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Abstract

Asymptotically unbiased nearest-neighbor
estimators for KL divergence have recently
been proposed and demonstrated in a num-
ber of applications. With small sample
sizes, however, these nonparametric meth-
ods typically suffer from high estimation bias
due to the non-local statistics of empirical
nearest-neighbor information. In this pa-
per, we show that this non-local bias can be
mitigated by changing the distance metric,
and we propose a method for learning an
optimal Mahalanobis-type metric based on
global information provided by approximate
parametric models of the underlying densi-
ties. In both simulations and experiments,
we demonstrate that this interplay between
parametric models and nonparametric esti-
mation methods significantly improves the
accuracy of the nearest-neighbor KL diver-
gence estimator.

1 Introduction

We consider the problem of estimating the Kullback-
Leibler (KL) divergence between probability density
functions p (x) and pa(x),

pa2(x)
p1(x)

KL(p1[lp2) = —/pl(X) log (

based on two sets of i.i.d. samples X} = {x1,...,Xn, }
and X2 = {Xn,41,.--, XN, +N, ; generated from p; (x)
and pa(x), respectively.
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)dx7 x € RP, (1)
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KL divergence estimates can be used for a variety
of machine learning applications, such as homogene-
ity testing of an underlying density function [7], de-
pendency testing for feature selection [1, 2, 15, 23],
state change detection [8, 11], and model parame-
ter estimation [19]. Moreover, a number of other
information-theoretic measures, such as entropy and
Jensen-Shannon divergence, can be expressed using
the KL divergence. Therefore, a properly designed
KL divergence estimator is useful for a range of gen-
eral statistical applications.

Current approaches to estimating the KL divergence
can roughly be divided into parametric and nonpara-
metric approaches. The parametric approach uses pre-
specified density models, and computes a closed-form
approximation to the KL divergence by substituting
estimated parameters into the density models. For ex-
ample, under the Gaussian assumption on both p; and
p2, estimated means fi1, iz € RP, and covariance ma-
trices X1,%y € RPXP for p; and py can be plugged
into the following closed-form estimator:

. 1 ~ ~ ~ o~
KL(p1lp2) = 5 | log || — log |Sa] + tr [£1871] +

tr (7 — fi2) (i — )5 | - D), (2)

where |§| denotes the determinant of matrix 3. This
approximation and its simplified variant [1, 3] are com-
putationally efficient and stable, and they are accurate
when the true distributions are close to Gaussians.
However, when the parametric assumption is violated,
such plug-in estimators fail to capture the information
that cannot be expressed using model parameters, re-
sulting in failure to asymptotically converge to the true
divergence.

In contrast, the nonparametric approach does not
make any assumptions about appropriate density mod-
els. A popular non-parametric approach utilizes
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nearest-neighbor distances [10, 16, 22]:

il _ LS, ()
KL(p1(lp2) N ZIO (%)’ (3)
i=1 '

where u1(x;) = (N7 — 1)di(x;)? and us(x;) =
Nady(x;)P with dy(x;) and da(x;) denoting the dis-
tance from x; in X; to the nearest neighbors in X}
and X,, respectively. Previous work has shown that
ﬁ(x) and ﬁ(x) are consistent estimators of p;(x) and
pa(X) up to a common normalization factor [12]. How-
ever, these individual convergences do not necessarily
imply convergence of the ratio; recently, it has been
proved that the estimator (3) satisfies both the al-
most sure convergence and the Lo convergence to the
true KL divergence (1) [9, 10, 17, 18]. A related ap-
proach that directly estimates the density ratio p;/ps
nonparametrically was shown to achieve the optimal
non-parametric convergence rate in the minimax sense
13, 21].

Unfortunately, these nonparametric methods still suf-
fer high bias caused by the finite number of samples.
For this reason, when only a small number of samples
are available, parametric methods are typically more
reliable than nonparametric methods. In this paper,
we show that a nonparametric estimator can be signifi-
cantly improved when using a finite number of samples
using parametric model information. More specifically,
the bias of a nonparametric estimator can be reduced
using parametric models by learning an appropriate
Mahalanobis-type metric for nearest neighbor selec-
tion. Due to metric-invariance of the KL divergence
itself, convergence of the nearest-neighbor estimator
to the true divergence is guaranteed regardless of the
metric. The existing convergence property of the esti-
mator and its proof for the Euclidean distance can be
applied without any additional assumptions.

