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Abstract

Approximating a divergence between two probability distributions from their sam-
ples is a fundamental challenge in the statistics, information theory, and machine
learning communities, because a divergence estimator can be used for various pur-
poses such as two-sample homogeneity testing, change-point detection, and class-
balance estimation. Furthermore, an approximator of a divergence between the
joint distribution and the product of marginals can be used for independence test-
ing, which has a wide range of applications including feature selection and extrac-
tion, clustering, object matching, independent component analysis, and causality
learning. In this article, we review recent advances in direct divergence approxima-
tion that follow the general inference principle advocated by Vladimir Vapnik—one
should not solve a more general problem as an intermediate step. More specifi-
cally, direct divergence approximation avoids separately estimating two probability
distributions when approximating a divergence. We cover direct approximators of
the Kullback-Leibler (KL) divergence, the Pearson (PE) divergence, the relative
PE (rPE) divergence, and the L2-distance. Despite the overwhelming popularity of
the KL divergence, we argue that the latter approximators are more useful in prac-
tice due to their computational efficiency, high numerical stability, and superior
robustness against outliers.

1 Introduction

Let us consider the problem of approximating a divergence D between two probability
distributions P and P ′ on Rd from two sets of independent and identically distributed
samples X := {xi}ni=1 and X ′ := {x′

i′}n
′

i′=1 following P and P ′.
A divergence approximator can be used for various purposes such as two-sample test-

ing [25, 11], change detection in time-series [13], class-prior estimation under class-balance
change [20], salient object detection in images [49], and event detection from movies [48]
and Twitter [17]. Furthermore, an approximator of the divergence between the joint dis-
tribution and the product of marginal distributions can be used for solving a wide range
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of machine learning problems [22], including independence testing [24], feature selection
[34, 9], feature extraction [33, 41], canonical dependency analysis [12], object matching
[44], independent component analysis [32], clustering [31, 15], and causality learning [43].
For this reason, accurately approximating a divergence between two probability distribu-
tions from their samples has been an important challenge in the statistics, information
theory, and machine learning communities.

A naive way to approximate the divergence from P to P ′, denoted by D(P∥P ′), is to

first obtain estimators P̂X and P̂ ′
X ′ of the distributions P and P ′ separately from their

samples X and X ′, and then compute a plug-in approximator D(P̂X∥P̂ ′
X ′). However, this

naive approach violates Vapnik’s principle [39]:

If you possess a restricted amount of information for solving some problem,
try to solve the problem directly and never solve a more general problem as
an intermediate step. It is possible that the available information is sufficient
for a direct solution but is insufficient for solving a more general intermediate
problem.

More specifically, if we know the distributions P and P ′, we can immediately know their
divergence D(P∥P ′). However, knowing the divergence D(P∥P ′) does not necessarily
imply knowing the distributions P and P ′, because different pairs of distributions can
yield the same divergence values. Thus, estimating the distributions P and P ′ is more
general than estimating the divergence D(P∥P ′). Following Vapnik’s principle, direct

divergence approximators D̂(X ,X ′) that do not involve the estimation of distributions P
and P ′ have been developed recently [29, 18, 10, 47, 28].

The purpose of this particle is to give an overview of such direct divergence approxi-
mators.

2 Divergence Measures

In this section, we introduce useful divergence measures.

Kullback-Leibler (KL) Divergence: The most popular divergence measure in statis-
tics and machine learning would be the KL divergence [16] defined as

KL(p∥p′) :=
∫

p(x) log
p(x)

p′(x)
dx,

where p(x) and p′(x) are probability density functions of P and P ′, respectively.
Advantages of the KL divergence are that it is compatible with maximum likelihood

estimation, it is invariant under input metric change, its Riemannian geometric structure
is well studied [2], and it can be approximated accurately via direct density-ratio estima-
tion [29, 18, 26]. However, it is not symmetric, it does not satisfy the triangle inequality,
its approximation is computationally expensive due to the log function, and it is sensitive
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to outliers and numerically unstable because of the strong non-linearity of the log function
and possible unboundedness of the density-ratio function p/p′ [4, 47].

