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Abstract

Principal component analysis (PCA) approximates a data matrix with a low-rank
one by imposing sparsity on its singular values. Its robust variant can cope with
spiky noise by introducing an element-wise sparse term. In this paper, we extend
such sparse matrix learning methods, and propose a novel framework called sparse
additive matrix factorization (SAMF). SAMF systematically induces various types
of sparsity by a Bayesian regularization effect, called model-induced regularization.
Although group LASSO also allows us to design arbitrary types of sparsity on a
matrix, SAMF, which is based on the Bayesian framework, provides inference with-
out any requirement for manual parameter tuning. We propose an efficient iterative
algorithm called the mean update (MU) for the variational Bayesian approximation
to SAMF, which gives the global optimal solution for a large subset of parameters
in each step. We demonstrate the usefulness of our method on benchmark datasets
and a foreground/background video separation problem.

Keywords

variational Bayes, robust PCA, matrix factorization, sparsity, model-induced regu-
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1 Introduction

Principal component analysis (PCA) (Hotelling, 1933) is a classical method for obtaining
low-dimensional expression of data. PCA can be regarded as approximating a data matrix
with a low-rank one by imposing sparsity on its singular values. A robust variant of PCA
further copes with sparse spiky noise included in observations (Candès et al., 2011; Ding
et al., 2011; Babacan et al., 2012).

In this paper, we extend the idea of robust PCA, and propose a more general framework
called sparse additive matrix factorization (SAMF). The proposed SAMF can handle
various types of sparse noise such as row-wise and column-wise sparsity, in addition to
element-wise sparsity (spiky noise) and low-rank sparsity (low-dimensional expression);
furthermore, their arbitrary additive combination is also allowed. In the context of robust
PCA, row-wise and column-wise sparsity can capture noise observed when some sensors
are broken and their outputs are always unreliable, or some accident disturbs all sensor
outputs at a time.

Flexibility of SAMF in sparsity design allows us to incorporate side information more
efficiently. We show such an example in foreground/background video separation, where
sparsity is induced based on image segmentation. Although group LASSO (Yuan and
Lin, 2006; Raman et al., 2009) also allows arbitrary sparsity design on matrix entries,
SAMF, which is based on the Bayesian framework, enables us to estimate all unknowns
from observations, and allows us to enjoy inference without manual parameter tuning.

Technically, our approach induces sparsity by the so-called model-induced regulariza-
tion (MIR) (Nakajima and Sugiyama, 2011). MIR is an implicit regularization property
of the Bayesian approach, which is based on one-to-many (i.e., redundant) mapping of
parameters and outcomes (Watanabe, 2009). In the case of matrix factorization, an ob-
served matrix is decomposed into two redundant matrices, which was shown to induce
sparsity in the singular values under the variational Bayesian approximation (Nakajima
and Sugiyama, 2011).

We show that MIR in SAMF can be interpreted as automatic relevance determination
(ARD) (Neal, 1996), which is a popular Bayesian approach to inducing sparsity. Never-
theless, we argue that the MIR formulation is more preferable since it allows us to derive a
practically useful algorithm called the mean update (MU) from a recent theoretical result
(Nakajima et al., 2013): The MU algorithm is based on the variational Bayesian approx-
imation, and gives the global optimal solution for a large subset of parameters in each
step. Through experiments, we show that the MU algorithm compares favorably with a
standard iterative algorithm for variational Bayesian inference.

2 Formulation

In this section, we formulate the sparse additive matrix factorization (SAMF) model.
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2.1 Examples of Factorization

In standard MF, an observed matrix V ∈ RL×M is modeled by a low rank target matrix
U ∈ RL×M contaminated with a random noise matrix E ∈ RL×M .

V = U + E .

Then the target matrix U is decomposed into the product of two matrices A ∈ RM×H

and B ∈ RL×H :

U low-rank = BA⊤ =
H∑

h=1

bha
⊤
h , (1)

where ⊤ denotes the transpose of a matrix or vector. Throughout the paper, we denote a
column vector of a matrix by a bold small letter, and a row vector by a bold small letter
with a tilde:

A = (a1, . . . ,aH) = (ã1, . . . , ãM)⊤ ,

B = (b1, . . . , bH) = (b̃1, . . . , b̃L)
⊤.

