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Abstract

In real-world classification problems, the class balance in the training dataset does
not necessarily reflect that of the test dataset, which can cause significant estima-
tion bias. If the class ratio of the test dataset is known, instance re-weighting or
resampling allows systematical bias correction. However, learning the class ratio
of the test dataset is challenging when no labeled data is available from the test
domain. In this paper, we propose to estimate the class ratio in the test dataset by
matching probability distributions of training and test input data. We demonstrate
the utility of the proposed approach through experiments.
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1 Introduction

Most supervised learning algorithms assume that training and test data follow the same
probability distribution (Vapnik, 1998; Hastie et al., 2001; Bishop, 2006). However, this
de facto standard assumption is often violated in real-world problems, caused by intrinsic
sample selection bias or inevitable non-stationarity (Heckman, 1979; Quiñonero-Candela
et al., 2009; Sugiyama and Kawanabe, 2012).

In classification scenarios, changes in class balance are often observed—for example,
the male-female ratio is almost fifty-fifty in the real-world (test set), whereas training
samples collected in a research laboratory tends to be dominated by male data. Such a

∗This paper is an extended version of an earlier conference paper (du Plessis and Sugiyama, 2012).
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situation is called a class-prior change, and the bias caused by differing class balances can
be systematically adjusted by instance re-weighting or resampling if the class balance in
the test dataset is known (Elkan, 2001; Lin et al., 2002).

However, the class ratio in the test dataset is often unknown in practice. A possible
approach to mitigating this problem is to learn a classifier so that the performance for
all possible class balances are improved, e.g., through maximization of the area under
the ROC curve (Cortes and Mohri, 2004; Clémençon et al., 2009). Alternatively, in the
minimax approach, a classifier is learned so as to minimize the worst-case performance for
any change in the class prior (Duda et al., 2001; Van Trees, 1968). The disadvantage of
the minimax approach is that it is often overly pessimistic. A more direct approach is to
estimate the class ratio in the test dataset and use this estimate for instance reweighting
or resampling. We focus on this scenario under a semi-supervised learning setup (Chapelle
et al., 2006), where no labeled data is available from the test domain.

Saerens et al. (2001) is a seminal paper on this topic, which proposed to estimate the
class ratio by the expectation-maximization (EM) algorithm (Dempster et al., 1977)—
alternately updating the test class-prior and class-posterior probabilities from some initial
estimates until convergence. This method has been successfully applied to various real-
world problems such as word sense disambiguation (Chan and Ng, 2006) and remote
sensing (Latinne et al., 2001).

In this paper, we first reformulate the algorithm in Saerens et al. (2001), and show
that this actually corresponds to approximating the test input distribution by a linear
combination of class-wise training input distributions under the Kullback-Leibler (KL)
divergence (Kullback and Leibler, 1951). In this procedure, the class-wise input distri-
butions are approximated via class-posterior estimation, for example, by kernel logistic
regression (Hastie et al., 2001) or its squared-loss variant (Sugiyama, 2010).

Since indirectly estimating the divergence by estimating the individual class-posterior
distributions may not be the best scheme, the above reformulation motivates us to develop
a more direct approach: matching the mixture of class-wise training input densities to the
test input distribution. Historically, non-parametric estimation of the mixing proportions
by matching the empirical distribution functions was investigated in Hall (1981), and its
variant based on kernel density estimation has been developed in Titterington (1983).
However, these classical approaches do not perform well in high-dimensional problems
(Sugiyama et al., 2013). Recently, KL-divergence estimation based on direct density-
ratio estimation has been shown to be promising (Nguyen et al., 2010; Sugiyama et al.,
2008). Furthermore, a squared-loss variant of the KL divergence called the Pearson (PE)
divergence (Pearson, 1900) can also be approximated in the same way, with an analytic
solution that can be computed efficiently (Kanamori et al., 2009). Note that the PE-
divergence and the KL divergence both belong to the f -divergence class (Ali and Silvey,
1966; Csiszár, 1967), which share similar properties. In this paper, with the aid of this
density-ratio based PE-divergence estimator, we propose a new semi-supervised method
for estimating the class ratio in the test dataset. Through experiments, we demonstrate
the usefulness of the proposed method.