Pearson (PE) Divergence: The PE divergence [19] is a squared-loss variant of the KL
divergence defined as

PE(p∥p′) :=
∫

p′(x)

(
p(x)

p′(x)
− 1

)2

dx.

Because both the PE and KL divergences belong to the class of Ali-Silvey-Csiszár di-
vergences (which is also known as f -divergences) [1, 6], they share similar theoretical
properties such as invariance under input metric change. The quadratic function the PE
divergence adopts is compatible with least-squares estimation.

The PE divergence can also be accurately approximated via direct density-ratio es-
timation in the same way as the KL divergence [10, 26], but its approximator can be
obtained analytically in a computationally much more efficient manner than the KL di-
vergence. Furthermore, the PE divergence tends to be more robust against outliers than
the KL divergence [27]. However, other weaknesses of the KL divergence such as asymme-
try, violation of the triangle inequality, and possible unboundedness of the density-ratio
function p/p′ remain unsolved in the PE divergence.

Relative Pearson (rPE) Divergence: To overcome the possible unboundedness of
the density-ratio function p/p′, the rPE divergence was introduced recently [47], which is
defined as

rPE(p∥p′) := PE(p∥qα) =
∫

qα(x)

(
p(x)

qα(x)
− 1

)2

dx,

where qα = αp + (1 − α)p′ for 0 ≤ α < 1. When α = 0, the rPE divergence is reduced
to the plain PE divergence. The quantity p/qα is called the relative density ratio, which
is always upper-bounded by 1/α for α > 0. Thus, it can overcome the unboundedness
problem of the PE divergence, while the invariance under input metric change is still
maintained.

The rPE divergence is still compatible with least-squares estimation, and it can be
approximated in almost the same way as the PE divergence via direct relative density-ratio
estimation. Indeed, an rPE divergence approximator can still be obtained analytically in
an accurate and computationally efficient manner. However, it still violates symmetry
and the triangle inequality in the same way as the KL and PE divergence, and the choice
of α is not straightforward in practice.

L2-Distance: The L2-distance is another standard distance measure between probability
distributions defined as

L2(p, p′) :=

∫ (
p(x)− p′(x)

)2
dx.

The L2-distance is a proper distance measure, and thus it is symmetric and satisfies the
triangle inequality. Furthermore, the density difference p(x)− p′(x) is always bounded as
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long as each density is bounded. Therefore, the L2-distance is stable, without the need
of tuning any control parameter such as α in the rPE divergence.

The L2-distance is also compatible with least-squares estimation, and it can be accu-
rately and analytically approximated in a computationally efficient and numerically stable
manner via direct density-difference estimation [28]. However, the L2-distance is not in-
variant under input metric change, which is a unique property inherent to ratio-based
divergences.

3 Direct Divergence Approximation

In this section, we review recent advances in direct divergence approximation.

KL Divergence Approximation [29]: The key idea is to estimate the density ratio p/p′

without estimating the densities p and p′. More specifically, a density ratio approximator
r̂ is obtained by minimizing the empirical KL divergence from p to r · p′ with respect to
a density-ratio model r:

r̂ := argmin
r

1

n

n∑
i=1

log r(xi) subject to r ≥ 0 and
1

n′

n′∑
i′=1

r(x′
i′) = 1.

For a linear-in-parameter density-ratio model defined by

r(x) =
n∑

i=1

θi exp

(
−∥x− xi∥2

2σ2

)
, (1)

the above optimization problem is convex and thus the global optimal solution can be
obtained easily, e.g., by a gradient-projection iteration. The Gaussian width σ can be
tuned by cross-validation with respect to the objective function. Given the density ratio
estimator r̂, a KL divergence estimator K̂L(X∥X ′) can be constructed as

K̂L(X∥X ′) :=
1

n

n∑
i=1

log r̂(xi).

A MATLAB R⃝ implementation of the above KL divergence approximator (called the KL
importance estimation procedure; KLIEP) is available from

“http://sugiyama-www.cs.titech.ac.jp/~sugi/software/KLIEP/”.

