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Abstract

We propose a new method for detecting changes in Markov network structure be-
tween two sets of samples. Instead of naively fitting two Markov network models
separately to the two data sets and figuring out their difference, we directly learn the
network structure change by estimating the ratio of Markov network models. This
density-ratio formulation naturally allows us to introduce sparsity in the network
structure change, which highly contributes to enhancing interpretability. Further-
more, computation of the normalization term, which is a critical bottleneck of the
naive approach, can be remarkably mitigated. We also give the dual formulation
of the optimization problem, which further reduces the computation cost for large-
scale Markov networks. Through experiments, we demonstrate the usefulness of our
method.

∗An earlier version of this work was presented at European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD2013) on Sep. 23-27, 2013.
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1 Introduction

Changes in interactions between random variables are interesting in many real-world phe-
nomena. For example, genes may interact with each other in different ways when external
stimuli change, co-occurrence between words may appear/disappear when the domains of
text corpora shift, and correlation among pixels may change when a surveillance camera
captures anomalous activities. Discovering such changes in interactions is a task of great
interest in machine learning and data mining, because it provides useful insights into
underlying mechanisms in many real-world applications.

In this paper, we consider the problem of detecting changes in conditional indepen-
dence among random variables between two sets of data. Such conditional independence
structure can be expressed via an undirected graphical model called a Markov network
(MN) (Bishop, 2006; Wainwright and Jordan, 2008; Koller and Friedman, 2009), where
nodes and edges represent variables and their conditional dependencies, respectively. As
a simple and widely applicable case, the pairwise MN model has been thoroughly studied
recently (Ravikumar et al., 2010; Lee et al., 2007). Following this line, we also focus on
the pairwise MN model as a representative example.

A naive approach to change detection in MNs is the two-step procedure of first es-
timating two MNs separately from two sets of data by maximum likelihood estimation
(MLE), and then comparing the structure of the learned MNs. However, MLE is often
computationally intractable due to the normalization factor included in the density model.
Therefore, Gaussianity is often assumed in practice for computing the normalization fac-
tor analytically (Hastie et al., 2001), though this Gaussian assumption is highly restrictive
in practice. We may utilize importance sampling (Robert and Casella, 2005) to numeri-
cally compute the normalization factor, but an inappropriate choice of the instrumental
distribution may lead to an estimate with high variance (Wasserman, 2010); for more
discussions on sampling techniques, see Gelman (1995) and Hinton (2002). Hyvärinen
(2005) and Gutmann and Hyvärinen (2012) have explored an alternative approach to
avoid computing the normalization factor which are not based on MLE.

However, the two-step procedure has a conceptual weakness that structure change is
not directly learned. This indirect nature causes a crucial problem: Suppose that we
want to learn a sparse structure change. For learning sparse changes, we may utilize
ℓ1-regularized MLE (Banerjee et al., 2008; Friedman et al., 2008; Lee et al., 2007), which
produces sparse MNs and thus the change between MNs also becomes sparse. However,
this approach does not work if each MN is dense but only change is sparse.

To mitigate this indirect nature, the fused-lasso (Tibshirani et al., 2005) is useful,
where two MNs are simultaneously learned with a sparsity-inducing penalty on the dif-
ference between two MN parameters (Zhang and Wang, 2010). Although this fused-lasso
approach allows us to learn sparse structure change naturally, the restrictive Gaussian
assumption is still necessary to obtain the solution in a computationally tractable way.

The nonparanormal assumption (Liu et al., 2009, 2012) is a useful generalization of
the Gaussian assumption. A nonparanormal distribution is a semi-parametric Gaussian
copula where each Gaussian variable is transformed by a monotone non-linear function.
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Figure 1: The rationale of direct structural change learning: finding the difference between
two MNs is a more specific task than finding the entire structures of those two networks,
and hence should be possible to learn with less data.

Nonparanormal distributions are much more flexible than Gaussian distributions thanks
to the feature-wise non-linear transformation, while the normalization factors can still
be computed analytically. Thus, the fused-lasso method combined with nonparanormal
models would be one of the state-of-the-art approaches to change detection in MNs.
However, the fused-lasso method is still based on separate modeling of two MNs, and its
computation for more general non-Gaussian distributions is challenging.

In this paper, we propose a more direct approach to structural change learning in MNs
based on density ratio estimation (DRE) (Sugiyama et al., 2012a). Our method does not
separately model two MNs, but directly models the change in two MNs. This idea follows
Vapnik’s principle (Vapnik, 1998):

If you possess a restricted amount of information for solving some problem,
try to solve the problem directly and never solve a more general problem as
an intermediate step. It is possible that the available information is sufficient
for a direct solution but is insufficient for solving a more general intermediate
problem.

This principle was used in the development of support vector machines (SVMs): rather
than modeling two classes of samples, SVM directly learns a decision boundary that is
sufficient for performing pattern recognition. In the current context, estimating two MNs
is more general than detecting changes in MNs (Figure 1). By directly detecting changes
in MNs, we can also halve the number of parameters, from two MNs to one MN-difference.

Another important advantage of our DRE-based method is that the normalization
factor can be approximated efficiently, because the normalization term in a density ratio
function takes the form of the expectation over a data distribution and thus it can be
simply approximated by the sample average without additional sampling. Through ex-
periments on gene expression and Twitter data analysis, we demonstrate the usefulness
of our proposed approach.

The remainder of this paper is structured as follows. In Section 2, we formulate the
problem of detecting structural changes and review currently available approaches. We
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then propose our DRE-based structural change detection method in Section 3. Results
of illustrative and real-world experiments are reported in Section 4 and Section 5, respec-
tively. Finally, we conclude our work and show the future direction in Section 6.