Semi-Supervised Learning of Class Balance 3

2 Problem Formulation and Existing Method

In this section, we formulate the problem of semi-supervised class-prior estimation and
review an existing method (Saerens et al., 2001).

2.1 Problem Formulation

Let x ∈ Rd be the d-dimensional input data, y ∈ {1, . . . , c} be the class label, and c be
the number of classes. We consider class-prior change, i.e., the class-prior probability for
training data p(y) and that for test data p′(y) are different. However, we assume that the
class-conditional density for training data p(x|y) and that for test data p′(x|y) are the
same:

p(x|y) = p′(x|y). (1)

Note that training and test joint densities p(x, y) and p′(x, y) as well as training and test
input densities p(x) and p′(x) are generally different under this setup.

For the purposes of classification, we are generally interested in selecting a classifier
that minimizes the expected loss (or the risk) with respect to the test distribution. We
can rewrite the expected loss in terms of the training class-conditional density, p(x|y), as

R =
∑
y

∫
L(f(x), y)p′(x, y)dx

=
∑
y

∫
L(f(x), y)p(x|y)p′(y)dx, (2)

where L : R× R→ R is the loss function. Thus, if an estimate of the test class-priors is
known, the expected loss can be calculated from the training class-conditional densities.
The goal of this paper is to estimate p′(y) from labeled training samples {(xi, yi)}ni=1 drawn

independently from p(x, y) and unlabeled test samples {x′
i}

n′

i=1 drawn independently from

p′(x)1. Given test labels {y′i}
n′

i=1, p
′(y) can be naively estimated by n′

y/n
′, where n′

y is the
number of test samples in class y. Here, however, we would like to estimate p′(y) without

{y′i}
n′

i=1.

2.2 Existing Method

We give a brief overview of an existing method for semi-supervised class-prior estimation
(Saerens et al., 2001), which is based on the expectation-maximization (EM) algorithm
(Dempster et al., 1977).

1As we can confirm later, our proposed method does not actually require the independence assumption
on {yi}ni=1, but is valid for deterministic {yi}ni=1 as long as xi (i = 1, . . . , n) is drawn independently from
p(x|y = yi). However, for being consistent with other methods, we assume the independence condition
here.
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In the algorithm, test class-prior and class-posterior estimates p̂′(y) and p̂′(y|x) are
iteratively updated as follows:

1. Obtain an estimate of the training class-posterior probability, p̂(y|x), from training
data {(xi, yi)}ni=1, for example, by kernel logistic regression (Hastie et al., 2001) or
its squared-loss variant (Sugiyama, 2010).

2. Obtain an estimate of the training class-prior probability, p̂(y), from the labeled
training data {(xi, yi)}ni=1 as p̂(y) = ny/n, where ny is the number of training
samples in class y. Set the initial estimate of the test class-prior probability equal
to it: p̂′0(y) = p̂(y).

3. Repeat until convergence: t = 1, 2, . . .

(a) Compute a new test class-posterior estimate p̂′t(y|x) based on the current test
class-prior estimate p̂′t−1(y) as

p̂′t(y|x) =
p̂′t−1(y)p̂(y|x)/p̂(y)∑c

y′=1 p̂
′
t−1(y

′)p̂(y′|x)/p̂(y′)
. (3)

(b) Compute a new test class-prior estimate p̂′t(y) based on the current test class-
posterior estimate p̂′t(y|x) as

p̂′t(y) =
1

n′

n′∑
i=1

p̂′t(y|x′
i). (4)

Note that Eq.(3) comes from the Bayes formulae,

p(x|y) = p(y|x)p(x)
p(y)

and p′(x|y) = p′(y|x)p′(x)
p′(y)

,

combined with Eq.(1):

p′(y|x) ∝ p′(y)

p(y)
p(y|x).