The remainder of the paper is organized as follows. In
Section 2, we explain KL divergence estimation and
review current state-of-the-art nonparametric methods
for estimating the divergence. Then, we derive the
finite sampling bias error and show how a metric for
minimizing the bias can be learned. In Section 3, we
provide experimental results using many synthetic and
real datasets showing how our proposed method can
improve the accuracy over other methods. Finally, we
conclude in Section 4 with a discussion.

2 DMetric Learning for
Nearest-Neighbor KL Divergence
Estimation

In this section, we analyze the bias of nearest-neighbor
estimation for the KL divergence and show that it
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depends on the distance metric. We then propose a
metric learning algorithm to minimize this bias using
parametric information.

2.1 Bias of Nearest-Neighbor Density
Estimation

Let us consider a D-dimensional density estimation
problem from samples X {x1,...,xn} following
p(x). A simple method of approximating the KL diver-
gence is introduced in Poczos et al. [17] which uses a
plug-in method of the probability density estimator of
Loftsgaarden et al. [12]. The nearest-neighbor density
estimator p(x) is given by

N 1
px) = ~u(x)’ (4)
D/2
where ~ T2+ 1) (5)
u(x) = Nd(x)”, (6)
d(x) = |xxn —x]|, (7)

where I'(-) denotes the Gamma function, and xyn de-
notes the nearest neighbor in X from x, and d(x) is
the distance to the nearest neighbor.

In order to obtain a bias of the KL divergence estima-
tor, we first consider how a bias perturbs the Lofts-
gaarden’s estimator. When the underlying probability
density function p(x) is twice-differentiable, the Taylor
expansion of p(xyn) around x gives

~

~ p(x) + Vp(x) " (xnn — %) + (8)

1
§(XNN - X)TVVP(X)(XNN -x), (9)
where VVp(x) denotes the Hessian of p(x). In this
expansion, we consider the nearest neighbors to be at
a nonzero distance from the point of interest x, which
is a situation where we have a finite number of data.

P(XNN)

In this finite sample situation, the bias of the nearest-
neighbor density estimator p(x) can be obtained by
utilizing the average densities on the surface of the
D-dimensional hyper-sphere with center x € R” and
radius ||xyn—x||. A detailed calculation of the average
over the surface can be found in the Appendix A, and
from the average, the bias can be obtained:

Bias[p(x)] = E[p(xnn)] —p(x) (10)
Efxxn —x]%)
2D

where E[-] denotes the expectation over nearest neigh-
bor xyn from x and V2Zp(x) = tr(VVp(x)) denotes
the Laplacian at x.

Vep(x), (1)

The bias can be further calculated using the density
function of the nearest-neighbor distance. It is known
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[6, 22] that the value u(xnn) converges in distribu-
tion to the exponential distribution p(u) = Aexp(—Au)
with rate parameter A = vyp(xnn). Using this asymp-
totic density function, the expectation can be calcu-

lated:
u\bB
Bl = x? = Fuw ()] 02
1
= — 13
oG
and thus the bias can be approximated as
Bias[p(x)] ~ aV?p(x), (14)
1
h _ 15
vhere o = SN P

According to the equation, the bias depends on the
curvature of the underlying density function, V2p(x),
and « vanishes if N goes to infinity and p(x) is away
from zero. If either the underlying density function
has a small curvature or N is large, the bias tends to
be small.

2.2 Bias of Nearest-Neighbor KL Divergence
Estimation

Turning back to the KL divergence estimation, the
plug-in of Eq.(4) into the definition of KL(p1||p2)
yields the nearest-neighbor KL divergence esti-
mator in Eq.(3) using two sets of iid. sam-
ples X {x1,...,xn, } pi(x) and Ab
(XN XN b~ p2(x).

