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Abstract

We consider the problem of learning a classifier using only positive and unlabeled
samples. In this setting, it is known that a classifier can be successfully learned if
the class prior is available. However, in practice, the class prior is unknown and
thus must be estimated from data. In this paper, we propose a new method to
estimate the class prior by partially matching the class-conditional density of the
positive class to the input density. By performing this partial matching in terms
of the Pearson divergence, which we estimate directly without density estimation
via lower-bound maximization, we can obtain an analytical estimator of the class
prior. We further show that an existing class prior estimation method can also be
interpreted as performing partial matching under the Pearson divergence, but in
an indirect manner. The superiority of our direct class prior estimation method is
illustrated on several benchmark datasets.
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1 Introduction

Standard classification problems assume that all training samples are labeled. However,
in many practical problems only some of the positive samples may be labeled. This occurs
in problems such as outlier/novelty detection [4, 5], where the labels of some inlier samples
are known, or one-class land-cover identification [8], where land-cover areas of the same
class as the labeled instances must be identified. The goal of this paper is to learn a
classifier only from positive and unlabeled data.
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We assume that the data is drawn according to

(x, y, s)
i.i.d.
∼ p(x, y, s),

where x(∈ R
d) are the unlabeled features, y(∈ {−1, 1}) are the (unknown) class labels,

and s(∈ {0, 1}) determines whether the sample is labeled. The assumption is that only
positive samples are labeled [2],

p(s = 1|x, y = −1) = 0, (1)

and that the probability that a sample is labeled depends only on the underlying label:

p(s = 1|x, y = 1) = p(s = 1|y = 1).

Since we do not observe all class labels, the dataset would typically be

X := {(xi, si)}
n

i=1

i.i.d.
∼ p(x, s). (2)

When si = 1, sample xi would have the label yi = 1, according to assumption (1). When
si = 0, the sample is unlabeled and the (unknown) underlying label may be yi = 1 or
yi = −1.

We note that this learning setting has an intrinsic problem: unlike the traditional
classification setting, we can not trivially estimate the class prior p(y = 1) from the
dataset X . The focus of this paper is to present a new method for estimating this class
prior.

When the class prior p(y = 1) is estimated or specified by the user, the classifier can
be estimated from the dataset. In [2] the following relation was proven,

p(y = 1|x) =
1

c
p(s = 1|x),

where
c := p(s = 1|y = 1).

The posterior p(s = 1|x) is referred to in [2] as a ‘non-traditional’ classifier. This can
be estimated from the training set in (2) by a probabilistic classification method such as
kernel logistic regression [3] or its squared-loss variant [10].

The constant c that is used to reweight the non-traditional classifier can be expressed
as

c =
p(y = 1|s = 1)p(s = 1)

p(y = 1)
=

p(s = 1)

p(y = 1)
. (3)

p(s = 1) can be directly estimated from (2), so the reweighting constant can be calculated
if we can obtain an estimate of p(y = 1).

We propose a method in the next section to estimate this class prior from the training
data. In Section 3 we show that the existing method [2] can be interpreted as indirectly
estimating the same quantity as the proposed method. The superiority of our proposed
method is illustrated on benchmark data in Section 4.
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Figure 1: Estimating the class prior via full matching (left-hand side) and partial matching

(right-hand side).

2 Prior Estimation via Partial Matching

In this section we will propose a new method to estimate the class prior by partial match-
ing.

2.1 Basic Idea

We denote the subset of samples in (2) for which s = 1 as

X ′ := {x′
i}

n′

i=1 .

From the assumptions, the above samples are drawn according to

p(x|s = 1) = p(x|y = 1). (4)

We model the input density as

q(x; θ) := θp(x|y = 1) + (1− θ)p(x|y = −1),

where θ(∈ [0, 1]) is a scalar value that represents the unknown class prior p(y = 1). The
above model q(x; θ) would equal p(x) if θ is the unknown class prior p(y = 1). Therefore,
by selecting θ so that the two distributions are equal (illustrated in the left graph of
Fig. 1), the class prior can be estimated [1]. This setup will however not work in our
current context, since we do not have samples drawn from p(x|y = −1) and consequently
q(x; θ) can not be estimated.