Eq.(4) comes from empirical marginalization of

p′(y) =

∫
p′(y|x)p′(x)dx.

It was suggested that this procedure may converge to a local optimal solution (Saerens
et al., 2001). In the following section, we will show that the objective function is actually
convex, but that the method suggested in Saerens et al. (2001) may fail to converge to
the unique optimal value.
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3 Reformulation of the EM Algorithm as Distribu-

tion Matching

In this section, we show that the class priors can be estimated by matching the test
input density to a linear combination of class-wise training input distributions under the
Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951). We show that the existing
EM method performs this matching via an estimation of the class posterior. Furthermore,
we show that this results in a convex problem, but that the existing EM method may not
obtain the optimal result.

3.1 Class-Prior Estimation as Distribution Matching

Based on the assumption that the class-conditional densities for training and test data
are unchanged (see Eq.(1)), let us model the test input density p′(x) by

q′(x) =
c∑

y=1

θyp(x|y), (5)

where θy is a coefficient corresponding to p′(y):

c∑
y=1

θy = 1. (6)

We match the model q′(x) with the test input density p′(x) under the KL divergence:

KL(q′∥p′) :=
∫

p′(x) log
p′(x)

q′(x)
dx,

=

∫
p′(x) log p′(x)dx−

∫
p′(x) log

(
c∑

y=1

θyp(x|y)

)
dx. (7)

We wish to select the class prior, under the constraint Eq.(6), that minimizes this
Kullback-Leibler divergence.
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3.2 Equivalence of the EM Method to Divergence Matching

When the KL divergence is minimized in Eq.(7), we can omit the term that is constant
with respect to the class prior. This results in an optimization problem of

argmin
{θy}cy=1

KL(q′∥p′) = argmax
{θy}cy=1

∫
p′(x) log

(
c∑

y=1

θyp(x|y)

)
dx,

= argmax
{θy}cy=1

∫
p′(x) log

(
p(x)

c∑
y=1

θy
p(x, y)

p(x)p(y)

)
dx,

= argmax
{θy}cy=1

∫
p′(x) log p(x)dx+

∫
p′(x) log

(
c∑

y=1

θy
p(x, y)

p(x)p(y)

)
dx,

= argmax
{θy}cy=1

∫
p′(x) log

(
c∑

y=1

θy
p(x, y)

p(x)p(y)

)
dx.

Approximating the expectation with its empirical average gives the following optimization
problem:

max
{θy}

1

n′

n′∑
i=1

log

(
c∑

y=1

θyp(y|x′
i)/p(y)

)
, (8)

subject to Eq.(6).
The above can be viewed as a convex problem since the concave log function is maxi-

mized and the constraints in Eq.(6) is linear. Therefore, the optimal points must satisfy
the Karush-Kuhn-Tucker (KKT) conditions (Boyd and Vandenberghe, 2004). The KKT
conditions for the above problem is given by Eq.(6) and

1

n′

n′∑
i=1

p(y|x′
i)/p(y)∑c

y′=1 θy′p(y
′|x′

i)/p(y
′)
= ν, ∀y = 1, . . . , c, (9)

where ν is a Lagrange multiplier. From these equations, we can determine ν as

ν = 1 · ν =

(
c∑

y=1

θy

)
·

(
1

n′

n′∑
i=1

p(y|x′
i)/p(y)∑c

y′=1 θy′p(y
′|x′

i)/p(y
′)

)

=
1

n′

n′∑
i=1

∑c
y=1 θyp(y|x′

i)/p(y)∑c
y′=1 θy′p(y

′|x′
i)/p(y

′)
= 1.

Then the solution {θy}cy=1 can be calculated by fixed-point iteration as follows (McLachlan
and Krishnan, 1997):

θy ←− θy

(
1

n′

n′∑
i=1

p(y|x′
i)/p(y)∑c

y′=1 θy′p(y
′|x′

i)/p(y
′)

)
. (10)
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By using an estimator of the class-posterior, p̂(y|x), in the above expression, we obtain
an estimator for the test class-prior p̂′(y). The above is actually the same as Eq.(4) with
Eq.(3) substituted.