= ~ =

Based on the bias analysis of nearest-neighbor density
estimation shown above, we can analyze the bias of
nearest-neighbor KL divergence estimation using per-
turbation as

uz(x) e P2 + 2V (x)
gul(x) — 1 gpl(x)JralV?pl(x) (16)
e P2 (0, i) VI (x)
=1 gpl(X) + <1 Iy e

p2(x) + a2 V2pa(x)
—log 2 (%) ) (17)
o loe P2 L (V%) VI (x)
= gpl(x) * ( p1(x) pa(x) ) ’
(18)
where we use log(1 +t) ~ ¢, and!
o\ = : (19)

2D(v(N1 — 1)pa(x))>/ P’

IWe used N; — 1 instead of Ni because one degree of
freedom was used for estimating the expectation over p; in

Eq.(1).
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1
= . 20
“ 2D(yNapa(x))*/P (20)
Thus, the bias of g(x) = log Z?g; is given as
o a1 V2pi(x)  aaV2pa(x)
Bias(g(x)) ~ — . 21
(§()) p1(x) p2(x) @1)

Note that this bias is pointwise, and the total bias can
be approximated as the expectation of them. The co-
efficients a;; and as become zero with infinite samples
N1 = Ny = o0, yielding a consistent estimation of the
true KL divergence, but the convergence rate is slow
in high dimensional space; with N number of data the
bias decreases with rate N~ B. However, with proper
choice of metric, the pointwise bias can be significantly
reduced even with small N; and Ny by changing the
Laplacians V?p;(x) and V?pa(x).

2.3 Metric Learning for Bias Reduction

The above analysis shows that the bias of nearest-
neighbor KL divergence estimation not only depends
on the number of data but also on the curvatures of the
underlying density functions p; and ps. In this section,
we show how the bias can be reduced by appropriately
learning the distance metric.

We use a Mahalanobis-type distance metric parame-
terized by a positive definite symmetric matrix A €
RP*D. the distance between x € RP and xyy € RP
is

(22)
(23)

d(X7 XNN) = \/(X — XNN)TA(X — XNN),
AT =4, A=o.
The bias changes according to the choice of the met-

ric?, and it is straightforward that the bias is mini-
mized by solving the following semidefinite program:

min (tr[A~'B])? (24)

st. AT =A |A=1, and A0, (25)

where the symmetric matrix B is defined using the
Hessians:

B — 1 VVpi(x) (26)
(N = Dpa(x) B pr(x)
_ 1 VVp2(x)
L

2We note that the KL divergence itself is metric-
invariant. Due to the positive definiteness of A, we
can always find a full rank matrix L such that A =
LL"T. Then the metric change can be regarded as a
linear transformation of variables z = L'x which uses
the Euclidean metric in the transformed z-space. In this
case, because p(z) = p(x)/|L| and dz = |L|dx, we have

— [ p1(z) log (Pz(z)) dz = — [ p1(x)log (pz(x)) dx.

p1(z) p1(x)



Bias Reduction and Metric Learning for Nearest-Neighbor Estimation of KL-Divergence

The solution of this semidefinite program can be ob-
tained analytically. However, it is not unique, and the
solution we selected is the following as in [14]:

0
—d_A_

A=B[U, U]( .

where A, € R%*4+ and A_ € R4-*9- are the diag-
onal matrices containing d positive and d_ negative
eigenvalues of B, respectively. The matrices A and
B share the same eigenvectors, and U, € RPX4+ ig
the collection of eigenvectors that correspond to the
eigenvalues in A, and U_ € R% %9~ corresponds to
the eigenvalues in A_.

The solution of Eq.(25) is not unique, but the metric
Eq.(28) is a well-behaving solution that provides the
minimum deviation for any number of positive and
negative eigenvalues. The scale constant 5 does not
affect the estimation result, but we use [ to satisfy
|A] = 1 for numerical stability of optimization. The
detailed procedure of derivation for obtaining this par-
ticular matrix is in the Appendix B.

In order to obtain matrix B, we use (rough) parametric
models of the underlying densities p;(x) and pa(x).
For example, when Gaussian models are considered for
p1(x) and pa(x), we can explicitly obtain the matrix
B using
VVp.(x)

pe(X)

~

Dot (x = fie) (x — fic)

forc=1,2, (29)
where [i1, fio, f)l, and f)g are estimates of means and
covariance matrices. Throughout the experiment, we
use maximum-likelihood estimated solutions.