2 Problem Formulation and Related Methods

In this section, we formulate the problem of change detection in Markov network structure
and review existing approaches.

2.1 Problem Formulation

Consider two sets of independent samples drawn separately from two probability distri-
butions P and Q on Rd:

{xP
i }

nP
i=1

i.i.d.∼ P and {xQ
i }

nQ

i=1
i.i.d.∼ Q.

We assume that P and Q belong to the family of Markov networks (MNs) consisting of
univariate and bivariate factors1, i.e., their respective probability densities p and q are
expressed as

p(x;θ) =
1

Z(θ)
exp

(
d∑

u,v=1,u≥v

θ⊤
u,vf(x

(u), x(v))

)
, (1)

where x = (x(1), . . . , x(d))⊤ is the d-dimensional random variable, ⊤ denotes the transpose,
θu,v is the parameter vector for the elements x(u) and x(v), and

θ = (θ⊤
1,1, . . . ,θ

⊤
d,1,θ

⊤
2,2, . . . ,θ

⊤
d,2, . . . ,θ

⊤
d,d)

⊤

is the entire parameter vector. f(x(u), x(v)) is a bivariate vector-valued basis function.
Z(θ) is the normalization factor defined as

Z(θ) =

∫
exp

(
d∑

u,v=1,u≥v

θ⊤
u,vf(x

(u), x(v))

)
dx.

q(x;θ) is defined in the same way.
Given two densities which can be parameterized using p(x;θP ) and q(x;θQ), our goal

is to discover the changes in parameters from P to Q, i.e., θP − θQ.

1Note that the proposed algorithm itself can be applied to any MNs containing more than two elements
in each factor.
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2.2 Sparse Maximum Likelihood Estimation and Graphical
Lasso

Maximum likelihood estimation (MLE) with group ℓ1-regularization has been widely used
for estimating the sparse structure of MNs (Schmidt and Murphy, 2010; Ravikumar et al.,
2010; Lee et al., 2007):

max
θ

[
1

nP

nP∑
i=1

log p(xP
i ;θ)− λ

d∑
u,v=1,u≥v

∥θu,v∥

]
, (2)

where ∥ · ∥ denotes the ℓ2-norm. As λ increases, ∥θu,v∥ may drop to 0. Thus, this method
favors an MN that encodes more conditional independencies among variables.

Computation of the normalization term Z(θ) in Eq.(1) is often computationally in-
tractable when the dimensionality of x is high. To avoid this computational problem,
the Gaussian assumption is often imposed (Friedman et al., 2008; Meinshausen and
Bühlmann, 2006). More specifically, the following zero-mean Gaussian model is used:

p(x;Θ) =
det(Θ)1/2

(2π)d/2
exp

(
−1

2
x⊤Θx

)
,

where Θ is the inverse covariance matrix (a.k.a. the precision matrix) and det(·) denotes
the determinant. Then Θ is learned as

max
Θ

[
log det(Θ)− tr(ΘSP )− λ∥Θ∥1

]
,

where SP is the sample covariance matrix of {xP
i }ni=1. ∥Θ∥1 is the ℓ1-norm of Θ, i.e., the

absolute sum of all elements. This formulation has been studied intensively in Banerjee
et al. (2008), and a computationally efficient algorithm called the graphical lasso (Glasso)
has been proposed (Friedman et al., 2008).

Sparse changes in conditional independence structure between P and Q can be de-
tected by comparing two MNs estimated separately using sparse MLE. However, this
approach implicitly assumes that two MNs are sparse, which is not necessarily true even
if the change is sparse.

2.3 Fused-Lasso (Flasso) Method

To more naturally handle sparse changes in conditional independence structure between P
and Q, a method based on fused-lasso (Tibshirani et al., 2005) has been developed (Zhang
and Wang, 2010). This method directly sparsifies the difference between parameters.

The original method conducts feature-wise neighborhood regression (Meinshausen and
Bühlmann, 2006) jointly for P and Q, which can be conceptually understood as maximiz-
ing the local conditional Gaussian likelihood jointly on each feature (Ravikumar et al.,
2010). A slightly more general form of the learning criterion may be summarized as

max
θP
s ,θQ

s

[
ℓPs (θ

P
s ) + ℓQs (θ

Q
s )− λ1(∥θP

s ∥1 + ∥θQ
s ∥1)− λ2∥θP

s − θQ
s ∥1
]
,
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where ℓPs (θ) is the log conditional likelihood for the s-th element x(s) ∈ R given the rest
x(−s) ∈ Rd−1:

ℓPs (θ) =
1

nP

nP∑
i=1

log p(x
(s)
i

P |x(−s)
i

P ;θ).

ℓQs (θ) is defined in the same way as ℓPs (θ).
Since the Flasso-based method directly sparsifies the change in MN structure, it can

work well even when each MN is not sparse. However, using other models than Gaussian
is difficult because of the normalization issue described in Section 2.2.

2.4 Nonparanormal Extensions

In the above methods, Gaussianity is required in practice to compute the normalization
factor efficiently, which is a highly restrictive assumption. To overcome this restriction,
it has become popular to perform structure learning under the nonparanormal settings
(Liu et al., 2009, 2012), where the Gaussian distribution is replaced by a semi-parametric
Gaussian copula.

A random vector x = (x(1), . . . , x(d))⊤ is said to follow a nonparanormal distribu-
tion, if there exists a set of monotone and differentiable functions, {hi(x)}di=1, such that
h(x) = (h1(x

(1)), . . . , hd(x
(d)))⊤ follows the Gaussian distribution. Nonparanormal dis-

tributions are much more flexible than Gaussian distributions thanks to the non-linear
transformation {hi(x)}di=1, while the normalization factors can still be computed in an
analytical way.