Variations of this procedure for various density ratio models have been developed,
including the log-linear model [38], the Gaussian mixture model [42], and the mixture of
probabilistic principal component analyzers [46]. Also, an unconstrained variant, which
corresponds to approximately maximizing the Legendre-Fenchel lower bound of the KL
divergence [14], was also proposed [18]:

K̂L
′
(X∥X ′) := max

r

[
1

n

n∑
i=1

log r(xi)−
1

n′

n′∑
i′=1

r(x′
i′) + 1

]
.
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PE Divergence Approximation [10]: The PE divergence can also be directly ap-
proximated without estimating the densities p and p′ via direct estimation of the density
ratio p/p′. More specifically, a density ratio approximator r̂ is obtained by minimizing
the empirical p′-weighted squared difference between a density ratio model r and the true
density ratio p/p′:

r̂ := argmin
r

[
1

n′

n′∑
i′=1

r2(x′
i′)−

2

n

n∑
i=1

r(xi)

]
.

For the linear-in-parameter density-ratio model (1) possibly together with the ℓ2-
regularization [8], the density ratio estimator r̂ can be obtained analytically, with a
closed-form leave-one-out cross-validation score [40]. Moreover, together with the ℓ1-
regularization [35], the coefficients {θi}ni=1 tend to be sparse and can be learned in a
computationally efficient way [36], further equipped with a regularization path tracking
algorithm [7].

A MATLAB R⃝ implementation with the ℓ2-regularizer (called unconstrained least-
squares importance fitting ; uLSIF) is available from

“http://sugiyama-www.cs.titech.ac.jp/~sugi/software/uLSIF/”.

rPE Divergence Approximation [47]: The rPE divergence can be estimated in the
same way as the PE divergence as

r̂ := argmin
r

[
α

n

n∑
i=1

r2(xi) +
1− α

n′

n′∑
i′=1

r2(x′
i′)−

2

n

n∑
i=1

r(xi)

]
.

Thus, all the computational advantages of PE divergence approximation mentioned above
are inherited to rPE divergence approximation.

A MATLAB R⃝ implementation of this algorithm (called relative uLSIF ; RuLSIF) is
available from

“http://sugiyama-www.cs.titech.ac.jp/~yamada/RuLSIF.html”.

L2-Distance Approximation [28]: The key idea is to directly estimate the density
difference p − p′ without estimating each density. More specifically, a density difference
approximator f̂ is obtained by minimizing the empirical squared difference between a
density difference model f and the true density difference p− p′:

f̂ := argmin
f

[∫
f(x)2dx−

(
2

n

n∑
i=1

f(xi)−
2

n′

n′∑
i′=1

f(x′
i′)

)]
.
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In practice, the use of the Gaussian kernel model,

f(x) =
n∑

i=1

θi exp

(
−∥x− xi∥2

2σ2

)
+

n′∑
i′=1

θn+i′ exp

(
−∥x− x′

i′∥2

2σ2

)
,

is advantageous because the first term
∫
f(x)2dx in the objective function can be com-

puted analytically for this model. The above optimization problem is essentially the same
form as least-squares density-ratio approximation for the PE divergence, and therefore
least-squares density-difference approximation can enjoy all the computational properties
of least-squares density-ratio approximation.

A MATLAB R⃝ implementation of the above algorithm (called least-squares density
difference; LSDD) is available from

“http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LSDD/”.

Convergence Issues: All the direct divergence approximators reviewed above were
proved to achieve the

√
n-consistency in the parametric case (suppose n′ = n) [29, 10, 47,

28], which is the optimal convergence rate. Furthermore, they were also proved to achieve
the mini-max optimal convergence rate in the non-parametric case [18, 29, 10, 47, 28].
Also experimentally, direct divergence approximators were shown to outperform the naive
approaches based on density estimation [29, 10, 47, 28].

4 Usage of Divergence Estimators in Machine Learn-

ing

In this section, we show applications of divergence estimators in machine learning.