At each sample x; in X7, we calculate the metric to ob-
tain g(u1,uz) = log 1, and then use the Monte-Carlo
summation to estimate the KL divergence. The pro-
cedure of the estimation is summarized in Algorithm
1.

3 Experiments

In this section, we provide experimental results to il-
lustrate how our method estimates the KL divergence
in various problems.

3.1 KL Divergence Estimation from
Synthetic Data

We compare the performance of the following four non-
parametric methods:

e Proposed nearest-neighbor KL divergence estima-
tor with the Gaussian metric (NNG).

> Uy U-]",(28)
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Algorithm 1 Nearest-Neighbor Estimation of KL Di-
vergence with Metric Learning

Input: X, = {x1,...,xn5,} ~ p1(x) and As
{xnit1, - ;\XN1+N2} ~ p2(x)
Output: KL(p1||p2)
Procedure:
Estimate parameters of generative models
KL=0
for i =1 to Ny do
Calculate A at x; with estimated parameters
Calculate u; and ug using A
KL =KL+ 5~ logus/u
end for
KL(p1|lp2) = KL
End procedure:

Plain nearest-neighbor KL divergence estimator
without metric learning (NN).

State-of-the-art density-ratio KL divergence esti-
mator (Ratio) [13].

Risk-based nearest-neighbor KL divergence esti-
mator (fRisk) [5].

First, we consider the estimation of KL divergence be-
tween two Gaussian densities in various shapes and
with various dimensionalities. Fig. 1(a)—(d) depicts
the experimental results for isotropic-isotropic and
isotropic-correlated Gaussians with increasing num-
bers of samples. Fig. 1(e)—(f) shows how the estima-
tion results increase with the increase of the mean dif-
ference and covariance difference for a fixed number of
data samples (N3 = N2 = 500). Compared with the
true KL divergence for two Gaussian densities, the pro-
posed NNG always provides a significant improvement
in accuracy, and NN and Ratio tend to under-estimate
the true KL divergence.

Next we consider KL divergence estimation between
two Student-t distributions. A one-dimensional Stu-
dent’s t density function is defined as

v+1

oot i ) (1+ > TR0

with location and scale parameters u and o2. The
overall shape of the Student-t distribution differs ac-
cording to the parameter v, representing the degree
of freedom. With high v, the Student-t distribution
is known to have a shape close to Gaussian. As v
decreases, the function has heavier tails. We used
a b-dimensional density function with independent
marginal functions, each of which is represented by
Eq.(30). In addition to NNG, NN, and Ratio, we in-
clude in our comparison the following:

Lrl)

P( 2 (x—p)2

v o?

p(x)



Y .-K. Noh, M. Sugiyama, S. Liu, M. C. d

u Plessis, F. C. Park, and D. D. Lee

~—True KL I 5
== True
1.8l -a-NNG { {, ..... {» --------- 1. ......... o E
B N T e s p—, {‘} _____ 1 25/ 4
1.6/| ->- Ratio T 1 ;T S S I
@ -+-fRisk Lo A e S . T —. T — [T S S S —
g 14l g —— S S G
g g LI e & 5
g12 8 1.5 foweerr g |1 . % B &
5 - I 3 = ® ¥ iE:
L Sasuunh s s o e 1 ] < 1 > & x %;% ------ %’ --------- %
o8| ot - : g e 1 % _____
06 L
04 ; ‘ 0. i : 0
100 300 1000 3000 100 300 1000 3000 100 300 1000 3000
# data per set # data per set # data per set
(a) 2-D Isotropic (b) 4-D Isotropic (c) 7-D Isotropic
6
14 o= True KL
5. -8-NNG
T F-d 12 -o-nN / 4 0NN ,
A S S S i ------- g . 10l > Ratio P & Ratio
Lo e R o g ||+ fRisk g 25+ Risk ]
S 3 B 3 2 3 /
[=I0d GED U SRS S G- @ o g 2 2 i
Il S S g : A
52 % % 1 -y 3 $15 2
. S St 3 &
< i $ < < 1 é
o 05 = 1{>
AE—
100 300 1000 3000 0 1 2 4 5 0 02 04 06 08 1
# data per set Mean difference Cov difference
(d) 7-D Correlated (e) For Various Mean Differences  (f) For Various Covariance Differences