However, the nonparanormal transformation is restricted to be element-wise, which is
still restrictive to express complex distributions.

2.5 Maximum Likelihood Estimation for Non-Gaussian Models
by Importance-Sampling

A numerical way to obtain the MLE solution under general non-Gaussian distributions is
importance sampling.

Suppose that we try to maximize the log-likelihood2:

ℓMLE(θ) =
1

nP

nP∑
i=1

log p(xP
i ;θ)

=
1

nP

nP∑
i=1

∑
u≥v

θ⊤
u,vf(x

(u)P
i , x

(v)P
i )− log

∫
exp

(∑
u≥v

θ⊤
u,vf(x

(u), x(v))

)
dx. (3)

The key idea of importance sampling is to compute the integral by the expectation
over an easy-to-sample instrumental density p′(x) (e.g., Gaussian) weighted according to

2From here on, we simplify
∑d

u,v=1,u≥v as
∑

u≥v.
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the importance 1/p′(x). More specifically, using i.i.d. samples {x′
i}n

′
i=1

i.i.d.∼ p′(x), the last
term of Eq.(3) can be approximately computed as follows:

log

∫
exp

(∑
u≥v

θ⊤
u,vf(x

(u), x(v))

)
dx = log

∫
p′(x)

exp
(∑

u≥v θ
⊤
u,vf(x

(u), x(v))
)

p′(x)
dx

≈ log
1

n′

n′∑
i=1

exp
(∑

u≥v θ
⊤
u,vf(x

′(u)
i , x

′(v)
i )
)

p′(x′
i)

.

We refer to this implementation of Glasso as IS-Glasso below.
However, importance sampling tends to produce an estimate with large variance if the

instrumental distribution is not carefully chosen. Although it is often suggested to use a
density whose shape is similar to the function to be integrated but with thicker tails as
p′, it is not straightforward in practice to decide which p′ to choose, especially when the
dimensionality of x is high (Wasserman, 2010).

We can also consider an importance-sampling version of the Flasso method (which we
refer to as IS-Flasso)3

max
θP ,θQ

[
ℓPMLE(θ

P ) + ℓQMLE(θ
Q)− λ1(∥θP∥2 + ∥θQ∥2)− λ2

∑
u≥v

∥θP
u,v − θQ

u,v∥

]
,

where both ℓPMLE(θ
P ) and ℓQMLE(θ

Q) are approximated by importance sampling for non-
Gaussian distributions. However, in the same way as IS-Glasso, the choice of instrumental
distributions is not straightforward.

3 Direct Learning of Structural Changes via Density

Ratio Estimation

The Flasso method can more naturally handle sparse changes in MNs than separate sparse
MLE. However, the Flasso method is still based on separate modeling of two MNs, and
its computation for general high-dimensional non-Gaussian distributions is challenging.
In this section, we propose to directly learn structural changes based on density ratio
estimation (Sugiyama et al., 2012a). Our approach does not involve separate modeling
of each MN and allows us to approximate the normalization term efficiently for any
distributions.

3.1 Density Ratio Formulation for Structural Change Detection

Our key idea is to consider the ratio of p and q:

3For implementation simplicity, we maximize the joint likelihood of p and q, instead of its feature-wise
conditional likelihood. We also switch the first penalty term from ℓ1 to ℓ2.
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p(x;θP )

q(x;θQ)
∝ exp

(∑
u≥v

(θP
u,v − θQ

u,v)
⊤f(x(u), x(v))

)
.

Here θP
u,v − θQ

u,v encodes the difference between P and Q for factor f(x(u), x(v)), i.e.,

θP
u,v − θQ

u,v is zero if there is no change in the factor f(x(u), x(v)).

Once we consider the ratio of p and q, we actually do not have to estimate θP
u,v and

θQ
u,v; instead estimating their difference θu,v = θP

u,v−θQ
u,v is sufficient for change detection:

r(x;θ) =
1

N(θ)
exp

(∑
u≥v

θ⊤
u,vf(x

(u), x(v))

)
, (4)

where

N(θ) =

∫
q(x) exp

(∑
u≥v

θ⊤
u,vf(x

(u), x(v))

)
dx.

The normalization term N(θ) guarantees4∫
q(x)r(x;θ)dx = 1.

Thus, in this density ratio formulation, we are no longer modeling p and q separately,
but we model the change from p to q directly. This direct nature would be more suitable

4If the model q(x;θQ) is correctly specified, i.e., there exists θQ∗
such that q(x;θQ∗

) = q(x), then
N(θ) can be interpreted as importance sampling of Z(θP ) via instrumental distribution q(x). Indeed,
since

Z(θP ) =

∫
q(x)

exp
(∑

u≥v θ
P
u,v

⊤
f(x(u), x(v))

)
q(x;θQ∗

)
dx,

where q(x;θQ∗
) = q(x), we have

N(θP − θQ∗
) =

Z(θP )

Z(θQ∗
)
=

∫
q(x) exp

∑
u≥v

(θP
u,v − θQ

u,v

∗
)
⊤
f(x(u), x(v))

 dx.

This is exactly the normalization term N(θ) of the ratio p(x;θP )/q(x;θQ∗
). However, we note that the

density ratio estimation method we use in this paper is consistent to the optimal solution in the model
even without the correct model assumption (Kanamori et al., 2010). An alternative normalization term,

N ′(θ,θQ) =

∫
q(x;θQ)r(x;θ)dx,

may also be considered, as in the case of MLE. However, this alternative form requires an extra parameter
θQ which is not our main interest.
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for change detection purposes according to Vapnik’s principle that encourages avoidance
of solving more general problems as an intermediate step (Vapnik, 1998). This direct
formulation also allows us to halve the number of parameters from both θP and θQ to
only θ.