Change-Detection in Time-Series: The goal is to discover abrupt property changes
behind time-series data. Let y(t) ∈ Rm be an m-dimensional time-series sample at time
t, and let Y (t) := [y(t)⊤,y(t + 1)⊤, . . . ,y(t + k − 1)⊤]⊤ ∈ Rkm be a subsequence of
time series at time t with length k. Instead of a single point y(t), the subsequence
Y (t) is treated as a sample here, because time-dependent information can be naturally
incorporated by this trick [13]. Let Y(t) := {Y (t),Y (t+1), . . . ,Y (t+ r− 1)} be a set of
r retrospective subsequence samples starting at time t. Then a divergence between the
probability distributions of Y(t) and Y(t + r) may be used as the plausibility of change
points (see Figure 1).

The change-detection methods based on the rPE divergence [17] and the L2-distance
[28] were shown to be promising through experiments. In particular, the method based
on the rPE divergence was successfully applied to event detection from movies [48] and
Twitter [17].

Class-Prior Estimation under Class-Balance Change: In real-world pattern recog-
nition tasks, changes in class balance are often observed between the training and test
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Figure 1: Change-point detection in time-series.
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Figure 2: Class-prior estimation.

phases. In such cases, naive classifier training produces significant estimation bias be-
cause the class balance in the training dataset does not properly reflect that of the test
dataset. Here, let us consider a binary pattern recognition task of classifying pattern
x ∈ Rd to class y ∈ {+1,−1}. The goal is to learn the class balance of a test dataset in
a semi-supervised learning setup where unlabeled test samples are provided in addition
to labeled training samples [3]. The class balance in the test set can be estimated by
matching a mixture of class-wise training input densities,

qtest(x) := πptrain(x|y = +1) + (1− π)ptrain(x|y = −1),

to the test input density ptest(x) under some divergence measure [20]. Here, π ∈ [0, 1] is
a mixing coefficient to be learned to minimize the divergence (see Figure 2).

The class-balance estimation methods based on the PE divergence [20] and the L2-
distance [28] were shown to be promising through experiments.

Salient Object Detection in an Image: The goal is to find salient objects in an image.
This can be achieved by computing a divergence between the probability distributions
of image features (such as brightness, edges, and colors) in the center window and its
surroundings [49]. This divergence computation is swept over the entire image, possibly
with changing scales (Figure 3).
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Figure 3: Object detection in an image.

The object detection method based on the rPE divergence was demonstrated to be
promising in experiments [49].

Measuring Statistical Independence: The goal is to measure how strongly two ran-
dom variables U and V are statistically dependent, using paired samples {(ui,vi)}ni=1

drawn independently from the joint distribution with density pU,V(u,v). Let us consider
a divergence between the joint density pU,V and the product of marginal densities pU ·pV.
This actually serves as a measure of statistical independence, because U and V are in-
dependent if and only if the divergence is zero (i.e., pU,V = pU · pV), and the dependence
between U and V is stronger if the divergence is larger.

Such a dependence measure can be approximated in the same way as ordinary diver-
gences by using the two datasets formed as X = {(ui,vi)}ni=1 and X ′ = {(ui,vj)}ni,j=1.
The dependence measure based on the KL divergence is called mutual information [21],
which plays a central role in information theory [5]. On the other hand, its PE diver-
gence variant is called the squared-loss mutual information, which was shown to be useful
for solving various machine learning tasks [22] such as independence testing [24], feature
selection [34, 9], feature extraction [33, 41], canonical dependency analysis [12], object
matching [44], independent component analysis [32], clustering [31, 15], and causality
learning [43]. An L2-distance variant of the dependence measure is called quadratic mu-
tual information [37].

5 Conclusions

In this article, we reviewed recent advances in direct divergence approximation. Direct
divergence approximators theoretically achieve optimal convergence rates both in para-
metric and non-parametric cases and experimentally compare favorably with the naive
density estimation counterparts. However, direct divergence approximators still suffer
from the curse of dimensionality. A possible cure for this problem is to combine them
width dimension reduction, based on the hope that two probability distributions share
some commonality [23, 30, 45]. Further investigating this line would be a promising future
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direction.
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