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Abstract

Semi-supervised clustering aims to introduce prior knowledge in the decision process
of a clustering algorithm. In this paper, we propose a novel semi-supervised clus-
tering algorithm based on the information-maximization principle. The proposed
method is an extension of a previous unsupervised information-maximization clus-
tering algorithm based on squared-loss mutual information to effectively incorporate
must-links and cannot-links. The proposed method is computationally efficient be-
cause the clustering solution can be obtained analytically via eigendecomposition.
Furthermore, the proposed method allows systematic optimization of tuning pa-
rameters such as the kernel width, given the degree of belief in the must-links and
cannot-links. The usefulness of the proposed method is demonstrated through ex-
periments.
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1 Introduction

The objective of clustering is to classify unlabeled data into disjoint groups based on their
similarity, and clustering has been extensively studied in statistics and machine learning.
K-means (MacQueen, 1967) is a classic algorithm that clusters data so that the sum of
within-cluster scatters is minimized. However, its usefulness is rather limited in practice
because k-means only produces linearly separated clusters. Kernel k-means (Girolami,
2002) overcomes this limitation by performing k-means in a feature space induced by a
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reproducing kernel function (Schölkopf and Smola, 2002). Spectral clustering (Shi and
Malik, 2000; Ng et al., 2002) first unfolds non-linear data manifolds based on sample-
sample similarity by a spectral embedding method, and then performs k-means in the
embedded space.

These non-linear clustering techniques are capable of handling highly complex real-
world data. However, they lack objective model selection strategies, i.e., tuning pa-
rameters included in kernel functions or similarity measures need to be manually de-
termined in an unsupervised manner. Information-maximization clustering can address
the issue of model selection (Agakov and Barber, 2006; Gomes et al., 2010; Sugiyama
et al., 2014), which learns a probabilistic classifier so that some information measure be-
tween feature vectors and cluster assignments is maximized in an unsupervised manner.
In the information-maximization approach, tuning parameters included in kernel func-
tions or similarity measures can be systematically determined based on the information-
maximization principle. Among the information-maximization clustering methods, the al-
gorithm based on squared-loss mutual information (SMI) was demonstrated to be promis-
ing (Sugiyama et al., 2014; Sugiyama, 2013), because it gives the clustering solution an-
alytically via eigendecomposition.

In practical situations, additional side information regarding clustering solutions is
often provided, typically in the form of must-links and cannot-links : A set of sample pairs
which should belong to the same cluster and a set of sample pairs which should belong to
different clusters, respectively. Such semi-supervised clustering (which is also known as
clustering with side information) has been shown to be useful in practice (Wagstaff and
Cardie, 2000; Goldberg, 2007; Wagstaff et al., 2001). Spectral learning (Kamvar et al.,
2003) is a semi-supervised extension of spectral clustering that enhances the similarity
with side information so that sample pairs tied with must-links have higher similarity and
sample pairs tied with cannot-links have lower similarity. On the other hand, constrained
spectral clustering (Wang and Davidson, 2010) incorporates the must-links and cannot-
links as constraints in the optimization problem.

However, in the same way as unsupervised clustering, the above semi-supervised clus-
tering methods suffer from lack of objective model selection strategies and thus tuning
parameters included in similarity measures need to be determined manually. In this paper,
we extend the unsupervised SMI-based clustering method to the semi-supervised cluster-
ing scenario. The proposed method, called semi-supervised SMI-based clustering (3SMIC),
gives the clustering solution analytically via eigendecomposition with a systematic model
selection strategy. Through experiments on real-world datasets, we demonstrate the use-
fulness of the proposed 3SMIC algorithm.

2 Information-Maximization Clustering with

Squared-Loss Mutual Information

In this section, we formulate the problem of information-maximization clustering and
review an existing unsupervised clustering method based on squared-loss mutual infor-
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mation.

