ) for all t = 1, . . . , T is Lips-
chitz continuous with respect to each dimension θ(i). Then we have

|ρt(θ)− ρt(θ
′)| ≤ C2|θ(i) − θ(i)

′
|, ∀i = 1, . . . , N.

Form Proposition 4, we have the following proposition:

Proposition 5. For all t = 1, . . . , T , the partial derivative of expected average
reward function ρt(θ) with respect to θ(i) is bounded as∣∣∣∣∂ρt(θ)∂θ(i)

∣∣∣∣ ≤ C2, ∀i = 1, . . . , N,

and ∥∇θρt(θ)∥1 ≤ NC2.

From Proposition 5, the result of online convex optimization [10] is applicable
to the current setup. More specifically we have

T∑
t=1

(ρt(θ
∗)− ρt(θt)) ≤

F 2

2

√
T + C2N

√
T ,

which concludes the proof.

4.5 Proof of Lemma 3

The following proposition holds, which can be obtained from Assumption 2 and

∥θt − θt+1∥1 ≤ ηt∥∇θρt(θt)∥1 ≤ C2Nηt.
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Proposition 6. Consecutive policy parameters θt and θt+1 given by the OPG
algorithm satisfy∫

a∈A

|π(a|s;θt)− π(a|s;θt+1)|da ≤ C1C2Nηt.

From Proposition 2 and Proposition 6, we have the following proposition:

Proposition 7. For consecutive policy parameters θt and θt+1 given by the
OPG algorithm and arbitrary transition probability density p(s′|s,a), it holds
that ∫

s∈S

d(s)

∫
s′∈S

∫
a∈A

p(s′|s,a)

× |π(a|s;θt)− π(a|s;θt+1)|dads′ds ≤ C1C2Nηt.

Then the following proposition holds, which is proved in Section 4.6 following
the same line as Lemma 5.1 in [2]:

Proposition 8. The state distribution dA,t given by algorithm A and the sta-
tionary state distribution dθt of policy π(a|s;θt) satisfy∫

s∈S

|dθt(s)− dA,t(s)|ds ≤ 2τ2ηt−1C1C2N + 2e−t/τ .

Although the original bound given in [1, 2] depends on the cardinality of the
action space, it is not the case in the current setup.

Then the third term of the decomposed regret (5) is expressed as∣∣∣∣∣RA(T )−
T∑

t=1

ρt(θt)

∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

∫
s∈S

dA,t(s)

∫
a∈A

rt(s,a)π(a|s;θt)dads

−
T∑

t=1

∫
s∈S

dθt(s)

∫
a∈A

rt(s,a)π(a|s;θt)dads

∣∣∣∣∣
≤

T∑
t=1

∫
s∈S

|dA,t(s)− dπt(s)|ds

≤ 2τ2C1C2N
T∑

t=1

ηt + 2
T∑

t=1

e−t/τ

≤ 2τ2C1C2N
√
T + 2τ,

which concludes the proof.
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4.6 Proof of Proposition 3

For two different parameters θ and θ′, we have

|ρt(θ)− ρt(θ
′)| =

∣∣∣∣∫
s∈S

dθ(s)

∫
a∈A

π(a|s;θ)rt(s,a)dads

−
∫
s∈S

dθ′(s)

∫
a∈A

π(a|s;θ′)rt(s,a)dads

∣∣∣∣
≤
∫
s∈S

|dθ(s)− dθ′(s)|
∫
a∈A

π(a|s;θ)rt(s,a)dads

+

∫
s∈S

dθ′(s)

∫
a∈A

|π(a|s;θ)− π(a|s;θ′)| rt(s,a)dads.

(6)

The first equation comes from Eq.(1), and the second inequality is obtained from
the triangle inequality. Since Assumption 2 and Assumption 3 imply∫

s∈S

dθ′(s)

∫
a∈A

|π(a|s;θ)− π(a|s;θ′)|rt(s,a)dads ≤ C1∥θ − θ′∥1,

and also ∫
a∈A

π(a|s;θ)rt(s,a)da ≤ 1,

Eq.(6) can be written as

|ρt(θ)− ρt(θ
′)| ≤

∫
s∈S

|dθ(s)− dθ′(s)|ds+ C1∥θ − θ′∥1

=

∫
s∈S

∫
s′∈S

|dθ(s′)p(s|s′;θ)− dθ′(s′)p(s|s′;θ′)|ds′ds

+ C1∥θ − θ′∥1

≤
∫
s∈S

∫
s′∈S

|dθ(s′)p(s|s′;θ)− dθ′(s′)p(s|s′;θ)|ds′ds

+

∫
s∈S

∫
s′∈S

dθ′(s′)|p(s|s′;θ)− p(s|s′;θ′)|ds′ds

+ C1∥θ − θ′∥1

≤ e−1/τ

∫
s∈S

|dθ(s)− dθ′(s)|ds+ 2C1∥θ − θ′∥1.