Nevertheless, if the class-conditional densities p(x|y = 1) and p(x|y = −1) are not
strongly overlapping, we may estimate θ so that θp(x|y = −1) is as similar to p(x) as
possible (this is illustrated in the right graph of Fig. 1). Here we propose to use the
Pearson (PE) divergence1 for matching θp(x|y = −1) to p(x):

θ∗ = argmin
θ

PE(θ),

1Note that θp(x) is not a density unless θ = 1.
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where PE(θ) denotes the PE divergence from θp(x|y = 1) to p(x):

PE =
1

2

∫ (
θp(x|y = 1)

p(x)
− 1

)2

p(x)dx

=
1

2

∫ (
θp(x|y = 1)

p(x)

)2

p(x)dx− θ +
1

2
. (5)

The above PE divergence is defined in terms of unknown densities, but only sam-
ples drawn from these densities are available. A possible approach is to first estimate
p(x|y = 1) and p(x) from the samples using, e.g., kernel density estimation and then
plug these estimators into the above expression. This however does not work well since
high-dimensional density estimation is a difficult problem [11]. Furthermore, the division
by an estimated density may exacerbate the estimation error.

2.2 Estimation Algorithm

Here we show how we can avoid density estimation and directly minimize the PE diver-
gence.

Our idea is to consider a lower bound which is linear in the unknown densities and can
then be estimated from sample averages. Using the inequality y2/2 ≥ ty− t2/2 which can
be obtained from Fenchel duality [7, 9], we can lower bound (5) in a pointwise manner as
follows:

1

2

(
θp(x|y=1)

p(x)

)2

≥

(
θp(x|y=1)

p(x)

)
r(x)−

1

2
r(x)2,

where r(x) fulfills the role of t. This yields

1

2

(
θp(x|y=1)

p(x)

)2

p(x)≥θp(x|y=1)r(x)−
1

2
r(x)2p(x).

Therefore the PE divergence is lower bounded as

PE ≥ θ

∫
r(x)p(x|y=1)dx−

1

2

∫
r(x)2p(x)dx− θ +

1

2
.

The above lower bound can be turned into a practical estimator by using a parametric
model for r(x), replacing the integrals with sample averages, and selecting the tightest
bound via maximization of the right-hand side.

We approximate the function r(x) by a linear-in-parameter model r̂(x) = α⊤ϕ(x),
where α = (α1, . . . , αn)

⊤ are the parameters and ϕ(x) = (ϕ1(x), . . . , ϕn(x))
⊤ are the

basis functions. In practice, we use Gaussian basis functions centered at the training
points:

ϕi(x) = exp

(
−

1

2σ2
‖x− xi‖

2

)
, i = 1, . . . , n.
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Using this model, objective function can be written as

α̂ := argmax
α

θα⊤h−
1

2
α⊤Hα− θ +

1

2
,

= argmax
α

θα⊤h−
1

2
α⊤Hα,

where

H =

∫
ϕ(x)ϕ(x)⊤p(x)dx, h =

∫
ϕ(x)p(x|y = 1)dx.

Estimating the integrals by their sample averages gives

Ĥ =
1

n

n∑

i=1

ϕ(xi)ϕ(xi)
⊤, ĥ =

1

n′

n′∑

i=1

ϕ(x′
i).

Using these empirical estimates and adding an ℓ2 regularizer leads to the following opti-
mization problem:

α̂ := argmax
α

θα⊤ĥ−
1

2
α⊤Ĥα−

λ

2
α⊤α,

where λ(≥ 0) is the regularization parameter. This can be analytically solved as

α̂ = θĜ−1ĥ, Ĝ = Ĥ + λI,

where I denotes the identity matrix. Note that the above objective function is essentially
the same as the least-squares objective function in [6].