3.3 Fixed-Point Iteration

The unknown class-priors can therefore be obtained as the solution to the non-linear
equation given by Eq.(9). A simply way to construct a solution to a non-linear equation
is via a fixed-point iteration (as in Eq.(10)). For conciseness, we rewrite the fixed-point
iteration as a mapping T : Rc → Rc:

[T (θ)]y =
1

n′

n′∑
i=1

θyp(y|x′
i)/p(y)∑c

y′=1 θy′p(y
′|x′

i)/p(y
′)
, (11)

where θ = [θ1 θ2 · · · θc]
⊤ and [ ]y denotes the yth component of a vector. The solution

is then iteratively calculated as

θ ← T (θ),

until a fixed point θ = T (θ) is reached. Since the problem is convex, we would expect
that there is a single unique fixed point. The Banach fixed-point theorem (also known
as the contraction mapping theorem) (Hunter and Nachtergaele, 2001, p.62) guarantees a
unique solution if T is a contraction mapping. T is a contraction mapping if

d
(
T (θj), T (θk)

)
< d

(
θj,θk

)
, ∀ θj,θk ∈ Rc, (12)

where d : Rc × Rc → R is a metric.
However, we can actually show that Eq.(11) is not a contraction mapping. To explain

this, we consider the counter example with vectors defined as

[
θj
]
i
=

{
1 if i = j,

0 otherwise,

where 1 ≤ j ≤ c. By substituting this into Eq.(11), we obtain

T (θj) = θj, ∀j = 1, . . . , c.

Therefore, for any two vectors θj and θk, j, k ∈ 1 . . . c, selected as above,
d
(
T (θj), T (θk)

)
= d

(
θj,θk

)
. The condition in Eq.(12) is therefore violated, which means

that T is not a contraction mapping. From this example, it is also immediately obvious
that any θj is a fixed point, but not necessarily the optimal value.

As shown above, the method of Saerens et al. (2001) can be regarded as solving a
convex problem via fixed point iteration, but it may not result in the unique optimal
value. These spurious optimal values is not a characteristic of the problem itself (which
is convex), but due to solving the KKT conditions with a fixed-point iteration.
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Spurious fixed points may be avoided by using several different initial values and
then selecting the optimal value according to Eq.(8). Alternatively, the objective func-
tion Eq.(8) can be directly solved, e.g. through gradient descent and projection (Boyd
and Vandenberghe, 2004). However, indirectly estimating the KL divergence via class-
posterior estimation may not be the best scheme in practice.

4 Class-Prior Estimation by Direct Divergence Min-

imization

The analysis in the previous section motivates us to explore a more direct way to learn
coefficients {θy}cy=1. That is, given an estimator of a divergence from p′ to q′, coefficients
{θy}cy=1 are learned so that the divergence is minimized.

In this section, we first review a general framework of approximating the f -divergences
(Ali and Silvey, 1966; Csiszár, 1967) via Legendre-Fenchel convex duality (Keziou, 2003;
Nguyen et al., 2010). Then we review two specific methods of divergence estimation for
the KL divergence and the Pearson (PE) divergence (Pearson, 1900). Finally, we propose
to use the PE-divergence estimator for determining the coefficients {θy}cy=1.

4.1 Framework of f-Divergence Approximation

An f -divergence (Ali and Silvey, 1966; Csiszár, 1967) from p to q′ is a general divergence
measure defined as

Df (p
′∥q′) :=

∫
q′(x)f

(
p′(x)

q′(x)

)
dx, (13)

where f is a convex function such that f(1) = 0.
The naive way to approximate the f -divergence is to separately estimate the densities

p′(x) and q′(x) and then plug these estimators into Eq.(13). Alternatively, the divergence
can be approximated by estimating the class posterior (as was done in the method of
Saerens et al. (2001)). Computing the divergence this way is however disadvantageous
since this is a two-step approach. The first step (estimation of the densities or the pos-
terior) is done without regard to the second step (estimating the divergence) and a small
estimation error in the first step may cause a big error in the second stage.