Furthermore, the normalization factor N(θ) in the density ratio formulation can be

easily approximated by the sample average over {xQ
i }

nQ

i=1
i.i.d.∼ q(x), because N(θ) is the

expectation over q(x):

N(θ) ≈ 1

nQ

nQ∑
i=1

exp

(∑
u≥v

θ⊤
u,vf(x

(u)Q
i , x

(v)Q
i )

)
.

3.2 Direct Density-Ratio Estimation

Density ratio estimation has been recently introduced to the machine learning community
and is proven to be useful in a wide range of applications (Sugiyama et al., 2012a).
Here, we concentrate on the density ratio estimator called the Kullback-Leibler importance
estimation procedure (KLIEP) for log-linear models (Sugiyama et al., 2008; Tsuboi et al.,
2009).

For a density ratio model r(x;θ), the KLIEP method minimizes the Kullback-Leibler
divergence from p(x) to p̂(x) = q(x)r(x;θ):

KL[p∥p̂] =
∫
p(x) log

p(x)

q(x)r(x;θ)
dx

= Const.−
∫
p(x) log r(x;θ)dx. (5)

Note that our density-ratio model (4) automatically satisfies the non-negativity and nor-
malization constraints:

r(x;θ) ≥ 0 and

∫
q(x)r(x;θ)dx = 1.

In practice, we maximize the empirical approximation of the second term in Eq.(5):

ℓKLIEP(θ) =
1

nP

nP∑
i=1

log r(xP
i ;θ)

=
1

nP

nP∑
i=1

∑
u≥v

θ⊤
u,vf(x

(u)P
i , x

(v)P
i )

− log

(
1

nQ

nQ∑
i=1

exp

(∑
u≥v

θ⊤
u,vf(x

(u)Q
i , x

(v)Q
i )

))
.

Because ℓKLIEP(θ) is concave with respect to θ, its global maximizer can be numeri-
cally found by standard optimization techniques such as gradient ascent or quasi-Newton
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methods. The gradient of ℓKLIEP with respect to θu,v is given by

∇θu,vℓKLIEP(θ) =
1

nP

nP∑
i=1

f(x
(u)P
i ,x

(v)P
i )

−
1
nQ

∑nQ

i=1 exp
(∑

u′≥v′ θ
⊤
u′,v′f(x

(u′)Q
i , x

(v′)Q
i )

)
f(x

(u)Q
i , x

(v)Q
i )

1
nQ

∑nQ

j=1 exp
(∑

u′′≥v′′ θ
⊤
u′′,v′′f(x

(u′′)Q
j , x

(v′′)Q
j )

) ,

which can be computed in a straightforward manner for any feature vector f(x(u), x(v)).

3.3 Sparsity-Inducing Norm

To find a sparse change between P and Q, we propose to regularize the KLIEP solution
with a sparsity-inducing norm

∑
u≥v ∥θu,v∥. Note that the MLE approach sparsifies both

θP and θQ so that the difference θP − θQ is also sparsified, while we directly sparsify the
difference θP − θQ; thus our method can still work well even if θP and θQ are dense.

In practice, we may use the following elastic-net penalty (Zou and Hastie, 2005) to
better control overfitting to noisy data:

max
θ

[
ℓKLIEP(θ)− λ1∥θ∥2 − λ2

∑
u≥v

∥θu,v∥

]
, (6)

where ∥θ∥2 penalizes the magnitude of the entire parameter vector.

3.4 Dual Formulation for High-Dimensional Data

The solution of the optimization problem (6) can be easily obtained by standard sparse
optimization methods. However, in the case where the input dimensionality d is high
(which is often the case in our setup), the dimensionality of parameter vector θ is large,
and thus obtaining the solution can be computationally expensive. Here, we derive a
dual optimization problem (Boyd and Vandenberghe, 2004), which can be solved more
efficiently for high-dimensional θ (Figure 2).

As detailed in Appendix, the dual optimization problem is given as

min
α=(α1,...,αnQ

)⊤

nQ∑
i=1

αi logαi +
1

λ1

∑
u≥v

max(0, ∥ξu,v∥ − λ2)
2

subject to α1, . . . , αnQ
≥ 0 and

nQ∑
i=1

αi = 1, (7)
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Figure 2: Schematics of primal and dual optimization. b denotes the number of basis
functions and T denotes the number of factors. Because we are considering pairwise
factors, T = O(d2) for input dimensionality d.

where

ξu,v = gu,v −Hu,vα,

Hu,v = [f(x
(u)Q
1 , x

(v)Q
1 ), . . . ,f(x(u)QnQ

, x(v)QnQ
)],

gu,v =
1

nP

nP∑
i=1

f(x
(u)P
i , x

(v)P
i ).

The primal solution can be obtained from the dual solution as

θu,v =


1

λ1

(
1− λ2

∥ξu,v∥

)
ξu,v if ∥ξu,v∥ > λ2,

0 if ∥ξu,v∥ ≤ λ2.

(8)

Note that the dimensionality of the dual variable α is equal to nQ, while that of
θ is quadratic with respect to the input dimensionality d, because we are considering
pairwise factors. Thus, if d is not small and nQ is not very large (which is often the
case in our experiments shown later), solving the dual optimization problem would be
computationally more efficient. Furthermore, the dual objective (and its gradient) can be
computed efficiently in parallel for each (u, v), which is a useful property when handling
large-scale MNs. Note that the dual objective is differentiable everywhere, while the
primal objective is not.
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4 Numerical Experiments

In this section, we compare the performance of the proposed KLIEP-based method, the
Flasso method, and the Glasso method for Gaussian models, nonparanormal models, and
non-Gaussian models. Results are reported on datasets with three different underlying
distributions: multivariate Gaussian, nonparanormal, and non-Gaussian “diamond” dis-
tributions. We also investigate the computation time of the primal and dual formulations
as a function of the input dimensionality. The MATLAB implementation of our proposed
method is available at

“http://sugiyama-www.cs.titech.ac.jp/~song/SCD.html”.