2.1 Information-Maximization Clustering

The goal of unsupervised clustering is to assign class labels to data instances so that
similar instances share the same label and dissimilar instances have different labels. Let
{xi|xi ∈ Rd}ni=1 be feature vectors of data instances, which are drawn independently from
a probability distribution with density p∗(x). Let {yi|yi ∈ {1, . . . , c}}ni=1 be class labels
that we want to obtain, where c denotes the number of classes and we assume c to be
known through the paper.

The information-maximization approach tries to learn the class-posterior probability
p∗(y|x) in an unsupervised manner so that some “information” measure between feature
x and label y is maximized. Mutual information (MI) (Shannon, 1948) is a typical
information measure for this purpose (Agakov and Barber, 2006; Gomes et al., 2010):

MI :=

∫ c∑
y=1

p∗(x, y) log
p∗(x, y)

p∗(x)p∗(y)
dx. (1)

An advantage of the information-maximization formulation is that tuning parameters in-
cluded in clustering algorithms such as the Gaussian width and the regularization param-
eter can be objectively optimized based on the same information-maximization principle.
However, MI is known to be sensitive to outliers (Basu et al., 1998), due to the log func-
tion that is strongly non-linear. Furthermore, unsupervised learning of class-posterior
probability p∗(y|x) under MI is highly non-convex and finding a good local optimum is
not straightforward in practice (Gomes et al., 2010).

To cope with this problem, an alternative information measure called squared-loss MI
(SMI) has been introduced (Suzuki et al., 2009; Sugiyama, 2013):

SMI :=
1

2

∫ c∑
y=1

p∗(x)p∗(y)

(
p∗(x, y)

p∗(x)p∗(y)
− 1

)2

dx. (2)

Ordinary MI is the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) from
p∗(x, y) to p∗(x)p∗(y), while SMI is the Pearson (PE) divergence (Pearson, 1900). Both
KL and PE divergences belong to the class of the Ali-Silvey-Csiszár divergences (Ali and
Silvey, 1966; Csiszár, 1967), which is also known as the f -divergences. Thus, MI and
SMI share many common properties, for example, they are non-negative and equal to
zero if and only if feature vector x and label y are statistically independent. Information-
maximization clustering based on SMI was shown to be computationally advantageous
(Sugiyama et al., 2014). Below, we review the SMI-based clustering (SMIC) algorithm.

2.2 SMI-Based Clustering

In unsupervised clustering, it is not straightforward to approximate SMI (2) because
labeled samples are not available. To cope with this problem, let us expand the squared
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term in Eq.(2). Then SMI can be expressed as

SMI =
1

2

∫ c∑
y=1

p∗(x)p∗(y)

(
p∗(x, y)

p∗(x)p∗(y)

)2

dx

−
∫ c∑

y=1

p∗(x)p∗(y)
p∗(x, y)

p∗(x)p∗(y)
dx+

1

2

=
1

2

∫ c∑
y=1

p∗(y|x)p∗(x)p
∗(y|x)
p∗(y)

dx− 1

2
. (3)

Suppose that the class-prior probability p∗(y) is uniform, i.e.,

p(y) =
1

c
for y = 1, . . . , c.

Then we can express Eq.(3) as

c

2

∫ c∑
y=1

p∗(y|x)p∗(x)p∗(y|x)dx− 1

2
. (4)

Let us approximate the class-posterior probability p∗(y|x) by the following kernel
model:

p(y|x;α) :=
n∑

i=1

αy,iK(x,xi), (5)

where α = (α1,1, . . . , αc,n)
⊤ ∈ Rcn is the parameter vector, ⊤ denotes the transpose, and

K(x,x′) denotes a kernel function. Let K be the kernel matrix whose (i, j) element is
given by K(xi,xj) and let αy = (αy,1, . . . , αy,n)

⊤ ∈ Rn. Approximating the expectation
over p∗(x) in Eq.(4) with the empirical average of samples {xi}ni=1 and replacing the class-
posterior probability p∗(y|x) with the kernel model p(y|x;α), we have the following SMI
approximator:

ŜMI :=
c

2n

c∑
y=1

α⊤
y K

2αy −
1

2
. (6)

Under orthonormality of {αy}cy=1, a global maximizer is given by the normalized
eigenvectors ϕ1, . . . ,ϕc associated with the eigenvalues λ1 ≥ · · · ≥ λn ≥ 0 of K. Because
the sign of eigenvector ϕy is arbitrary, we set the sign as

ϕ̃y = ϕy × sign(ϕ⊤
y 1n),

where sign(·) denotes the sign of a scalar and 1n denotes the n-dimensional vector with
all ones. On the other hand, since

p∗(y) =

∫
p∗(y|x)p∗(x)dx ≈ 1

n

n∑
i=1

p(y|xi;α) = α⊤
y K1n,
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and the class-prior probability was set to be uniform, we have the following normalization
condition:

α⊤
y K1n =

1

c
.

Furthermore, negative outputs are rounded up to zero to ensure that outputs are non-
negative.

Taking these post-processing issues into account, cluster assignment yi for xi is deter-
mined as the maximizer of the approximation of p(y|xi):

yi = argmax
y

[max(0n,Kϕ̃y)]i

c max(0n,Kϕ̃y)
⊤1n

= argmax
y

[max(0n, ϕ̃y)]i

max(0n, ϕ̃y)
⊤1n

,

where 0n denotes the n-dimensional vector with all zeros, the max operation for vectors
is applied in the element-wise manner, and [·]i denotes the i-th element of a vector. Note

that Kϕ̃y = λyϕ̃y is used in the above derivation.
For out-of-sample prediction, cluster assignment y′ for new sample x′ may be obtained

as

y′ := argmax
y

max
(
0,
∑n

i=1K(x′,xi)[ϕ̃y]i

)
λy max(0n, ϕ̃y)

⊤1n

. (7)

This clustering algorithm is called the SMI-based clustering (SMIC).
SMIC may include a tuning parameter, say θ, in the kernel function, and the clus-

tering results of SMIC depend on the choice of θ. A notable advantage of information-
maximization clustering is that such a tuning parameter can be systematically optimized
by the same information-maximization principle. More specifically, cluster assignments
{yθi }ni=1 are first obtained for each possible θ. Then the quality of clustering is measured by
the SMI value estimated from paired samples {(xi, y

θ
i )}ni=1. For this purpose, the method

of least-squares mutual information (LSMI) (Suzuki et al., 2009) is useful because LSMI
was theoretically proved to be the optimal non-parametric SMI approximator (Suzuki and
Sugiyama, 2013); see A for the details of LSMI. Thus, we compute LSMI as a function of
θ and the tuning parameter value that maximizes LSMI is selected as the most suitable
one:

max
θ

LSMI(θ).

3 Semi-Supervised SMIC

In this section, we extend SMIC to a semi-supervised clustering scenario where a set of
must-links and a set of cannot-links are provided. A must-link (i, j) means that xi and xj

are encouraged to belong to the same cluster, while a cannot-link (i, j) means that xi and
xj are encouraged to belong to different clusters. Let M be the must-link matrix with
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Mi,j = 1 if a must-link between xi and xj is given and Mi,j = 0 otherwise. In the same
way, we define the cannot-link matrixC. We assume thatMi,i = 1 for all i = 1, . . . , n, and
Ci,i = 0 for all i = 1, . . . , n. Below, we explain how must-link constraints and cannot-link
constraints are incorporated into the SMIC formulation.