The last equation in Eq.(1) implies that the plain matrix product (i.e., BA⊤) is the
sum of rank-1 components. It was elucidated that this product induces an implicit reg-
ularization effect called model-induced regularization (MIR), and a low-rank (singular-
component-wise sparse) solution is produced under the variational Bayesian approxima-
tion (Nakajima and Sugiyama, 2011).

Let us consider other types of factorization:

U row = ΓED = (γe
1d̃1, . . . , γ

e
Ld̃L)

⊤, (2)

U column = EΓD = (γd
1e1, . . . , γ

d
MeM), (3)

where ΓD = diag(γd
1 , . . . , γ

d
M) ∈ RM×M and ΓE = diag(γe

1, . . . , γ
e
L) ∈ RL×L are diagonal

matrices, and D,E ∈ RL×M . These examples are also matrix products, but one of the
factors is restricted to be diagonal. Because of this diagonal constraint, the l-th diagonal
entry γe

l in ΓE is shared by all the entries in the l-th row of U row as a common factor.
Similarly, the m-th diagonal entry γd

m in ΓD is shared by all the entries in the m-th column
of U column.

Another example is the Hadamard (or element-wise) product:

U element = E ∗D, where (E ∗D)l,m = El,mDl,m. (4)

In this factorization form, no entry in E and D is shared by more than one entry in
U element.

In fact, the forms (2)–(4) of factorization induce different types of sparsity, through
the MIR mechanism. In Section 2.2, they will be derived as a row-wise, a column-wise,
and an element-wise sparsity inducing terms, respectively, within a unified framework.
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!→

Figure 1: An example of SMF-term construction. G(·;X ) with X :
(k, l′,m′) 7→ (l,m) maps the set {U ′(k)}Kk=1 of the PR matrices to the

target matrix U , so that U
′(k)
l′,m′ = UX (k,l′,m′) = Ul,m.

!→

G
U =

(

U1,1 U1,2 U1,3

U2,1 U2,2 U2,3

)

U
′(1)

=

(

U1,1 U1,2 U1,3

)

= B
(1)

A
(1)⊤

U
′(2)

=

(

U2,1 U2,2 U2,3

)

= B
(2)

A
(2)⊤

!→

G
U =

(

U1,1 U1,2 U1,3

U2,1 U2,2 U2,3

)
U

′(1)
=

(

U1,1

U2,1

)

= B
(1)

A
(1)⊤

U
′(2)

=

(

U1,2

U2,2

)

= B
(2)

A
(2)⊤

U
′(3)

=

(

U1,3

U2,3

)

= B
(3)

A
(3)⊤

!→

G
U =

(

U1,1 U1,2 U1,3

U2,1 U2,2 U2,3

)

U
′(1)

=

(

U1,1

)

= B
(1)

A
(1)⊤

U
′(6)

=

(

U2,3

)

= B
(6)

A
(6)⊤

U
′(2)

=

(

U2,1

)

= B
(2)

A
(2)⊤

U
′(3)

=

(

U1,2

)

= B
(3)

A
(3)⊤

U
′(4)

=

(

U2,2

)

= B
(4)

A
(4)⊤

U
′(5)

=

(

U1,3

)

= B
(5)

A
(5)⊤

Figure 2: SMF-term construction for the row-wise (top), the column-wise
(middle), and the element-wise (bottom) sparse terms.

2.2 A General Expression of Factorization

Our general expression consists of partitioning, rearrangement, and factorization. The
following is the form of a sparse matrix factorization (SMF) term:

U=G({U ′(k)}Kk=1;X ), where U ′(k)=B(k)A(k)⊤. (5)

Here, {A(k), B(k)}Kk=1 are parameters to be estimated, and G(·;X ) : R
∏K

k=1(L
′(k)×M ′(k)) 7→

RL×M is a designed function associated with an index mapping parameter X , which will
be explained shortly.

Figure 1 shows how to construct an SMF term. First, we partition the entries of U
into K parts. Then, by rearranging the entries in each part, we form partitioned-and-
rearranged (PR) matrices U ′(k) ∈ RL′(k)×M ′(k)

for k = 1, . . . , K. Finally, each of U ′(k)

is decomposed into the product of A(k) ∈ RM ′(k)×H′(k)
and B(k) ∈ RL′(k)×H′(k)

, where
H ′(k) ≤ min(L′(k),M ′(k)).