4.1 Gaussian Distribution

First, we investigate the performance of each method under Gaussianity.
Consider a 40-node sparse Gaussian MN, where its graphical structure is characterized

by precision matrix ΘP with diagonal elements equal to 2. The off-diagonal elements are
randomly chosen5 and set to 0.2, so that the overall sparsity of ΘP is 25%. We then
introduce changes by randomly picking 15 edges and reducing the corresponding elements
in the precision matrix by 0.1. The resulting precision matrices ΘP and ΘQ are used for
drawing samples as

{xP
i }

nP
i=1

i.i.d.∼ N (0, (ΘP )−1) and {xQ
i }

nQ

i=1
i.i.d.∼ N (0, (ΘQ)−1),

where N (µ,Σ) denotes the multivariate normal distribution with mean µ and covariance
matrix Σ. Datasets of size n = nP = nQ = 50, 100 are tested.

We compare the performance of the KLIEP, Flasso, and Glasso methods. Because all
methods use the same Gaussian model, the difference in performance is caused only by
the difference in estimation methods. We repeat the experiments 20 times with randomly
generated datasets and report the results in Figure 3.

The top 6 graphs are examples of regularization paths6. The dashed lines represent
changed edges in the ground truth, while the solid lines represent unchanged edges. The
top row is for n = 100 while the middle row is for n = 50. The bottom 3 graphs are
the data generating distribution and averaged precision-recall (P-R) curves with standard
error over 20 runs. The P-R curves are plotted by varying the group-sparsity control
parameter λ2 with λ1 = 0 in KLIEP and Flasso, and by varying the sparsity control
parameters as λ = λP = λQ in Glasso.

In the regularization path plots, solid vertical lines show the regularization parameter

values picked based on hold-out data {x̃P
i }3000i=1

i.i.d.∼ P and {x̃Q
i }3000i=1

i.i.d.∼ Q as follows:

5We set Θu,v = Θv,u for not breaking the symmetry of the precision matrix.
6Paths of univariate factors are omitted for clear visibility.
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• KLIEP: The hold-out log-likelihood (HOLL) is maximized:

1

ñP

ñP∑
i=1

log
exp

(∑
u≥v θ̂

⊤
u,vf(x̃

(u)P
i , x̃

(v)P
i )

)
1
ñQ

∑ñQ

j=1 exp
(∑

u′≥v′ θ̂
⊤
u′,v′f(x̃

(u′)Q
j , x̃

(v′)Q
j )

) .
• Flasso: The sum of feature-wise conditional HOLLs for p(x(s)|x(−s);θs) and
q(x(s)|x(−s);θs) over all nodes is maximized:

1

ñP

ñP∑
i=1

d∑
s=1

log p(x̃
(s)
i

P |x̃(−s)
i

P ; θ̂
P

s ) +
1

ñQ

ñQ∑
i=1

d∑
s=1

log q(x̃
(s)
i

Q|x̃(−s)
i

Q; θ̂
Q

s ).

• Glasso: The sum of HOLLs for p(x;θ) and q(x;θ) is maximized:

1

ñP

ñP∑
i=1

log p(x̃P
i ; θ̂

P
) +

1

ñQ

ñQ∑
i=1

log q(x̃Q
i ; θ̂

Q
).

When n = 100, KLIEP and Flasso clearly distinguish changed (dashed lines) and
unchanged (solid lines) edges in terms of parameter magnitude. However, when the
sample size is halved to n = 50, the separation is visually rather unclear in the case of
Flasso. In contrast, the paths of changed and unchanged edges are still almost disjoint in
the case of KLIEP. The Glasso method performs rather poorly in both cases. A similar
tendency can be observed also in the P-R curve plot: When the sample size is n = 100,
KLIEP and Flasso work equally well, but KLIEP gains its lead when the sample size is
reduced to n = 50. Glasso does not perform well in both cases.

4.2 Nonparanormal Distribution

We post-process the Gaussian dataset used in Section 4.1 to construct nonparanormal
samples. More specifically, we apply the power function,

h−1
i (x) = sign(x)|x|

1
2 ,

to each dimension of xP and xQ, so that h(xP ) ∼ N (0, (ΘP )−1) and h(xQ) ∼
N (0, (ΘQ)−1).

To cope with the non-linearity in the KLIEP method, we use the power nonparanormal
basis functions with power k = 2, 3, and 4:

f(xi, xj) = (sign(xi)|xi|k, sign(xj)|xj|k, 1)⊤.

Model selection of k is performed together with the regularization parameter by HOLL
maximization. For Flasso and Glasso, we apply the nonparanormal transform as described
in Liu et al. (2009) before the structural change is learned.
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(f) Glasso, n = 50
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Figure 3: Experimental results on the Gaussian dataset.

The experiments are conducted on 20 randomly generated datasets with n = 50 and
100, respectively. The regularization paths, data generating distribution, and averaged
P-R curves are plotted in Figure 4. The results show that Flasso clearly suffers from the
performance degradation compared with the Gaussian case, perhaps because the number
of samples is too small for the complicated nonparanormal distribution. Due to the two-
step estimation scheme, the performance of Glasso is poor. In contrast, KLIEP separates
changed and unchanged edges still clearly for both n = 50 and n = 100. The P-R curves
also show the same tendency.