3.1 Incorporating Must-Links in SMIC

When there exists a must-link between xi and xj, we want them to share the same class
label. Let

p∗
i = (p∗(y = 1|xi), . . . , p

∗(y = c|xi))
⊤

be the soft-response vector for xi. Then the inner product ⟨p∗
i ,p

∗
j⟩ is maximized if and

only if xi and xj belong to the same cluster with perfect confidence, i.e., p∗
i and p∗

j are the
same vector that commonly has 1 in one element and 0 otherwise. Thus, the must-link
information may be utilized by increasing ⟨p∗

i ,p
∗
j⟩ if Mi,j = 1. We implement this idea as

ŜMI + γ
c

n

n∑
i,j=1

Mi,j

c∑
y=1

p(y|xi;α)p(y|xj;α),

where γ ≥ 0 determines how strongly we encourage the must-links to be satisfied.
Let us further utilize the following fact: If xi and xj belong to the same class and xj

and xk belong to the same class, xi and xk also belong to the same class (i.e., a friend’s
friend is a friend). Letting M ′

i,j =
∑n

k=1Mi,kMk,j, we can incorporate this in SMIC as

ŜMI + γ
c

n

n∑
i,j=1

Mi,j

c∑
y=1

p(y|xi;α)p(y|xj;α)

+ γ′ c

2n

n∑
i,j=1

M ′
i,j

c∑
y=1

p(y|xi;α)p(y|xj;α)

=
c

2n

c∑
y=1

α⊤
y K

2αy −
1

2
+ γ

c

n

c∑
y=1

α⊤
y KMKαy + γ′ c

2n

c∑
y=1

α⊤
y KM 2Kαy

=
c

2n

c∑
y=1

α⊤
y K(I + 2γM + γ′M 2)Kαy −

1

2
.

If we set γ′ = γ2, we have a simpler form:

c

2n

c∑
y=1

α⊤
y K(I + γM )2Kαy −

1

2
,

which will be used later.
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3.2 Incorporating Cannot-Links in SMIC

Wemay incorporate cannot-links in SMIC in the opposite way to must-links, by decreasing
the inner product ⟨p∗

i ,p
∗
j⟩ to zero. This may be implemented as

ŜMI− η
c

n

n∑
i,j=1

Ci,j

c∑
y=1

p(y|xi;α)p(y|xj;α), (8)

where η ≥ 0 determines how strongly we encourage the cannot-links to be satisfied.
In binary clustering problems where c = 2, if xi and xj belong to different classes and

xj and xk belong to different classes, xi and xk actually belong to the same class (i.e.,
an enemy’s enemy is a friend). Let C ′

i,j =
∑n

k=1Ci,kCk,j, and we will take this also into
account as must-links in the following way:

ŜMI− η
c

n

n∑
i,j=1

Ci,j

c∑
y=1

p(y|xi;α)p(y|xj;α)

+ η′
c

2n

n∑
i,j=1

C ′
i,j

c∑
y=1

p(y|xi;α)p(y|xj;α)

=
c

2n

c∑
y=1

α⊤
y K(I − 2ηC + η′C2)Kαy −

1

2
.

If we set η′ = η2, we have

c

2n

c∑
y=1

α⊤
y K(I − ηC)2Kαy −

1

2
,

which will be used later.
In our formulation, we do not explicitly impose the density p(y|xi;α) to be non-

negative, for computational reasons. Therefore, simply introducing a penalty as in (8)
will not work in the maximization problem. When c = 2, we can overcome this problem
by introducing the term

∑c
y=1α

⊤
y KC2Kαy, as described above. However, when c > 2,

this addition cannot be justified and thus we decided to set η to 0.

3.3 Kernel Matrix Modification

Another approach to incorporating must-links and cannot-links is to modify the kernel
matrix K. More specifically, Ki,j is increased if there exists a must-link between xi and
xj, and Ki,j is decreased if there exists a cannot-link between xi and xj. In this paper,
we assume Ki,j ∈ [0, 1], and set Ki,j = 1 if there exists a must-link between xi and xj

and Ki,j = 0 if there exists a cannot-link between xi and xj. Let us denote the modified
kernel matrix by K ′:

K ′ ←−K.