In Eq.(5), the function G(·;X ) is responsible for partitioning and rearrangement: It
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Table 1: Examples of SMF term. See the main text for details.
Factorization Induced sparsity K (L′(k),M ′(k)) X : (k, l′,m′) 7→ (l,m)
U = BA⊤ low-rank 1 (L,M) X (1, l′,m′) = (l′,m′)
U = ΓED row-wise L (1,M) X (k, 1,m′) = (k,m′)
U = EΓD column-wise M (L, 1) X (k, l′, 1) = (l′, k)
U = E ∗D element-wise L×M (1, 1) X (k, 1, 1) = vec-order(k)

maps the set {U ′(k)}Kk=1 of the PR matrices to the target matrix U ∈ RL×M , based on the
one-to-one map X : (k, l′,m′) 7→ (l,m) from the indices of the entries in {U ′(k)}Kk=1 to the
indices of the entries in U , such that(

G({U ′(k)}Kk=1;X )
)
l,m
=Ul,m=UX (k,l′,m′)=U

′(k)
l′,m′ . (6)

As will be discussed in Section 4.1, the SMF-term expression (5) under the variational
Bayesian approximation induces low-rank sparsity in each partition. This means that
partition-wise sparsity is also induced. Accordingly, partitioning, rearrangement, and
factorization should be designed in the following manner. Suppose that we are given
a required sparsity structure on a matrix (examples of possible side information that
suggests particular sparsity structures are given in Section 2.3). We first partition the
matrix, according to the required sparsity. Some partitions can be submatrices. We
rearrange each of the submatrices on which we do not want to impose low-rank sparsity
into a long vector (U ′(3) in the example in Figure 1). We leave the other submatrices
which we want to be low-rank (U ′(2)), the vectors (U ′(1) and U ′(4)) and the scalars (U ′(5))
as they are. Finally, we factorize each of the PR matrices to induce sparsity through the
MIR mechanism.

Let us, for example, assume that row-wise sparsity is required. We first make the
row-wise partition, i.e., separate U ∈ RL×M into L pieces of M -dimensional row vec-
tors U ′(l) = ũ⊤

l ∈ R1×M . Then, we factorize each partition as U ′(l) = B(l)A(l)⊤

(see the top illustration in Figure 2). Thus, we obtain the row-wise sparse term (2).
Here, X (k, 1,m′) = (k,m′) makes the following connection between Eqs.(2) and (5):

γe
l = B(k) ∈ R, d̃l = A(k) ∈ RM×1 for k = l. Similarly, requiring column-wise and

element-wise sparsity leads to Eqs.(3) and (4), respectively (see the bottom two illus-
trations in Figure 2). Table 1 summarizes how to design these SMF terms, where
vec-order(k) = (1 + ((k − 1) mod L), ⌈k/L⌉) goes along the columns one after another in
the same way as the vec operator forming a vector by stacking the columns of a matrix
(in other words, (U ′(1), . . . , U ′(K))⊤=vec(U)).
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2.3 Sparse Additive Matrix Factorization

We define a sparse additive matrix factorization (SAMF) model as the sum of SMF terms
(5):

V =
S∑

s=1

U (s) + E , (7)

where U (s) = G({B(k,s)A(k,s)⊤}K(s)

k=1 ;X (s)). (8)

In practice, SMF terms should be designed based on side information. Suppose that
V ∈ RL×M consists of M samples of L-dimensional sensor outputs. In robust PCA
(Candès et al., 2011; Ding et al., 2011; Babacan et al., 2012), an element-wise sparse term
is added to the low-rank term, which is expected to be the clean signal, when sensor
outputs are expected to contain spiky noise:

V = U low-rank + U element + E . (9)

Here, it can be said that the “expectation of spiky noise” is used as side information.
Similarly, if we suspect that some sensors are broken, and their outputs are unreliable

over all M samples, we should prepare the row-wise sparse term to capture the expected
row-wise noise, and try to keep the estimated clean signal U low-rank uncontaminated with
the row-wise noise:

V = U low-rank + U row + E .

If we know that some accidental disturbances occurred during the observation, but do
not know their exact locations (i.e., which samples are affected), the column-wise sparse
term can effectively capture these disturbances.

The SMF expression (5) enables us to use side information in a more flexible way. In
Section 5.4, we show that our method can be applied to a foreground/background video
separation problem, where moving objects (such as a person in Figure 3) are considered
to belong to the foreground. Previous approaches (Candès et al., 2011; Ding et al., 2011;
Babacan et al., 2012) constructed the observation matrix V by stacking all pixels in each
frame into each column (Figure 4), and fitted it by the model (9). Here, the low-rank
term and the element-wise sparse term are expected to capture the static background and
the moving foreground, respectively. However, we can also rely on a natural assumption
that a pixel segment having similar intensity values in an image tends to belong to the
same object. Based on this side information, we adopt a segment-wise sparse term, where
the PR matrix is constructed using a precomputed over-segmented image (Figure 5). We
will show in Section 5.4 that the segment-wise sparse term captures the foreground more
accurately than the element-wise sparse term.