4.3 “Diamond” Distribution with No Pearson Correlation

In the experiments in Section 4.2, though samples are non-Gaussian, the Pearson cor-
relation is not zero. Therefore, methods assuming Gaussianity can still capture some
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Figure 4: Experimental results on the nonparanormal dataset.

linear correlation between random variables. Here, we consider a more challenging case
with a diamond-shaped distribution within the exponential family that has zero Pearson
correlation between variables. Thus, the methods assuming Gaussianity cannot extract
any information in principle from this dataset.

The probability density function of the diamond distribution is defined as follows
(Figure 5(a)):

p(x) ∝ exp

−
d∑

i=1

2x2i −
∑

(i,j):Ai,j ̸=0

20x2ix
2
j

 , (9)

where the adjacency matrix A describes the MN structure. Note that this distribution
cannot be transformed into a Gaussian distribution by any nonparanormal transforma-
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tions.
We set d = 9 and nP = nQ = 5000. AP is randomly generated with 35% sparsity, while

AQ is created by randomly removing edges in AP so that the sparsity level is dropped to
15%. Samples from the above distribution are drawn by using a slice sampling method
(Neal, 2003). Since generating samples from high-dimensional distributions is non-trivial
and time-consuming, we focus on a relatively low-dimensional case. To avoid sampling
error which may mislead the experimental evaluation, we also increase the sample size,
so that the erratic points generated by accident will not affect the overall population.

In this experiment, we compare the performance of KLIEP, Flasso, and Glasso with
the Gaussian model, the power nonparanormal model, and the polynomial model:

f(xi, xj) = (xki , x
k
j , xix

k−1
j , . . . , xk−1

i xj, x
k−1
i , xk−1

j , . . . , xi, xj, 1)
⊤ for i ̸= j.

The univariate polynomial transform is defined as f(xi, xi) = f(xi, 0). We test k =
2, 3, 4 and choose the best one in terms of HOLL. The Flasso and Glasso methods for
the polynomial model are computed by importance sampling, i.e., we use the IS-Flasso
and IS-Glasso methods (see Section 2.5). Since these methods are computationally very
expensive, we only test k = 4 which we found to be a reasonable choice. We set the
instrumental distribution p′ as the standard normalN (0, I), and use sample {x′

i}70000i=1 ∼ p′

for approximating integrals. p′ is purposely chosen so that it has a similar “bell” shape
to the target densities but with larger variance on each dimension.

The averaged P-R curves over 20 datasets are shown in Figure 5(e). KLIEP with the
polynomial model significantly outperforms all the other methods, while the IS-Glasso and
especially IS-Flasso give better result than the KLIEP, Flasso, and Glasso methods with
the Gaussian and nonparanormal models. This means that the polynomial basis function
is indeed helpful in handling completely non-Gaussian data. However, as discussed in
Section 2.2, it is difficult to use such a basis function in Glasso and Flasso because of
the computational intractability of the normalization term. Although IS-Glasso can ap-
proximate integrals, the result shows that such approximation of integrals does not lead
to a very good performance. In comparison, the result of the IS-Flasso method is much
improved thanks to the coupled sparsity regularization, but it is still not comparable to
KLIEP.

The regularization paths of KLIEP with the polynomial model illustrated in Fig-
ure 5(b) show the usefulness of the proposed method in change detection under non-
Gaussianity. We also give regularization paths obtained by the IS-Flasso and IS-Glasso
methods on the same dataset in Figures 5(c) and 5(d), respectively. The graphs show that
both methods do not separate changed and unchanged edges well, though the IS-Flasso
method works slightly better.

4.4 Computation Time: Dual versus Primal Optimization Prob-
lems

Finally, we compare the computation time of the proposed KLIEP method when solving
the dual optimization problem (7) and the primal optimization problem (6). Both the
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Figure 5: Experimental results on the diamond dataset. “NPN” and “POLY” denote
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Figure 6: Comparison of computation time for solving primal and dual optimization
problems.

optimization problems are solved by using the same convex optimizer minFunc7. The
datasets are generated from two Gaussian distributions constructed in the same way as
Section 4.1. 150 samples are separately drawn from two distributions with dimension
d = 40, 50, 60, 70, 80. We then perform change detection by computing the regularization
paths using 20 choices of λ2 ranging from 10−4 to 100 and fix λ1 = 0.1. The results are
plotted in Figure 6.

It can be seen from the graph that as the dimensionality increases, the computation
time for solving the primal optimization problem is sharply increased, while that for solv-
ing the dual optimization problem grows only moderately: when d = 80, the computation
time for obtaining the primal solution is almost 10 times more than that required for
obtaining the dual solution. Thus, the dual formulation is computationally much more
efficient than the primal formulation.

5 Applications

In this section, we report the experimental results on a synthetic gene expression dataset
and a Twitter dataset.

5.1 Synthetic Gene Expression Dataset

A gene regulatory network encodes interactions between DNA segments. However, the
way genes interact may change due to environmental or biological stimuli. In this experi-
ment, we focus on detecting such changes. We use SynTReN, which is a generator of gene

7http://www.di.ens.fr/~mschmidt/Software/minFunc.html
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regulatory networks used for benchmark validation of bioinformatics algorithms (Van den
Bulcke et al., 2006).

We first choose a sub-network containing 13 nodes from an existing signaling network
in Saccharomyces cerevisiae (shown in Figure 7(a)). Three types of interactions are mod-
eled: activation (ac), deactivation (re), and dual (du). 50 samples are generated in the
first stage, after which we change the types of interactions in 6 edges, and generate 50
samples again. Four types of changes are considered: ac → re, re → ac, du → ac, and du
→ re.