This modification idea has been employed in spectral clustering (Kamvar et al., 2003)
and demonstrated to be promising.
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3.4 Semi-Supervised SMIC

Finally, we combine the above three ideas as

S̃MI :=
c

2n

c∑
y=1

α⊤
y Uαy −

1

2
,

where

U := K ′(2I + 2γM + γ2M 2 − 2ηC + η2C2)K ′ (9)

When c > 2, we fix η at zero.
This is the learning criterion of semi-supervised SMIC (3SMIC), whose global maxi-

mizer can be analytically obtained under orthonormality of {αy}cy=1 by the leading eigen-
vectors of U . Then the same post-processing as the original SMIC is applied and cluster
assignments are obtained. Out-of-sample prediction is also possible in the same way as
the original SMIC.

3.5 Tuning Parameter Optimization in 3SMIC

In the original SMIC, an SMI approximator called LSMI is used for tuning parameter
optimization (see A). However, this is not suitable in semi-supervised scenarios because
the 3SMIC solution is biased to satisfy must-links and cannot-links. Here, we propose
using

max
θ

LSMI(θ) + Penalty(θ),

where θ indicates tuning parameters in 3SMIC; in the experiments, γ, η, and the param-
eter t included in the kernel function K(x,x′) is optimized. “Penalty” is the penalty for
violating must-links and cannot-links, which is the only tuning factor in the proposed
algorithm.

4 Experiments

In this section, we experimentally evaluate the performance of the proposed 3SMIC
method in comparison with popular semi-supervised clustering methods: Spectral Learn-
ing (SL) (Kamvar et al., 2003) and Constrained Spectral Clustering (CSC) (Wang and
Davidson, 2010). Both methods first perform semi-supervised spectral embedding and
then k-means to obtain clustering results. However, we observed that the post k-means
step is often unreliable, so we decided to use simple thresholding (Shi and Malik, 2000)
in the case of binary clustering for CSC.
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In all experiments, we will use a sparse version of the local-scaling kernel (Zelnik-Manor
and Perona, 2005) as the similarity measure:

K(xi,xj) =

exp

(
−∥xi − xj∥2

2σiσj

)
if xi ∈ Nt(xj) or xj ∈ Nt(xi),

0 otherwise,

where Nt(x) denotes the set of t nearest neighbors for x (t is the kernel parameter), σi is

a local scaling factor defined as σi = ∥xi − x
(t)
i ∥, and x

(t)
i is the t-th nearest neighbor of

xi. For SL and CSC, we test t = 1, 4, 7, 10 (note that there is no systematic way to choose
the value of t), except for the spam dataset with t = 1 that caused numerical problems
in the eigensolver when testing SL. On the other hand, in 3SMIC, we choose the value of
t from {1, . . . , 10} based on the following criterion:

LSMI(θ)

maxθ LSMI(θ)
− nv

maxθ(nv)
, (10)

where nv is the number of violated links. Here, both the LSMI value and the penalty are
normalized so that they fall into the range [0, 1]. The γ and η parameters in 3SMIC are
also chosen based on Eq.(10).

We use the following real-world datasets:

parkinson (d = 22, n = 195, and c = 2): The UCI dataset consisting of voice registra-
tions from patients affected by Parkinson’s disease and other individuals that were
not affected. From the voice, 22 features are extracted.

spam (d = 57, n = 4601, and c = 2): The UCI dataset consisting of e-mails, categorized
in spam and non-spam. 48 word-frequency features and 9 other frequency features
such as specific characters and capitalization are extracted.

sonar (d = 60, n = 208, and c = 2): The UCI dataset consisting of sonar responses from
a metal object or a rock. The features represent energy in each frequency band.

digits500 (d = 256, n = 500, and c = 10): The USPS digits dataset consisting of images
of written numbers from 0 to 9, 256 (16 × 16) pixels in gray-scale. We randomly
sampled 50 images for each digit class, and normalized each pixel intensity in the
image between −1 and 1.