Let us summarize the parameters of the SAMF model (7) as follows:

Θ = {Θ(s)
A , Θ

(s)
B }

S
s=1, where Θ

(s)
A = {A(k,s)}K(s)

k=1 , Θ
(s)
B = {B(k,s)}K(s)

k=1 .
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background foreground

Figure 3: Foreground/background
video separation task.

time

pixels V

Figure 4: The observation matrix V
is constructed by stacking all pixels
in each frame into each column.

time

pixels

pre-segmentation

Figure 5: Construction of a segment-wise sparse term. The original frame is pre-segmented
and the sparseness is induced in a segment-wise manner. Details are described in Sec-
tion 5.4.
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As in the probabilistic MF (Salakhutdinov and Mnih, 2008), we assume independent
Gaussian noise and priors. Thus, the likelihood and the priors are written as

p(V |Θ) ∝ exp

− 1

2σ2

∥∥∥∥∥V −
S∑

s=1

U (s)

∥∥∥∥∥
2

Fro

 , (10)

p({Θ(s)
A }

S
s=1) ∝ exp

(
− 1

2

S∑
s=1

K(s)∑
k=1

tr
(
A(k,s)C

(k,s)−1
A A(k,s)⊤

))
, (11)

p({Θ(s)
B }

S
s=1) ∝ exp

(
− 1

2

S∑
s=1

K(s)∑
k=1

tr
(
B(k,s)C

(k,s)−1
B B(k,s)⊤

))
, (12)

where ∥ · ∥Fro and tr(·) denote the Frobenius norm and the trace of a matrix, respectively.
We assume that the prior covariances of A(k,s) and B(k,s) are diagonal and positive-definite:

C
(k,s)
A = diag(c(k,s)2a1

, . . . , c(k,s)2aH
),

C
(k,s)
B = diag(c

(k,s)2
b1

, . . . , c
(k,s)2
bH

).

Without loss of generality, we assume that the diagonal entries of C
(k,s)
A C

(k,s)
B are arranged

in the non-increasing order, i.e., c
(k,s)
ah c

(k,s)
bh
≥ c

(k,s)
ah′ c

(k,s)
bh′

for any pair h < h′.

2.4 Variational Bayesian Approximation

The Bayes posterior is written as

p(Θ|V ) =
p(V |Θ)p(Θ)

p(V )
, (13)

where p(V ) = ⟨p(V |Θ)⟩p(Θ) is the marginal likelihood. Here, ⟨·⟩p denotes the expecta-
tion over the distribution p. Since the Bayes posterior (13) for matrix factorization is
computationally intractable, the variational Bayesian (VB) approximation was proposed
(Bishop, 1999; Lim and Teh, 2007; Ilin and Raiko, 2010; Babacan et al., 2012).

Let r(Θ), or r for short, be a trial distribution. The following functional with respect
to r is called the free energy:

F (r|V ) =

⟨
log

r(Θ)

p(V |Θ)p(Θ)

⟩
r(Θ)

=

⟨
log

r(Θ)

p(Θ|V )

⟩
r(Θ)

− log p(V ). (14)

The first term is the Kullback-Leibler (KL) distance from the trial distribution to the
Bayes posterior, and the second term is a constant. Therefore, minimizing the free energy
(14) amounts to finding a distribution closest to the Bayes posterior in the sense of the KL
distance. In the VB approximation, the free energy (14) is minimized over some restricted
function space.
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Following the standard VB procedure (Bishop, 1999; Lim and Teh, 2007; Babacan
et al., 2012), we impose the following decomposability constraint on the posterior:

r(Θ) =
S∏

s=1

r
(s)
A (Θ

(s)
A )r

(s)
B (Θ

(s)
B ). (15)

Under this constraint, it is easy to show that the VB posterior minimizing the free energy
(14) is written as

r(Θ)=
S∏

s=1

K(s)∏
k=1

(
M ′(k,s)∏
m′=1

NH′(k,s)(ã
(k,s)
m′ ; ˜̂a(k,s)

m′ , Σ
(k,s)
A )

·
L′(k,s)∏
l′=1

NH′(k,s)(b̃
(k,s)

l′ ;
˜̂
b
(k,s)

l′ , Σ
(k,s)
B )

)
, (16)

where Nd(·;µ, Σ) denotes the d-dimensional Gaussian distribution with mean µ and co-
variance Σ.