Substituting the analytical solution into the lower bound yields the following PE di-
vergence estimator:

P̂E = θ2ĥ⊤Ĝ−1ĥ− θ2
1

2
ĥ⊤Ĝ−1ĤĜ−1ĥ− θ +

1

2
.

This can be analytically minimized with respect to θ to yield the following estimator of
the class prior:

θ̂ =
[
2ĥ⊤Ĝ−1ĥ− ĥ⊤Ĝ−1ĤĜ−1ĥ

]−1

.

2.3 Theoretical Analysis

Here, we theoretically investigate the bias of our algorithm when the assumption that
class-conditional densities are non-overlapping is violated.

Assuming that the densities p(x|y = 1) and p(x) are known, we can analytically find
the minimizer of (5) with respect to θ as

θ =

[∫
p(x|y = 1)2

p(x)
dx

]−1

. (6)
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Substituting the identity

p(x|y=1) = [p(x)− (1−p(y=1))p(x|y=−1)] /p(y=1)

into the above gives

θ =
p(y = 1)

1− [1− p(y = 1)]
∫

p(x|y=1)p(x|y=−1)
p(x)

dx
.

If the class-conditional densities are completely non-overlapping, then p(x|y =
1)p(x|y = −1) = 0 and the estimator will be unbiased. Otherwise, we see that the
value in the denominator is always smaller than 1, which means that the estimator will
have a positive bias.

3 Analysis of Existing Method

In this section we analyze the method of estimating the class prior introduced in [2]. The
paper proposed that a non-traditional classifier g(x) ≈ p(s = 1|x) is obtained from the
training data. Using this classifier and a hold out set of positive samples P of size |P |,
the constant c given by (3) is estimated as

c ≈
1

|P |

∑

x∈P

g(x). (7)

Since samples in P are drawn from p(x|y = 1), (7) is essentially an estimate of

c =

∫
p(s = 1|x)p(x|y = 1)dx,

where p(s = 1|x) is estimated by a non-traditional classifier and the summation in (7) is
due to estimation via an empirical average. Using (4) the above can be expressed as

c =

∫
p(x|y = 1)p(s = 1)

p(x)
p(x|y = 1)dx.

Following from (3), the class prior is expressed as

p(y = 1) =
p(s = 1)

c
=

[∫
p(x|y = 1)2

p(x)
dx

]−1

,

which corresponds to (6).
Therefore, both methods can be viewed as estimating the class prior via PE divergence

estimation. The important difference is how this estimation is performed. The existing
method first learns a function g to estimate the posterior p(s = 1|x) using a method such
as kernel logistic regression. The PE divergence is then estimated using this function.
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Figure 2: The effect of overlapping class-conditional densities illustrated with by Gaussian
class-conditional densities. The true class prior is 0.7. If the class-conditional densities
are highly overlapping (when µ is small), the estimate is positively biased.

This two-step approach may however not be optimal, since the best function estimated
in the first step may not be the best for PE divergence estimation.

Our proposed method follows a single step approach: we directly learn a function
based on how well the PE divergence is estimated. Therefore, our method is expected
to perform better. We will experimentally investigate the superiority of our proposed
approach in the next section.

4 Experiments

In this section, we illustrate the effect of bias due to overlapping class-conditional densities
and then experimentally evaluate the performance of the proposed method on benchmark
datasets.

4.1 Numerical Illustration

First, we show the effect of bias caused by highly overlapping class-conditional densi-
ties with the aid of a toy example. The class-conditional densities were selected as two
univariate Gaussians differing in their means:

p(x|y = 1) = N
(
x; 0, 12

)
, p(x|y = −1) = N

(
x;µ, 12

)
,

where N (x;µ, σ2) denotes the Gaussian density with mean µ and variance σ2 with respect
to x. Varying µ controls the overlap between the class conditional densities: a small µ
implies a high overlap; conversely, a large µ implies a low overlap. The result of varying
µ, when the true class prior is 0.7 is given in Figure 2. From this we see that the bias
decreases as the overlap between class-conditional densities decreases.
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4.2 Benchmark datasets

We compared the accuracy of the estimate of the class prior on several UCI benchmark
datasets2. The following methods were compared:

• PE (proposed): The method described in Section 2 that directly estimates the PE
divergence3. All hyper-parameters was set using 5-fold cross validation.