The second equality comes from the definition of the stationary state distribu-
tion, and the third inequality can be obtained from the triangle inequality. The
last inequality follows from Assumption 1 and Proposition 2. Thus, we have

|ρt(θ)− ρt(θ
′)| ≤ 2C1 − C1e

−1/τ

1− e−1/τ
∥θ − θ′∥1,

which concludes the proof.
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4.7 Proof of Proposition 8

This proof is following the same line as Lemma 5.1 in [2].∫
s∈S

|dA,k(s)− dθt(s)|ds

=

∫
s∈S

∫
s′∈S

|dA,k−1(s
′)p(s|s′;θk)− dθt(s

′)p(s|s′;θt)| ds′ds

≤
∫
s∈S

∫
s′∈S

|dA,k−1(s
′)p(s|s′;θt)− dθt(s

′)p(s|s′;θt)| ds′ds

+

∫
s∈S

∫
s′∈S

|dA,k−1(s
′)p(s|s′;θk)− dA,k−1(s

′)p(s|s′;θt)| ds′ds

≤ e−1/τ

∫
s∈S

|dA,k−1(s)− dθt(s)|ds+ 2(t− k)C1C2Nηt−1. (7)

The first equation comes from the definition of the stationary state distribution,
and the second inequality can be obtained by the triangle inequality. The third
inequality holds from Assumption 1 and∫

s∈S

∫
s′∈S

|dA,k−1(s
′)p(s|s′;θk)− dA,k−1(s

′)p(s|s′;θt)| ds

≤ C1∥θt − θk∥1

≤ C1

t−1∑
i=k

ηi∥∇θρi(θi)∥1

≤ 2(t− k)C1C2Nηt−1.

Recursively using Eq.(7), we have∫
s∈S

|dA,t(s)− dπt(s)|ds ≤ 2
t∑

k=2

e−(t−k)/τ (t− k)C1C2Nηt−1 + 2e−t/τ

≤ 2τ2C1C2Nηt−1 + 2e−t/τ ,

which concludes the proof.

5 Regret analysis under strong concavity

In this section, we derive a shaper regret bound for the OPG algorithm under a
strong concavity assumption.

Theorem 1 shows the theoretical guarantee of the OPG algorithm with the
concave assumption. If the expected reward function is strongly concave, i.e.,

∇2
θρt ≤ −HIN ,

where H is a positive constant and IN is the N × N identity matrix, we have
following theorem.
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Theorem 2. The regret against the best offline policy of the OPG algorithm is
bounded as

LA(T ) ≤
C2

2N
2

2H
(1 + log T ) +

2τ2C1C2N

H
log T + 4τ,

with step size ηt =
1
Ht .

We again consider the same decomposition as Eq.(5), the first term of the regret
bound is exactly the same as Lemma 1. The second and third parts are given by
the following propositions.

Given the strongly concavity assumption and step size ηt =
1
Ht , the following

proposition holds:

Proposition 9.

T∑
t=1

(ρt(θ
∗)− ρt(θt)) ≤

C2
2N

2

2H
(1 + log T ).

The proof is following the same line as [12], i.e., by the Taylor approximation,
the expected average reward function can be decomposed as

ρt(θ
∗)− ρt(θt)

= ∇θρt(θt)
⊤(θ∗ − θt) +

1

2
(θt)

⊤(θ∗ − θt)
⊤∇2

θρt(ξt)(θt)
⊤(θ∗ − θt)

≤ ∇θρt(θt)
⊤(θ∗ − θt)−

H

2
∥θ∗ − θt∥2. (8)

Given the parameter updating rule,

∇θρt(θ
∗ − θt) =

1

2ηt

(
(θ∗ − θt)

2 − (θ∗ − θt+1)
2
)
+ ηt∥∇θρt(θt)∥2,

summing up all T terms of (8) and setting ηt =
1
Ht yield

T∑
t=1

(ρt(θ
∗ − θt)) ≤

T∑
t=1

(
1

ηt+1
− 1

ηt
−H

)
∥θ∗ − θt∥2 + ∥∇tρt(θt)∥2

T∑
t=1

ηt

≤ C2
2N

2

2H
(1 + log T ).