Figure 1: KL divergence estimation for two Gaussian probability densities. True KL divergence is calculated using
analytical integration of two Gaussians. Here, NNG uses the true generative model with estimated parameters

in this experiment.
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Figure 2: KL divergence estimation for two 5-D Student-t probability densities. NNS uses the true generative
model in this experiment.

e Proposed nearest-neighbor KL divergence estima-
tor with the Student-t metric (NNS).

o Gaussian parametric method (GP).

Here, GP uses Eq.(2) with maximum-likelihood esti-

mated parameters.

Fig. 2(a) shows the

estimation results for
dimensional Student-t data with v = 20, as functions
of the number of data samples. As can be expected,

5
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NNS shows quick convergence to the true KL diver-
gence. NN shows better convergence than Ratio in this
5-dimensional experiment. The large deviation of GP
is due to the inaccuracy of the Gaussian assumption.
However, even in this situation, NNG still shows com-
parable accuracies to NNS which use the true model.
This robustness using an inaccurate model illustrates
the usefulness of the proposed method in practice.

In Fig. 2(b), we show the estimation results for dif-
ferent degrees of freedom in Student-t distributions.
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Table 1: Area under the ROC curve (AUC) of discriminating change points. In addition to original data, data
corrupted with Gaussian and Poisson noise are used. The methods with the best accuracy are starred, and the
accuracies within p-value=0.05 of single-sided T-test are written in bold.

NN

| |

NNG |

|

GP | fRisk | KLIEP |

*0.810 (0.052)
0.550 (0.055)
*0.735 (0.028)

Original Data
Gaussian noise
Poisson noise

0.759 (0.051)
0.510 (0.082)

0.709 (0.032)

0.787 (0.032)
0.608 (0.078)
0.599 (0.060)

0.793 (0.047)
0.543 (0.078)
0.729 (0.043)

0.576 (0.055)
0.491 (0.061)
0.511 (0.041)

data
*  change point
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Figure 3: One example of time series in HASC and the
estimated KL divergence for NNG (middle figure) and
NN (bottom figure)

With other parameters fixed, the increase in the de-
gree of freedom in Student-t distributions lessens the
overlap between the two density functions; hence, the
true KL divergence (red) grows with the increase of
v. The NNS estimator, using the true model with es-
timated scale and location, achieves a very accurate
estimation of the true KL divergence.

NN performs poorly if v is large. Considering that
the curvature increases as v gets large, our theoreti-
cal analysis that the bias comes from the curvature is
also experimentally supported. Finally, GP deviation
reduces as we increase v because the true Student-t
distribution approaches Gaussian. However, we note
that NNG approaches the true KL divergence even
more quickly with the increase of v.

3.2 Change Detection in Time Series

The objective of discovering change points is to de-
tect abrupt changes in the time series property. The
changing property can be simply mean or variance, but
sometimes more complex properties can change even
with the same mean and the same variance due to the
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change in dependency.

We consider a column vector of length m, y(t) € R™
to represent a segment of time series at time ¢, and a
collection of r such vectors is obtained from a sliding
window: Y(¢) := {y(t),y(t +1),...,y(t +r —1)}.
According to [8], we can consider an underlying density
function that generates the retrospective r number of
vectors in Y (¢). We measure the KL divergence of the
underlying density functions of the two sets, Y () and
Y (t +r+ m) for every t, and a point tg + r + m is
determined as a change point if the KL divergence for
Y (to) and Y (to + r + m) is greater than a predefined
threshold.

We use the Human Activity Sensing Consortium
(HASC) Challenge 2011 collection® which provides
human activity information collected by a portable
three-axis accelerometer. Our task is to segment dif-
ferent behaviors such as “stay,” “walk,” “jog,” and
“skip.” Because the orientation of the accelerometer
is not necessarily fixed, we took the fs-norm of the
3-dimensional accelerometer data.