digits5k (d = 256, n = 5000, and c = 10): The same USPS digits dataset but with 500
images for each class.

faces100 (d = 4096, n = 100, and c = 10): The Olivetti Face dataset consisting of
images of human faces in gray-scale, 4096 (64 × 64) pixels. We randomly selected
10 persons, and used 10 images for each person.
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We evaluate the clustering performance by the Adjusted Rand Index (ARI) (Hubert
and Arabie, 1985) between learned and true labels. Larger ARI values mean better clus-
tering performance, and the zero ARI value means that the clustering result is equivalent
to random. We investigate the ARI score as functions of the number of links used. The
x-axis reports the number of links provided to the various algorithms, as a percentage of
the total number of possible links.

In our first setting, must-links and cannot-links are generated from the true labels,
by randomly selecting two samples (xi, xj) and adding the corresponding 1 to the M
or C matrices depending on the labels of the chosen pair of points. CSC is excluded
from digits5k and spam because it needs to solve the complete eigenvalue problem and
its computational cost was too high on these large datasets. Averages and standard
deviations of ARI over 20 runs with different random seeds are plotted in Figure 1.

For digits500, digits5k, and faces100, the baseline performances without links are
reasonable, and the introduction of links significantly increases the performance, bringing
it around 0.9–0.95 from 0.5–0.8.

For parkinson, spam, and sonar where the baseline performances without links are
poor, introduction of links quickly allows the clustering algorithms to find better solutions.
In particular, only 6% of links (relative to all possible pairs) was sufficient for parkinson
to achieve reasonable performance and surprisingly only 0.2% for spam.

As shown in Figure 1, the performance of SL depends heavily on the choice of t, but
there is no systematic way to choose t for SL. It is important to notice that 3SMIC with
t chosen systematically based on Eq.(10) performs as good as SL with t tuned optimally
with hindsight. On the other hand, CSC performs rather stably for different values of t,
and it works particularly well for binary problems with a small number of links. However,
it performs very poorly for multi-class problems; we observed that the post k-means step
is highly unreliable and poor local optimal solutions are often produced. For the binary
problems, simply performing thresholding (Shi and Malik, 2000) instead of using k-means
was found to be useful. However, there seem no simple alternatives in multi-class cases.
The performance of CSC drops in parkinson and sonar when the number of links is
increased, although such phenomena were not observed in SL and 3SMIC.

The random selection of must-links and cannot-links shows significant increases in
performance compared to the unsupervised problem. But, although random selection
has been widely used in the previous literature, other sampling strategies could also be
considered. For example from a labeled subset of samples, a fully connected network
of must-links and cannot-links can be extracted. In Figure 2, we report results for this
sampling strategy, where, instead of randomly selecting a pair of samples and connecting
them with the appropriate link, we selected a random subset of samples, and introduced
all the links among the subset members. We encountered many numerical problems for
CSC with t = 1, so it was excluded from the comparison.

As we can see, this different link selection strategy is much less informative, and the
number of links required for the information to propagate and influence the final decision
is much higher. Using a much larger number of links, the drawbacks that CSC had in
parkinson and sonar worsen, but the performance improves for digits500 and faces100
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Figure 1: Experimental results for randomly selected links.
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Figure 2: Experimental results for fully connected, randomly selected subset.

for the largest numbers of links, that were not observed in the previous experiments. The
model selection property of 3SMIC still gives clear advantages.