We use KLIEP and IS-Flasso with the polynomial transform function for k ∈ {2, 3, 4}.
The regularization parameter λ1 in KLIEP and Flasso is tested with choices λ1 ∈
{0.1, 1, 10}. We set the instrumental distribution p′ as the standard normal N (0, I),
and use sample {x′

i}70000i=1 ∼ p′ for approximating integrals in IS-Flasso.
The regularization paths on one example dataset for KLIEP, IS-Flasso, and the plain

Flasso with the Gaussian model are plotted in Figures 7(b), 7(c), and 7(d), respectively.
Averaged P-R curves over 20 simulation runs are shown in Figure 7(e). We can see
clearly from the KLIEP regularization paths shown in Figure 7(b) that the magnitude
of estimated parameters on the changed pairwise interactions is much higher than that
of the unchanged edges. IS-Flasso also achieves rather clear separation between changed
and unchanged interactions, though there are a few unchanged interactions drop to zero
at the final stage. Flasso gives many false alarms by assigning non-zero values to the
unchanged edges, even after some changed edges hit zeros.

Reflecting a similar pattern, the P-R curves plotted in Figure 7(e) show that the
proposed KLIEP method has the best performance among all three methods. We can
also see that the IS-Flasso method achieves significant improvement over the plain Flasso
method with the Gaussian model. The improvement from Flasso to IS-Flasso shows
that the use of the polynomial basis is useful on this dataset, and the improvement from
IS-Flasso to KLIEP shows that the direct estimation can further boost the performance.

5.2 Twitter Story Telling

Finally, we use KLIEP and Flasso as event detectors from Twitter. More specifically,
we choose the Deepwater Horizon oil spill8 as the target event, and we hope that our
method can recover some story lines from Twitter as the news events develop. Counting
the frequencies of 10 keywords (BP, oil, spill, Mexico, gulf, coast, Hayward, Halliburton,
Transocean, and Obama), we obtain a dataset by sampling 4 times per day from February
1st, 2010 to October 15th, 2010, resulting in 1061 data samples.

We segment the data into two parts: the first 300 samples collected before the day of oil
spill (April 20th, 2010) are regarded as conforming to a 10-dimensional joint distribution
Q, while the second set of samples that are in an arbitrary 50-day window after the
oil spill accident happened is regarded as following distribution P . Thus, the MN of Q
encodes the original conditional independence of frequencies between 10 keywords, while

8http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill
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Figure 7: Experiments on synthetic gene expression datasets.
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Figure 8: Change graphs captured by the proposed KLIEP method (top) and the Flasso
method (bottom). The date range beneath each figure indicates when P was sampled,
while Q is fixed to dates from February 1st to April 20th. Notable structures shared by
the graph of both methods are surrounded by the dash-dotted lines. Unique structures
that only appear in the graph of the proposed KLIEP method are surrounded by the
dashed lines.

the underlying MN of P has changed since an event occurred. We expect that unveiling
changes in MNs between P and Q can recover the drift of popular topic trends on Twitter
in terms of the dependency among keywords.

The detected change graphs (i.e., the graphs with only detected changing edges) on
10 keywords are illustrated in Figure 8. The edges are selected at a certain value of
λ2 indicated by the maximal cross-validated log-likelihood (CVLL). Since the edge set
that is picked by CVLL may not be sparse in general, we sparsify the graph based on
the permutation test as follows: we randomly shuffle the samples between P and Q and
repeatedly run change detection algorithms for 100 times; then we observe detected edges
by CVLL. Finally, we select the edges that are detected using the original non-shuffled
dataset and remove those that were detected in the shuffled datasets for more than 5
times (i.e., the significance level 5%). In Figure 8, we plot detected change graphs which
are generated using samples of P starting from April 17th, July 6th, and July 26th,
respectively.

The initial explosion happened on April 20th, 2010. Both methods discover depen-
dency changes between keywords. Generally speaking, KLIEP captures more conditional
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independence changes between keywords than the Flasso method, especially when com-
paring Figure 8(c) and Figure 8(f). At the first two stages (Figures 8(a), 8(b), 8(d)
and 8(e)), the keyword “Obama” is very well connected with other keywords in the re-
sults given by both methods. Indeed, at the early development of this event, he lies in the
center of the news stories, and his media exposure peaks after his visit to the Louisiana
coast (May 2nd, May 28nd, and June 5th) and his meeting with BP CEO Tony Hay-
ward on June 16th. Notably, both methods highlight the “gulf-obama-coast” triangle in
Figures 8(a) and 8(d) and the “bp-obama-hayward” chain in Figures 8(b) and 8(e).

However, there are some important differences worth mentioning. First, the Flasso
method misses the “transocean-hayward-obama” triangle in Figures 8(d) and 8(e).
Transocean is the contracted operator in the Deepwater Horizon platform, where the
initial explosion happened. On Figure 8(c), the chain “bp-spill-oil” may indicate that the
phrase “bp spill” or “oil spill” has been publicly recognized by the Twitter community
since then, while the “hayward-bp-mexico” triangle, although relatively weak, may link
to the event that Hayward stepped down from the CEO position on July 27th.

It is also noted that Flasso cannot find any changed edges in Figure 8(f), perhaps due
to the Gaussian restriction.