Fig.3 shows one example of the time series in HASC
and its change points. We measured the KL divergence
using NNG, NN, GP, fRisk, and KLIEP, and compared
the classification accuracies to determine whether or
not a point is a change point within a small tolerance
region (+10 from change point). The classification is
performed for various thresholds and the area under
the ROC curve (AUC) scores are reported in Table 1.

In Fig.3, the estimated KL divergences for NNG and
its original algorithm, NN, show similar tendencies,
but there are apparent differences in several change
point regimes, where NNG always captures the change
point more clearly.

In Table 1, we show the accuracies of NNG, NN, GP,
fRisk, and KLIEP for change point detection using
the HASC dataset. We use these measures on behalf
of KL divergence and expect that the estimators more
accurately measuring the KL divergence will perform
better. Indeed, our NNG method outperforms other
methods not only with the original dataset but also

3http://hasc.jp/hc2011/
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with the data corrupted with noise. With Gaussian
noise, all algorithms show similar accuracy decrease,
while accuracy drop in GP is relatively small indicating
that the information in mean and covariance difference
is relatively intact by Gaussian noise. On the other
hand, we can observe that the Poisson noise severely
corrupts the mean and covariance information making
the parametric GP estimator fail.

Surprisingly, fRisk performed well in this change point
detection experiment, whereas it mostly failed in es-
timating the KL divergence with synthetic data. The
difference of fRisk from other estimators is that this
estimator is generally insensitive to the change of KL
divergence when the true KL divergence is high as seen
in Fig.1(e),(f), and this property can work as a regu-
larizer preventing the estimator from making severe
mistakes.

3.3 Feature Selection Using Jensen-Shannon
Divergence Estimation

Finally, KL divergence estimation is applied to the se-
lection of relevant features for classification.

3.3.1 Setup

For feature selection, t-score has been conveniently
used as a selection criterion for the relevant feature
selection by providing the mean difference |fi; — fiz| of
two classes relative to the size of the variances o; and
g9.

t-score = M (31)
of | 33
M

However, this criterion cannot capture the correla-
tion and redundancy between features, and recently,
a parametric approximation of the Jensen-Shannon
(JS) divergence, mIMR, has been suggested as the fea-
ture selection criterion [1]. The JS divergence is an
information-theoretic measure, which is also known as
the Shannon mutual information between the labels
y € {1,2} and the data X"

Z/ (x, y) log Z°Y)

In this work, we consider another form of this measure,
which is the sum of two KL divergences:

p(x)p )

(y
I p(x, y)

(32)

IS(X3y) =
1 KL(p1(x)[[p(x)) + 72 KL(p2 (x) [[p(x)),
where p(x) = 1p1(x) + Yep2(x) with class-priors 4

and 2 and class-conditional densities p; (x) and pa(x)
for class 1 and class 2, respectively.

(33)
(34)
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In contrast to the previous synthetic Gaussian ex-
periment, JS divergence does not have an analytic
solution for two Gaussian class-conditional densities.
The calculation of KL divergence is now between a
Gaussian and a Gaussian mixture. However, even in
this problem, our method can be used without any
further approximation, because our method does not
need any analytic integration but only needs twice-
differentiation of densities. Throughout experiments
in this section, we choose the Gaussian model for class-
conditional densities, and we use the differentiation of
a Gaussian for the differentiation of a Gaussian mix-
ture.

3.3.2 Feature selection in high-dimensional
Gaussian

We first prepare two 1000-dimensional (1000-D) Gaus-
sian densities of which only 30 dimensionalities differ.
After we obtain a 1000-D random Gaussian for com-
mon use of both classes, additional 30-D random mean
and random covariance are later added only to the first
30 dimensionalities of one class.

With the entire 1000-dimensional features, the true
discriminative information is easily lost, and many al-
gorithms simply learn from data only a little better
than the random choice of classes.