• EN: The method of [2] discussed in Section 3. Data was split into 5 folds {Xt}
5
t=1

and the posterior p(s = 1|x) was estimated from X \Xt (i.e., all samples except Xt).
The score in (7) was computed with P = Xt. This was repeated for t = 1, . . . , 5 and
the average was used as the estimate of c.

The posterior p(s = 1|x) was estimated using kernel logistic regression [3]. The true class
prior was varied as 0.2, 0.5, 0.8 and positive samples were labeled with a probability of
p(s= 1|y= 1) = 0.5. The resulting squared error and classification accuracy is given in
Fig. 3. The classification accuracy was measured on an independent dataset with the
same class balance.

As can be seen from the results, our proposed method gave a more accurate estimate
of the class prior. Furthermore, the more accurate estimate of the class prior translated
into a higher classification accuracy.

4.3 Extreme Class Imbalance

Experiments were also performed to illustrate class prior estimation when an extreme
class imbalance occurs. Since the number of samples of the minority class is extremely
low in such a case, a large number of samples is needed. The squared error and resulting
classification accuracy for an experiment with 200 samples is given in Tables 1 and 2.

Since a positive sample is labeled with probability p(s = 1|y = 1), the number of
labeled samples depends on the number of positive samples. When the number of labeled
samples is low (i.e., when the class prior is 0.05 and 0.1), our method gives a much more
accurate estimate of the class prior. When the number of labeled samples is large (i.e.,
when the class prior is 0.95) both methods give highly accurate estimates of the class
prior which lead to similar classification accuracy.

5 Conclusion

We proposed a new method to estimate the class prior from positive and unlabeled samples
by partial matching under the PE divergence. By obtaining a lower bound for the PE
divergence, we can directly get an analytical divergence estimator and estimate the class
prior in a single step.

2‘http://archive.ics.uci.edu/ml/’.
3An implementation of this method is available from ‘http://sugiyama-www.cs.titech.ac.jp/

~christo/’.
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Figure 3: Experimental results on several UCI benchmark datasets. ‘PE’ and ‘PE (CA)’
indicate the squared error and classification accuracy for class-prior estimation via direct
PE divergence estimation. ‘EN’ and ‘EN (CA)’ indicate the squared error and classifi-
cation accuracy for class-prior estimation using the method of [2]. The diamond symbol
means that the method is the best or comparable in terms of the mean performance by
t-test with significance level 5%.

As was shown, the existing method of [2] can also be interpreted as matching using
the PE divergence. However, in that work, the estimation was indirectly performed using
a two-step approach.

Experiments on benchmark data showed that our single-step approach gave a more
accurate estimate of the class prior, which in turn resulted in a higher classification
accuracy.
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Table 1: Accuracy in terms of squared error for class-prior estimation on extremely imbal-
anced datasets. The dataset size was 200 and bold text indicates the best or comparable
method under t-test with significance level of 5%.

Dataset 0.05 0.1 0.9 0.95

PE EN PE EN PE EN PE EN

australian .037 .096 .019 .048 .004 .006 .002 .002

diabetes .230 .341 .119 .250 .006 .007 .002 .002

image .060 .150 .031 .078 .005 .006 .002 .001

waveform .022 .027 .007 .023 .005 .006 .002 .001

Table 2: Resulting classification accuracy for class-prior estimation of extremely imbal-
anced datasets.

Dataset 0.05 0.1 0.9 0.95

PE EN PE EN PE EN PE EN

australian .900 .865 .904 .893 .898 .899 .944 .946

diabetes .709 .588 .747 .636 .895 .895 .946 .946

image .885 .808 .887 .839 .897 .899 .947 .947

waveform .966 .955 .952 .945 .898 .898 .948 .949
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