Therefore we will review in this section a method to estimate the f -divergence in a
single shot approach via convex duality (Keziou, 2003; Nguyen et al., 2010). The following
inequality is trivially obvious

tv − f(t) ≤ sup
u∈dom f

uv − f(u), (14)

where dom f denotes the domain of the function f and t ∈ dom f . The value on the
right-hand side is known as the Legendre-Fenchel dual or convex conjugate (Rockafellar,
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1970; Boyd and Vandenberghe, 2004), denoted as

f ∗(v) := sup
u∈dom f

uv − f(u). (15)

By re-arranging Eq.(14), we may obtain the following useful inequality,

f(t) ≥ tv − f ∗(v),

which provides a lower bound that is linear with respect to t. If the function f is convex,
then there is v ∈ dom f ∗ for which the above bound will be met with equality (since the
conjugate of the conjugate is the function itself) (Boyd and Vandenberghe, 2004, p.94).
We can apply this inequality in a pointwise manner to obtain,

f

(
p′(x)

q′(x)

)
≥ p′(x)

q′(x)
r(x)− f ∗(r(x)),

q′(x)f

(
p′(x)

q′(x)

)
≥ p′(x)r(x)− q′(x)f ∗(r(x)),

where r(x) plays the role of v. Integrating this and selecting r so as to maximize the
lower bound gives the following estimator for Eq.(13) :

Df (p
′∥q′) ≥ max

r

∫
p′(x)r(x)dx−

∫
q′(x)f ∗(r(x))dx. (16)

The above is a useful expression because the right-hand side only contains expectations
of r and f ∗(r(x)), which can be approximated by sample averages. For a continuous
f , the maximum is attained for a function r such that p′(x)/q′(x) = ∂f ∗(r(x)) (where
∂f ∗ is the derivative of f ∗) (Nguyen et al., 2010). Therefore, in contrast to the plug-in
approach, the f divergence is directly estimated in terms of the density ratio. This is
intuitively advantageous since the estimation of densities is a more general problem than
the estimation of a density ratio (Sugiyama et al., 2012a).

Below, we show specific methods of divergence approximation for the KL and PE
divergences under the model (5) and the following parametric expression of the density
ratio r(x):

r(x) =
b∑

ℓ=0

αℓφℓ(x), (17)

where {αℓ}bℓ=0 are parameters and {φℓ(x)}bℓ=0 are basis functions. In practice, we use a
constant basis and Gaussian kernels centered at the training data points, i.e., for b = n
and ℓ = 1, 2, . . . , n,

φ0(x) = 1 and φℓ(x) = exp

(
−∥x− xℓ∥2

2σ2

)
.
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The constant basis function is included since, if two distributions are equal, the density
ratio would be r(x) = 1. To prevent overfitting, we add a regularizer of the form λα⊤Rα
to the objective function, where λ is a small constant, R is defined as

R =

[
0 01×b

0b×1 Ib×b

]
, (18)

0a×b denotes the zero matrix of size a × b, and Ib×b denotes a b × b identity matrix.
Since the regularizer should penalize non-smoothness, the constant basis function was not
regularized. The model for the density ratio is then learned by the following regularized
empirical maximization problem:

max
{αℓ}bℓ=0

b∑
ℓ=0

αℓ

n′

n′∑
i=1

φℓ(xi)−
c∑

y=1

θy
ny

∑
i:yi=y

f ∗

(
b∑

ℓ=0

αℓφℓ(xi)

)

−λ
b∑

ℓ=0

b∑
ℓ′=0

αℓαℓ′Rℓ,ℓ′ . (19)

4.2 KL-Divergence Approximation

The KL divergence is an f -divergence with the function f chosen as

f(u) =

{
− log(u) u > 0,

+∞ u ≤ 0.

By substituting the above into Eq.(15), the convex conjugate can be calculated as

f ∗(v) =

{
−1− log(−v) v < 0,

+∞ v ≥ 0.