In Fig.4, we depict the classification accuracies for
different Gaussian configurations after feature selec-
tion using JS divergence from three methods: NNG,
NN, and mIMR, and one conventional criterion: t-
score. At each realization, we increased the mean dif-
ference of two Gaussians of the informative dimension-
alities with the same Gaussian configuration (covari-
ance structure), and the results are averaged for each
mean distance. Fig.4 shows the graph for the mean
difference vs. the averaged accuracy.

Regardless of the mean difference, NNG and NN
capture many dimensionalities among 30 informative
dimensionalities yielding good classification results,
while mIMR and t-score capture the informative di-
mensionalities only when the means of two Gaussians
are separated substantially. Though NN generally cap-
tures the informative dimensionalities, NNG always
finds better dimensionalities and shows substantial
classification improvements.

3.3.3 Gene selection with microarray data

Two different datasets are collected from previous gene
expression research for breast cancer prognosis studies
[4, 20], and samples in each dataset are classified using
selected genes according to the JS divergence and a
univariate t-score.
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Figure 4: Feature selection in Gaussian example
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Figure 5: Gene expression classification using selected
features for datasets SMK-CAN-183 [4] and GLI-85
[20]

Gaussianity is used again in p; (x) and pa(x) for NNG.
As in the previous section, the metric can be obtained
by assuming the Gaussianity even though the JS di-
vergence is non-integrable.

We use the forward selection strategy for feature selec-
tion and compare the average AUC of classification for
the proposed NNG method, for the plain NN method,
for mIMR which is a parametric method of estimating
the JS divergence [1], and for a simple univariate t-
score. The results are reported in Fig. 5, showing that
the proposed NNG method compares favorably with
other methods.

4 Conclusions

In this work, we showed how nonparametric nearest-
neighbor estimation can be significantly affected by
the choice of a metric and that the metric dependency
is related to the finite sample effect. Typically, the fi-
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nite sampling causes a bias of the estimator, and this
bias can be alleviated using an appropriate metric. In
a small sample situation, the proposed perturbative
derivation is at its weakest for adjusting the bias. Nev-
ertheless, it is shown that the estimator effectively en-
hances its reliability of estimation by minimizing only
the leading-order of the perturbed deviation.

We should note that the chosen metric in Eq. (28) re-
duces the bias effectively in empirical situations, but
this metric is not a unique solution for minimizing the
derived leading-order bias term. The estimation re-
sults may be different for other solutions due to the
higher-order deviation, but the proposed metric still
works reliably in most situations. In our future work,
we will consider the higher-order bias to see if we im-
prove the metric for a small data situation.

Finally, the dependency of parametric model needs to
be investigated more systematically. In this work, we
tried to show that a Gaussian model can be used as
a rough model capturing the global configuration of
data, but we can use more complex models that can
capture the specific components of data. The simple
extensions include the Gaussian mixture extension us-
ing local estimates of ¥ and pu.
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Appendix A. Derivation of Eq.(11)

Eq.(11) is derived from the calculation of average for
p(xnN) on the shell S of the hypersphere:

/ p(XNN) dVv (1)
{S:]|xnn —x||=d}
~ /p(x) dVJr/Vp(x)Tw dV(w)
+%/&Fvvm@wdww) (2)
with w = xyn — x. Each term can be written as
[ o) av =p0) [ av ®)
/Vp(x)Tw av (4)
d
— [ 0T Y2 v (a) da,
[T Vet da
%/WTVVp(X)W av (5)
1
; 5// Bi+..+B%=d
(Brag + ... + 5DUD)TVVP(X)
(Brui + ...+ Bpup) dpy ...dBp,

with a volume constant v = 72/2/T' (£ + 1), a vec-
tor w = xyy — X = fiu; + ... + Bpup with eigen-
vector bases of VVp(x), uy,...,up, and correspond-
ing constants to obtain w, f£1,...,08p. Here, Vg(a)
is the infinitesimal volume of hypersphere of radius

r=VE .