In particular, to investigate the contribution of the increasing number of links on the
solutions provided by 3SMIC, we introduce a final experiment reported in Figure 3. In the
left column, “3SMIC*” represents a “cheating” version of 3SMIC that selects the model
based on the true labels so that ARI is maximized. As we can see, as the number of
samples increases, ordinary 3SMIC correctly starts to recognize the most suitable model,
providing an increase in performance. At the same time, in the right columns we provide
performances of 3SMIC for various candidate models, without any model selection. As we
can see, the quality of each candidate improves when the number of samples is increased,
and the best candidate changes depending on the number of samples. This would highlight
why model selection in our methods improves the performance. Thus, we conclude that
both the quality of each solution and the precision of selecting the best solution contribute
to improving the performance.
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Figure 3: Contribution to performance improvement.
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Overall, the proposed 3SMIC method was shown to be a promising semi-supervised
clustering method.

5 Conclusions

In this paper, we proposed a novel information-maximization clustering method that can
utilize side information provided as must-links and cannot-links. The proposed method,
named semi-supervised SMI-based clustering (3SMIC), allows us to compute the clustering
solution analytically. This is a strong advantage over conventional approaches such as
constrained spectral clustering (CSC) that requires a post k-means step, because this post
k-means step can be unreliable and cause significant performance degradation in practice.
Furthermore, 3SMIC allows us to systematically determine tuning parameters such as the
kernel width based on the information-maximization principle, given our reliance on the
provided side information. Through experiments, we demonstrated that automatically-
tuned 3SMIC performs as good as optimally-tuned spectral learning (SL) with hindsight.

The focus of our method in this paper was to inherit the analytical treatment of
the original unsupervised SMIC in semi-supervised learning scenarios. Although this
analytical treatment was demonstrated to be highly useful in experiments, our future
work will explore more efficient use of must-links and cannot-links.

In the previous work (Laub and Müller, 2004), negative eigenvalues were found to con-
tain useful information. Because must-link and cannot-link matrices can possess negative
eigenvalues, it is interesting to investigate the role and effect of negative eigenvalues in
the context of information-maximization clustering.

Another interesting line of work is extending the 3SMIC penalty to be able to perform
not only model selection, but also to give indication on the selection of the number of
clusters. One of the main challenges that makes this extension not trivial is that, as
discussed in the original SMIC paper Sugiyama et al. (2014), SMI is monotone increasing
as the number of clusters c grows. A principled method to choose the number of clusters
based on SMI is therefore not clear. In the semi-supervised setting, the expert that
provides the links could also have enough insight into giving a sensible choice of the
number of clusters. If this was not possible, an accurate balance between the SMI score
and the number of violations might be an alternative for this additional model selection
task.
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A Least-Squares Mutual Information

The solution of SMIC depends on the choice of the kernel parameter included in the kernel
function K(x,x′). Since SMIC was developed in the framework of SMI maximization,
it would be natural to determine the kernel parameter so as to maximize SMI. A direct
approach is to use the SMI estimator ŜMI given by Eq.(6) also for kernel parameter

choice. However, this direct approach is not favorable because ŜMI is an unsupervised
SMI estimator (i.e., SMI is estimated only from unlabeled samples {xi}ni=1). On the other
hand, in the model selection stage, we have already obtained labeled samples {(xi, yi)}ni=1,
and thus supervised estimation of SMI is possible. For supervised SMI estimation, a non-
parametric SMI estimator called least-squares mutual information (LSMI) (Suzuki et al.,
2009) was proved to achieve the optimal convergence rate to the true SMI. Here we briefly
review LSMI.

The key idea of LSMI is to learn the following density-ratio function (Sugiyama et al.,
2012),

r∗(x, y) :=
p∗(x, y)

p∗(x)p∗(y)
,

without going through probability density/mass estimation of p∗(x, y), p∗(x), and p∗(y).
More specifically, let us employ the following density-ratio model:

r(x, y;ω) :=
∑
ℓ:yℓ=y

ωℓL(x,xℓ), (11)

where ω = (ω1, . . . , ωn)
⊤ and L(x,x′) is a kernel function. In practice, we use the

Gaussian kernel

L(x,x′) = exp

(
−∥x− x′∥2

2κ2

)
,

where the Gaussian width κ is the kernel parameter. To save the computation cost, we
limit the number of kernel bases to 500 with randomly selected kernel centers.