For the sake of convenience, we regard −r(x) as r(x) (Nguyen et al., 2010). We can then
write the empirical approximation of Eq.(16) under Eqs.(5) and (17) as follows (Nguyen
et al., 2010):

KL (p′∥q′) ≈ max
{αℓ}bℓ=0

− 1

n′

n′∑
i=1

b∑
ℓ=0

αℓφℓ(x
′
i) +

c∑
y=1

θy
ny

∑
i:yi=y

log

(
b∑

ℓ=0

αℓφℓ(xi)

)
+ 1.

We note that when the above is used to estimate KL(p′∥q′), the function r(x) will be
an estimate of the density ratio q′(x)/p′(x). An alternative choice would be to estimate
KL(q′∥p′) which would lead to an estimate of r(x) = p′(x)/q′(x). The density q′(x)
may however have a small support for certain values of {θy}cy=1, causing the density
ratio p′(x)/q′(x) to diverge. For this reason, the estimator KL(p′∥q′) which estimates the
density ratio q′(x)/p′(x) is preferred.
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The resulting regularized optimization problem,

max
{αℓ}bℓ=0

− 1

n′

n′∑
i=1

b∑
ℓ=0

αℓφℓ(x
′
i) +

c∑
y=1

θy
ny

∑
i:yi=y

log

(
b∑

ℓ=0

αℓφℓ(xi)

)
− λ

b∑
ℓ=0

b∑
ℓ′=0

αℓαℓ′Rℓ,ℓ′ ,

is convex and the solution can be obtained by naive optimization. The Gaussian width
and regularization constant can be systematically optimized by cross-validation. The KL-
divergence estimator obtained above was proved to possess superior convergence proper-
ties both in parametric and non-parametric setups (Nguyen et al., 2010; Sugiyama et al.,
2008).

However, in the current context of estimating the test class-priors, computing the KL-
divergence estimator is rather time-consuming because optimization of {αℓ}bℓ=0 needs to
be carried out for each {θy}cy=1.

4.3 PE-Divergence Approximation

As an alternative to the KL divergence, let us consider the PE divergence defined by

PE(q′∥p′) := 1

2

∫ (
q′(x)

p′(x)
− 1

)2

p′(x)dx

=
1

2

∫ (
q′(x)

p′(x)

)2

p′(x)dx− 1

2
,

which is an f -divergence with

f(u) =
u2

2
− 1

2
.

For this f , the convex conjugate is given by

f ∗(v) =
v2

2
+

1

2
.

The function r(x) will again be an estimate of the ratio q′(x)/p′(x). The empirical
approximation of Eq.(16) under Eqs.(5) and (17) is given as follows (Kanamori et al.,
2009):

PE(q′∥p′) ≈ max
α

[
− 1

2
α⊤Ĝα+α⊤Ĥθ − 1

2

]
,

where

α = [α0 α1 · · · αb]
⊤ , Ĝ =

1

n′

n′∑
i=1

φ(x′
i)φ(x

′
i)
⊤,

φ(x) = [φ0(x) φ1(x) · · · φb(x)] , Ĥ =
[
ĥ1 · · · ĥc

]
,

ĥy =
1

ny

∑
i:yi=y

φ(xi), θ = [θ1 θ2 · · · θc]
⊤ .
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A regularized solution to the above maximization problem can be obtained analytically
as

α̂ =
(
Ĝ+ λR

)−1

Ĥθ, (20)

where the regularization matrix is defined in Eq.(18). The PE-divergence estimator ob-
tained above was proved to have superior convergence properties both in parametric and
non-parametric setups (Kanamori et al., 2009, 2012b). The kernel width and regular-
ization parameter can be systematically optimized by cross-validation (Kanamori et al.,
2009, 2012b).