3 Algorithm for SAMF

In this section, we first present a theorem that reduces a partial SAMF problem to the
standard MF problem, which can be solved analytically. Then we derive an algorithm for
the entire SAMF problem.

3.1 Key Theorem

Let us denote the mean of U (s), defined in Eq.(8), over the VB posterior by

Û (s) = ⟨U (s)⟩
r
(s)
A (Θ

(s)
A )r

(s)
B (Θ

(s)
B )

= G({B̂(k,s)Â(k,s)⊤}K(s)

k=1 ;X (s)). (17)

Then we obtain the following theorem (its proof is given in Appendix A):

Theorem 1 Given {Û (s′)}s′ ̸=s and the noise variance σ2, the VB posterior of

(Θ
(s)
A , Θ

(s)
B ) = {A(k,s), B(k,s)}K(s)

k=1 coincides with the VB posterior of the following MF
model:

p(Z ′(k,s)|A(k,s), B(k,s))∝exp

(
− 1

2σ2

∥∥Z ′(k,s) −B(k,s)A(k,s)⊤∥∥2
Fro

)
, (18)

p(A(k,s))∝exp

(
−1

2
tr
(
A(k,s)C

(k,s)−1
A A(k,s)⊤

))
, (19)

p(B(k,s))∝exp

(
−1

2
tr
(
B(k,s)C

(k,s)−1
B B(k,s)⊤

))
, (20)



Variational Bayesian Sparse Additive Matrix Factorization 10

for each k = 1, . . . , K(s). Here, Z ′(k,s) ∈ RL′(k,s)×M ′(k,s)
is defined as

Z
′(k,s)
l′,m′ =Z

(s)

X (s)(k,l′,m′)
, where Z(s)=V −

∑
s′ ̸=s

Û (s). (21)

The left formula in Eq.(21) relates the entries of Z(s) ∈ RL×M to the entries of {Z ′(k,s) ∈
RL′(k,s)×M ′(k,s)}K(s)

k=1 by using the map X (s) : (k, l′,m′) 7→ (l,m) (see Eq.(6) and Figure 1).
Theorem 1 states that a partial problem of SAMF—finding the posterior of

(A(k,s), B(k,s)) for each k = 1, . . . , K(s), given {Û (s′)}s′ ̸=s and σ2— can be solved in the
same way as in the standard VBMF, to which the global analytic solution is available
(Nakajima et al., 2013). Based on this theorem, we will propose a useful algorithm in the
following subsections.

The noise variance σ2 is also unknown in many applications. To estimate σ2, we can
use the following lemma (its proof is also included in Appendix A):

Lemma 1 Given the VB posterior for {Θ(s)
A , Θ

(s)
B }Ss=1, the noise variance σ2 minimizing

the free energy (14) is given by

σ2 =
1

LM

{
∥V ∥2Fro− 2

S∑
s=1

tr

(
Û (s)⊤

(
V −

S∑
s′=s+1̂

U (s′)

))

+
S∑

s=1

K(s)∑
k=1

tr
(
(Â(k,s)⊤Â(k,s) +M ′(k,s)Σ

(k,s)
A )

· (B̂(k,s)⊤B̂(k,s) + L′(k,s)Σ
(k,s)
B )

)}
. (22)

3.2 Partial Analytic Solution

Theorem 1 allows us to use the results given in Nakajima et al. (2013), which provide the
global analytic solution for VBMF. Although the free energy of VBMF is also non-convex,
Nakajima et al. (2013) showed that the minimizers can be written as a reweighted singular
value decomposition. This allows one to solve the minimization problem separately for
each singular component, which facilitated the analysis. By finding all stationary points
and calculating the free energy on them, they successfully obtained an analytic-form of
the global VBMF solution.