The parameter ω in the above density-ratio model is learned so that the following
squared error is minimized:

min
ω

1

2

∫ c∑
y=1

(
r(x, y;ω)− r∗(x, y)

)2

p∗(x)p∗(y)dx. (12)

Let ω(y) be the parameter vector corresponding to the kernel bases {L(x,xℓ)}ℓ:yℓ=y, i.e.,
ω(y) is the sub-vector of ω = (ω1, . . . , ωn)

⊤ consisting of indices {ℓ | yℓ = y}. Let ny be
the number of samples in class y, which is the same as the dimensionality of ω(y). Then
an empirical and regularized version of the optimization problem (12) is given for each y
as follows:

min
ω(y)

[
1

2
ω(y)⊤Ĥ

(y)
ω(y) − ω(y)⊤ĥ

(y)
+

δ

2
ω(y)⊤ω(y)

]
, (13)
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where δ (≥ 0) is the regularization parameter. Ĥ
(y)

is the ny × ny matrix and ĥ
(y)

is the
ny-dimensional vector defined as

Ĥ
(y)
ℓ,ℓ′ :=

ny

n2

n∑
i=1

L(xi,x
(y)
ℓ )L(xi,x

(y)
ℓ′ ), ĥ

(y)
ℓ :=

1

n

∑
i:yi=y

L(xi,x
(y)
ℓ ),

where x
(y)
ℓ is the ℓ-th sample in class y (which corresponds to ω̂

(y)
ℓ ).

A notable advantage of LSMI is that the solution ω̂(y) can be computed analytically
as

ω̂(y) = (Ĥ
(y)

+ δI)−1ĥ
(y)
.

Then a density-ratio estimator is obtained analytically as follows:

r̂(x, y) =

ny∑
ℓ=1

ω̂
(y)
ℓ L(x,x

(y)
ℓ ).

The accuracy of the above least-squares density-ratio estimator depends on the choice
of the kernel parameter κ included in L(x,x′) and the regularization parameter δ in
Eq.(13). These tuning parameter values can be systematically optimized based on cross-
validation as follows: First, the samples Z = {(xi, yi)}ni=1 are divided into M disjoint
subsets {Zm}Mm=1 of approximately the same size (we useM = 5 in the experiments). Then
a density-ratio estimator r̂m(x, y) is obtained using Z\Zm (i.e., all samples without Zm),
and its out-of-sample error (which corresponds to Eq.(12) without irrelevant constant) for
the hold-out samples Zm is computed as

CVm :=
1

2|Zm|2
∑

x,y∈Zm

r̂m(x, y)
2 − 1

|Zm|
∑

(x,y)∈Zm

r̂m(x, y),

where
∑

x,y∈Zm
denotes the summation over all combinations of x and y in Zm (and thus

|Zm|2 terms), while
∑

(x,y)∈Zm
denotes the summation over all pairs (x, y) in Zm (and

thus |Zm| terms). This procedure is repeated for m = 1, . . . ,M , and the average of the
above hold-out error over all m is computed as

CV :=
1

M

M∑
m=1

CVm.

Then the kernel parameter κ and the regularization parameter δ that minimize the average
hold-out error CV are chosen as the most suitable ones.

Finally, given that SMI (2) can be expressed as

SMI = −1

2

∫ c∑
y=1

r∗(x, y)2p∗(x)p∗(y)dx+

∫ c∑
y=1

r∗(x, y)p∗(x, y)dx− 1

2
,
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an SMI estimator based on the above density-ratio estimator, called least-squares mutual
information (LSMI), is given as follows:

LSMI := − 1

2n2

n∑
i,j=1

r̂(xi, yj)
2 +

1

n

n∑
i=1

r̂(xi, yi)−
1

2
,

where r̂(x, y) is a density-ratio estimator obtained above.
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