4.4 Learning Class Ratios by PE Divergence Matching

As shown above, the KL and PE divergences can be systematically estimated without
density estimation via Legendre-Fenchel convex duality. Among them, the PE-divergence
estimator is more useful for our purpose of learning class ratios, because of the following
reasons: The PE-divergence was shown to be more robust against outliers than the KL
divergence, based on power divergence analysis (Basu et al., 1998; Sugiyama et al., 2012b).
This is a useful property in practical data analysis suffering high noise and outliers.
Furthermore, the above PE-divergence estimator was shown to possess the minimum
condition number among a general class of estimators, meaning that it is the most stable
estimator (Kanamori et al., 2012a).

Another, practically more important advantage of the PE-divergence estimator is that
it can be computed efficiently and analytically. This analytical solution allows us to
express the PE divergence directly in terms of the class priors:

P̂E(θ) := −1

2
θ⊤Ĥ

⊤ (
Ĝ+ λR

)−1

Ĝ
(
Ĝ+ λR

)−1

Ĥθ

+ θ⊤Ĥ
⊤ (

Ĝ+ λR
)−1

Ĥθ − 1

2
.

The solution can then be obtained by minimizing the above expression with respect to θ.

5 Experiments

In this section, we report experimental results.

5.1 Benchmark Datasets

The following five methods are compared:

• EM-KLR: The method of Saerens et al. (2001) (see Section 2.2). The class-
posterior probability of the training dataset is estimated using ℓ2-penalized kernel
logistic regression with Gaussian kernels. The L-BFGS quasi-Newton implemen-
tation included in the ‘minFunc’ package is used for logistic regression training
(Schmidt, 2005).
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Table 1: Datasets used in the experiments. The SAHeart dataset was taken from Hastie
et al. (2001). All other datasets were taken from the LIBSVM webpage (Chang and Lin,
2011).

Dataset d # samples # positives # negatives

Adult 123 32561 7841 24720
Australian 14 690 307 383
Diabetes 8 768 500 268
German 24 1000 300 700
Ionosphere 34 351 225 126
Ringnorm 20 7400 3664 3736
SAHeart 9 462 302 160
Statlog heart 13 270 120 150

• KL-KDE: The estimator of the KL divergence KL(p′∥q′) using kernel density esti-
mation (KDE). The class-wise input densities are estimated by KDE with Gaussian
kernels. The kernel widths are estimated using likelihood cross-validation (Silver-
man, 1986).

• PE-KDE: The estimate of the Pearson divergence PE(q′∥p′) using KDE. The class-
wise input densities are estimated by KDE with Gaussian kernels. The kernel widths
are estimated using least-squares cross-validation (Silverman, 1986).

• KL-DR: The proposed method (see Section 4.2) using a KL-divergence estimator
based on the density ratio (DR). For the optimization, the L-BFGS implementation
‘minFunc’ is used (Schmidt, 2005).

• PE-DR: The proposed method (see Section 4.4) using the PE-divergence estimator
based on DR.

Here, we use binary-classification benchmark datasets listed in Table 1. We select 10
samples from each of the two classes for the training dataset and 50 samples for the test
dataset. The samples in the test set are selected with probability θ∗ from the first class
and with probability (1− θ∗) from the second class. The experiments are performed for
several class-priors, selected as θ∗ ∈ [0.1 0.2 . . . 0.8 0.9].

The squared error of the estimated class-priors averaged over 1000 runs are given
in Figure 1. This shows that methods based on the KL and PE divergences overall
outperform EM-KLR, implying that our reformulation of the EM algorithm as distri-
bution matching (see Section 3) contributes to obtaining accurate class-ratio estimates.
Among the divergence-based methods, PE-DR and KL-DR outperforms PE-KDE and
KL-KDE, showing that directly estimating density ratios without density estimation is
more promising as divergence estimators. Overall, PE-DR and KL-DR are shown to be
the most accurate.