6 Discussion, Conclusion, and Future Works

In this paper, we proposed a direct approach to learning sparse changes in MNs by den-
sity ratio estimation. Rather than fitting two MNs separately to data and comparing
them to detect a change, we estimated the ratio of the probability densities of two MNs
where changes can be naturally encoded as sparsity patterns in estimated parameters.
This direct modeling allows us to halve the number of parameters and approximate the
normalization term in the density ratio model by a sample average without sampling. We
also showed that the number of parameters to be optimized can be further reduced with
the dual formulation, which is highly useful when the dimensionality is high. Through
experiments on artificial and real-world datasets, we demonstrated the usefulness of the
proposed method over state-of-the-art methods including nonparanormal-based methods
and sampling-based methods.

Our important future work is to theoretically elucidate the advantage of the proposed
method, beyond the Vapnik’s principle of solving the target problem directly. The relation
to score matching (Hyvärinen, 2005), which avoids computing the normalization term in
density estimation, is also an interesting issue to be further investigated. Considering
higher-order MN models such as the hierarchical log-linear model (Schmidt and Murphy,
2010) is a promising direction for extension.

In the context of change detection, we are mainly interested in the situation where
p and q are close to each other (if p and q are completely different, it is straightforward
to detect changes). When p and q are similar, density ratio estimation for p(x)/q(x)
or q(x)/p(x) perform similarly. However, given the asymmetry of density ratios, the
solutions for p(x)/q(x) or q(x)/p(x) are generally different. The choice of the numerator
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and denominator in the ratio is left for future investigation.
Detecting changes in MNs is the main target of this paper. On the other hand, esti-

mating the difference/divergence between two probability distributions has been studied
under a more general context in the statistics and machine learning communities (Amari
and Nagaoka, 2000; Eguchi and Copas, 2006; Wang et al., 2009; Sugiyama et al., 2012b,
2013a). In fact, the estimation of the Kullback-Leibler divergence (Kullback and Leibler,
1951) is related to the KLIEP-type density ratio estimation method (Nguyen et al., 2010),
and the estimation of the Pearson divergence (Pearson, 1900) is related to the squared-
loss density ratio estimation method (Kanamori et al., 2009). However, the density ratio
based divergences tend to be sensitive to outliers. To overcome this problem, a divergence
measure based on relative density ratios was introduced, and its direct estimation method
was developed (Yamada et al., 2013). L2-distance is another popular difference measure
between probability density functions. L2-distance is symmetric, unlike the Kullback-
Leibler divergence and the Pearson divergence, and its direct estimation method has been
investigated recently (Sugiyama et al., 2013b; Kim and Scott, 2010).

Change detection in time-series a related topic. A straightforward approach is to eval-
uate the difference (dissimilarity) between two consecutive segments of time-series signals.
Various methods have been developed to identify the difference by fitting two models to
two segments of time-series separately, e.g., the singular spectrum transform (Moskvina
and Zhigljavsky, 2003; Ide and Tsuda, 2007), subspace identification (Kawahara et al.,
2007), and the method based on the one-class support vector machine (Desobry et al.,
2005). In the same way as the current paper, directly modeling of the change has also
been explored for change detection in time-series (Kawahara and Sugiyama, 2012; Liu
et al., 2013; Sugiyama et al., 2013b).
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Appendix: Derivation of the Dual Optimization Prob-

lem

First, we rewrite the optimization problem (6) as

min
θ,w

[
log

(
nQ∑
i=1

exp (wi)

)
− θ⊤g +

λ1
2
θ⊤θ + λ2

∑
u≥v

∥θu,v∥ − C

]
(10)

subject to w = H⊤θ,
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where

w = (w1, . . . , wnQ
)⊤,

H = (H⊤
1,1, . . . ,H

⊤
d,1,H

⊤
2,2, . . . ,H

⊤
d,2, . . . ,H

⊤
d,d)

⊤,

Hu,v = [f(x
(u)Q
1 , x

(v)Q
1 ), . . . ,f(x(u)QnQ

, x(v)QnQ
)],

g = (g⊤
1,1, . . . , g

⊤
d,1, g

⊤
2,2, . . . , g

⊤
d,2, . . . , g

⊤
d,d)

⊤,

gu,v =
1

nP

nP∑
i=1

f(x
(u)P
i , x

(v)P
i ),

C = log nQ.

With Lagrange multipliers α = (α1, . . . , αnQ
)⊤, the Lagrangian of (10) is given as

L(α) = min
w,θ

[
log

nQ∑
i=1

exp (wi)− θ⊤g +
λ1
2
θ⊤θ + λ2

∑
u≥v

∥θu,v∥ − (w −H⊤θ)⊤α

]
− C

= min
w

[
log

nQ∑
i=1

exp (wi)−w⊤α

]

+min
θ

[
θ⊤(Hα− g) +

λ1
2
θ⊤θ + λ2

∑
u≥v

∥θu,v∥

]
− C

= min
w

ψ1(w) + min
θ
ψ2(θ)− C. (11)

A few lines of algebra can show that ψ1(w) reaches the minimum −
∑nQ

i=1 αi logαi at

αi =
exp(wi)∑nQ

i=1 exp(wi)
, i = 1, . . . , nQ.

Note that extra constraints are implied from the above equation:

α1, . . . , αnQ
≥ 0 and

nQ∑
i=1

αi = 1.

Since ψ2(θ) is not differentiable at θu,v = 0, we can only obtain its sub-gradient:

∇θu,vψ2(θ) = −ξu,v + λ1θ + λ2∇θu,v∥θu,v∥,
where

ξu,v = gu,v −Hu,vα,

∇θu,v∥θu,v∥ =


θu,v

∥θu,v∥
if θu,v ̸= 0,

{y | ∥y∥ ≤ 1} if θu,v = 0.

By setting ∇θtψ2(θ) = 0, we can obtain the solution to this minimization problem by
Eq.(8).

Substituting the solutions of the above two minimization problems with respect to θ
and w into (11), we obtain the dual optimization problem (7).
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