From the proof of Lemma 3, the bound of the third part with the strongly
concavity assumption is given by following proposition.

Proposition 10.

T∑
t=1

ρt(θt)−RA(T ) ≤
2τ2C1C2N

H
log T + 2τ. (9)

The result of Proposition 10 is obtained by following the same line as the proof
of Lemma 3 with different step sizes. Combining Lemma 1, Proposition 9, and
Proposition 10, we can obtain Theorem 2.
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6 Experiments

In this section, we illustrate the behavior of the OPG algorithm.

6.1 Target tracking

The task is to let an agent track an abruptly moving target located in one-
dimensional real space S = R. The action space is also one-dimensional real
space A = R, and we can change the position of the agent as s′ = s + a. The
reward function is given by evaluating the distance between the agent and target
as

rt(s, a) = e−|s+a−tar(t)|,

where tar(t) denotes the position of the target at time step t. Because the target
is moving abruptly, the reward function is also changing abruptly. As a baseline
method for comparison, we consider the MDP-E algorithm [1, 2], where the ex-
ponential weighted average algorithm is used as the best expert. Since MDP-E
can handle only discrete states and actions, we discretize the state and action
space. More specifically, the state space is discretized as

(−∞,−6], (−6,−6 + c], (−6 + c,−6 + 2c], . . . , (6,+∞),

and the action space is discretized as

−6,−6 + c,−6 + 2c, . . . , 6.

We consider the following 5 setups for c:

c = 6, 2, 1, 0.5, 0.1.

In the experiment, the stationary state distribution and the gradient are
estimated by policy gradient theorem estimator[5]. I = 20 independent experi-
ments are run with T = 100 time steps, and the average return J(T ) is used for
evaluating the performance:

J(T ) =
1

I

I∑
i=1

[
T∑

t=1

rt(st, at)

]
.

The results are plotted in Figure 1, showing that the OPG algorithm works
better than the MDP-E algorithm with the best discretization resolution. This
illustrates the advantage of directly handling continuous state and action spaces
without discretization.
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6.2 Linear-quadratic regulator

The linear-quadratic regulator (LQR) is a simple system, where the transition
dynamics is linear and the reward function is quadratic. A notable advantage of
LQR is that we can compute the best offline parameter [5]. Here, an online LQR
system is simulated to illustrate the parameter update trajectory of the OPG
algorithm.

Let state and action spaces be one-dimensional real: S = R and A = R.
Transition is deterministically performed as

s′ = s+ a.

The reward function is defined as

rt(s, a) = −1

2
Qts

2 − 1

2
Rta

2,

where Qt ∈ R and Rt ∈ R are chosen from {1, . . . , 10} uniformly for each t.
Thus, the reward function is changing abruptly.

We use the Gaussian policy with mean parameter µ·s and standard deviation
parameter σ = 0.1, i.e., θ = µ. The best offline parameter is given by θ∗ = −0.98,
and the initial parameter for the OPG algorithm is set at θ1 = −0.5.

In the top graph of Figure 2, a parameter update trajectory of OPG in an
online LQR problem is plotted by the red line, and the best offline parameter is
denoted by the black line. This shows that the OPG solution quickly approaches
the best offline parameter.

Next, we also include the Gaussian standard deviation σ in the policy pa-
rameter, i.e., θ = (µ, σ)⊤. When σ takes a value less than 0.001 during gradient
update iterations, we project it back to 0.001. A parameter update trajectory is
plotted in the bottom graph of Figure 2, showing again that the OPG solution
smoothly approaches the best offline parameter along µ.

7 Conclusion

In this paper, we proposed an online policy gradient method for continuous state
and action online MDPs, and showed that the regret of the proposed method
is O(

√
T ) under a certain concavity assumption. A notable fact is that the re-

gret bound does not depend on the cardinality of state and action spaces, which
makes the proposed algorithm suitable in handling continuous states and actions.
Furthermore, we also established the O(log T ) regret bound under a strongly con-
cavity assumption. Through experiments, we illustrated that directly handling
continuous state and action spaces by the proposed method is more advantageous
than discretizing them.

Our future work will extend the current theoretical analysis to non-concave
expected average reward functions, where gradient-based algorithms suffer from
the local optimal problem. Another important challenge is to develop an effective
method to estimate the stationary state distribution which is required in our
algorithm.
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