The zero-th order expansion, Eq.(3), is the p(x) mul-
tiplied by the volume of the hypersphere shell with
radius d. Thus, Eq.(3) is p(x)DvdP~1 dd. The first
order expansion, Eq.(4), is zero because of the symme-
try. In order to calculate the 2nd expansion, Eq.(5),

we need to calculate several integrations first: for
B =1sinf and df =l cosfdb,

l
/ dn(E - )" (6)
= /5 df lcosO(1* cos> )™

_ e L+ 1)
I'(m + 5)

l
/_ 48 B(* - )" (7)

b

= /2 df lcosb lsin0(12 cos? 9)%*2 =0,
. 2
= /2 df 1cos 6 17 sin? 6(1? cos? )™

™
2

_ l2m+3 7‘-1/2 F(m+ 1) .

2m+3"  T(m+3
We also note that
E] ko[,
/ cos® 2 0df = =1, cos® 0df. (9)
0 _

If we reformulate Eq.(5),

d /-2 Ry E—E .

/ dﬁl/ 2 / dBp (10)
- —V -5} —/ @ BB},

(Brai + ...+ 5DU-D)TVVP( Y(Biug + ...+ Bpup)

oy — -
- / dbp
E

(51111 +...+ BDflqul)T
+ Bp-1up-1), (11)

o

ﬁD)\D + BD( . )
VVp(x)(Bius + ...



Bias Reduction and Metric Learning for Nearest Neighbor Estimation of KL-Divergence

where ); is the eigenvalue of VVp which corresponds
to u;. Here, the second term Sp(...) vanishes accord-
ing to Eq.(7), and we can use Eq.(6) and (8) to calcu-
late the integration recursively. Now, Eq.(5) becomes

d2
Eq.(5) = ?VQp(x) - DydP~t dd. (12)
If we divide Eq.(12) with the volume of the shell,
D~ydP~1 dd, we get the deviation

2
XNN — X
7H NI\;D I V2p(x). (13)

Appendix B. Derivation of metric
matrix A in Eq.(28)

The solution of the semidefinite program in Eq.(24)
is not unique. Here, we explain how we chose the
analytic solution in Eq.(24). We first reformulate
the semidefinite program using the eigenvalues of B:
b1,...,bp. The optimal solution A shares the eigen-
vectors with B from the form of the equation Eq.(24).
Then the optimization problem changes to the prob-
lem of finding eigenvalues of A, and the optimization
can be formulated as

2
b,
min <Z 9;> where Hm,- =1, z; >€e>0, (14)

where the eigenvalues can be obtained from lim._,q x.
For simpler analysis, we use the change of variable
u; = log z; to obtain a new objective function:

(Z bie_“i> +C (Z u) (15)
- Z% u; — loge) (16)

with Lagrangian multipliers C and ~; fori =1,..., D.
The derivative of this objective function with respect
to u; is zero:

oL s

=0, (18)

)+ C —ny (17)

and the following equation is satisfied for all i:

C = Yj + 2 (Z bi€u1> bjeiuj (19)

Here, we consider the KKT condition for -;, where for
each i, it satisfies either

v =0 or wu;=Iloge (20)

Here, we can find a solution with ; = 0 for all 7, and
we do not have to consider the second condition. If
~v; = 0 for all ¢,

c=2 <Z bie_“'i> bje " for all i (21)

there are two possible equivalencies for this equation,
> b =0 (22)

bje™" = bpe " (23)

Condition 1:

Condition 2:

Condition 1 is equivalent to the equation ), > b=,
and unless all b; have the same sign, there are many
possible solutions. On the other hand, in order for the
condition 2 to be satisfied, either b; > 0 for all i or
b; < 0 for all 7. In this case, we have unique solutions,

if b; > 0 for all 4 (24)

€Ty, =

if b; <0 for all .  (25)

€Ty, =

o=

(I b)

To obtain a metric that satisfies the boundary condi-
tion between the two situations where Condition 1 and
Condition 2 are satisfied, we can set

b;

T, = O — if b; >0 (26)
(IT;6:)7
T, = —0_% if b; <0, (27)
(IT;00)7
and find C} and C_ that satisfies ), % = 0: from
Dict (HCZ)? — D e (HCb‘) = 0, we can choose

Cy =dy and C_ = d_ where dy and d_ are the num-
ber of positive eigenvalues and negative eigenvalues of
B, respectively. This completes the derivation of the
matrix A.
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