The average calculation time for the estimation of the class priors is given in Figure 2.
From this, it can be seen that the speed of the PE-DR method is similar to the EM-KLR
method and two orders of magnitude faster than the KL-DR method.
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Figure 1: Average squared error between the true class-prior θ∗ and estimated class-prior
θ̂ for the benchmark datasets listed in Table 1. The best method and comparable methods
according to the t-test at significance level of 5% are indicated with ‘⋄’
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Figure 2: Average calculation time for the estimation of the class priors for the datasets
listed in Table 1.
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To illustrate how more accurate estimates of the class prior translate into higher
classification accuracies, we train a classifier with the estimated prior. For the binary
benchmark experiments, a weighted variant of the ℓ2-regularized kernel logistic regression
classifier (Hastie et al., 2001) was used.

We minimize the prior-corrected expected loss of Eq.(2), where the expectation is
approximated by its empirical average and the class priors are replaced by the estimated
class-priors. Using the logistic loss, a classifier can be learned as,(

β̂1, . . . , β̂n

)
:= argmin

β1,...,βn

[
2∑

y=1

θ̂y
ny

∑
i:yi=y

L

(
zi,

n∑
ℓ=1

βℓK(xi,xℓ)

)
+ δ

n∑
ℓ=1

β2
ℓ

]
,

where L(z, f(x)) is the logistic loss defined as

L(z, f(x)) = log (1 + exp (−zf(x))) ,

and the class labels y ∈ {1, 2} are encoded as z ∈ {−1, 1}. The width of the Gaussian
kernel K(x,x′) and the regularization parameter δ(≥ 0) are chosen by 5-fold weighted
cross-validation (Sugiyama et al., 2007) in terms of the misclassification error. The class
label ŷ for the test input x is then estimated by

ŷ =

{
1
∑n

i=1 β̂iK(x,xℓ) < 0,

2 otherwise.

The results in Figure 3 show that, as expected, a more accurate estimate of the
class prior tends to give a lower misclassification rate. Taking into account both the
computation time and accuracy, the PE-DR method is overall the most promising method.

5.2 Real-World Application

Finally, we demonstrate the usefulness of the proposed approach in a real-world problem
of military vehicle classification from geophone recordings (Duarte and Hu, 2004). This is
a three-class problem: two vehicle classes and a class of recorded noise. The features are
50-dimensional. In this vehicle classification task, class-prior change is inevitable because
the type of vehicles passing through differs depending on time (e.g., day and night).

n samples are drawn from each of the classes for the training set, whereas 100 samples
are drawn with probabilities p = [0.6 0.1 0.3] from each of the classes for the test set. Due
to the prohibitive computational cost, KL-DR was not included in this experiment.

In Figure 4, we plot the ℓ2-distance between the true and estimated class-priors and the
misclassification rate based on instance-weighted kernel logistic regression (Hastie et al.,
2001) averaged over 1000 runs as functions of the number of training samples. As can be
seen from the graphs, the performance of all methods improves as the number of training
samples increases. Among the compared methods, PE-DR provides the most accurate
estimates of the class prior and thus yields the lowest classification error.
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Figure 3: Average misclassification rates for the datasets listed in Table 1. Classification is
performed using a regularized kernel logistic regression classifier with instance weighting.
The best method and comparable methods according to the t-test at significance level of
5% are indicated with ‘⋄’.
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Figure 4: Experimental results for the vehicle classification problem. The best method
and comparable methods according to the t-test at significance level of 5% are indicated
with a ‘⋄’.

6 Conclusion

Class-prior change is a problem that is conceivable in many real-world datasets, and it
can be systematically corrected for if the class prior of the test dataset is known. In this
paper, we discussed the problem of estimating the test class-priors under a semi-supervised
learning setup.

We first showed that the EM-based estimator introduced in Saerens et al. (2001) can be
regarded as indirectly approximating the test input distribution by a linear combination
of class-wise input distributions. Based on this view, we proposed to use an explicit and
possibly more accurate divergence estimator based on density-ratio estimation (Kanamori
et al., 2009) for learning test class-priors. The proposed method was shown to have various
nice properties such as high robustness to noise and outliers, superior numerical stability,
and excellent computational efficiency. Through experiments, we showed that the class
ratios estimated by the proposed method are more accurate than competing methods,
which can be translated into better classification accuracy.
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