Combining Theorem 1 above and Theorems 3–5 in Nakajima et al. (2013), we obtain
the following corollaries:

Corollary 1 Assume that L′(k,s) ≤M ′(k,s) for all (k, s), and that {Û (s′)}s′ ̸=s and the noise

variance σ2 are given. Let γ
(k,s)
h (≥ 0) be the h-th largest singular value of Z ′(k,s), and let

ω
(k,s)
ah and ω

(k,s)
bh

be the associated right and left singular vectors:

Z ′(k,s) =
L′(k,s)∑
h=1

γ
(k,s)
h ω

(k,s)
bh

ω(k,s)⊤
ah

. (23)
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Let γ̂
(k,s)second
h be the second largest real solution of the following quartic equation with

respect to t:

fh(t) := t4 + ξ
(k,s)
3 t3 + ξ

(k,s)
2 t2 + ξ

(k,s)
1 t+ ξ

(k,s)
0 = 0, (24)

where the coefficients are defined by

ξ
(k,s)
3 =

(L′(k,s) −M ′(k,s))2γ
(k,s)
h

L′(k,s)M ′(k,s) ,

ξ
(k,s)
2 = −

(
ξ3γ

(k,s)
h +

(L′(k,s)2 +M ′(k,s)2)η
(k,s)2
h

L′(k,s)M ′(k,s) +
2σ4

c
(k,s)2
ah c

(k,s)2
bh

)
,

ξ
(k,s)
1 = ξ

(k,s)
3

√
ξ
(k,s)
0 ,

ξ
(k,s)
0 =

(
η
(k,s)2
h − σ4

c
(k,s)2
ah c

(k,s)2
bh

)2

,

η
(k,s)2
h =

(
1− σ2L′(k,s)

γ
(k,s)2
h

)(
1− σ2M ′(k,s)

γ
(k,s)2
h

)
γ
(k,s)2
h .

Let

γ̃
(k,s)
h =

√
τ +

√
τ 2 − L′(k,s)M ′(k,s)σ4, (25)

where

τ =
(L′(k,s) +M ′(k,s))σ2

2
+

σ4

2c
(k,s)2
ah c

(k,s)2
bh

.

Then, the global VB solution can be expressed as

Û ′(k,s)VB = (B̂(k,s)Â(k,s)⊤)VB =
H′(k,s)∑
h=1

γ̂
(k,s)VB
h ω

(k,s)
bh

ω(k,s)⊤
ah

,

where γ̂
(k,s)VB
h =

{
γ̂
(k,s)second
h if γ

(k,s)
h > γ̃

(k,s)
h ,

0 otherwise.
(26)

Corollary 2 Assume that L′(k,s) ≤ M ′(k,s) for all (k, s). Given {Û (s′)}s′ ̸=s and the noise

variance σ2, the global empirical VB solution (where the hyperparameters {C(k,s)
A , C

(k,s)
B }

are also estimated from observation) is given by

Û ′(k,s)EVB =
H′(k,s)∑
h=1

γ̂
(k,s)EVB
h ω

(k,s)
bh

ω(k,s)⊤
ah

,

where γ̂
(k,s)EVB
h =

{
γ̆
(k,s)VB
h if γ

(k,s)
h > γ(k,s)

h
and ∆

(k,s)
h ≤ 0,

0 otherwise.
(27)
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Here,

γ(k,s)

h
= (
√
L′(k,s) +

√
M ′(k,s))σ, (28)

c̆
(k,s)2
h =

1

2L′(k,s)M ′(k,s)

(
γ
(k,s)2
h − (L′(k,s) +M ′(k,s))σ2

+

√(
γ
(k,s)2
h − (L′(k,s) +M ′(k,s))σ2

)2
− 4L′(k,s)M ′(k,s)σ4

)
, (29)

∆
(k,s)
h = M ′(k,s) log

(
γ
(k,s)
h

M ′(k,s)σ2
γ̆
(k,s)VB
h + 1

)

+ L′(k,s) log

(
γ
(k,s)
h

L′(k,s)σ2
γ̆
(k,s)VB
h + 1

)
+

1

σ2

(
−2γ(k,s)

h γ̆
(k,s)VB
h + L′(k,s)M ′(k,s)c̆

(k,s)2
h

)
, (30)

and γ̆
(k,s)VB
h is the VB solution for c

(k,s)
ah c

(k,s)
bh

= c̆
(k,s)
h .

Corollary 3 Assume that L′(k,s) ≤ M ′(k,s) for all (k, s). Given {Û (s′)}s′ ̸=s and the noise
variance σ2, the VB posteriors are given by

rVB
A(k,s)(A

(k,s)) =
H′(k,s)∏
h=1

NM ′(k,s)(a
(k,s)
h ; â

(k,s)
h , σ(k,s)2

ah
IM ′(k,s)),

rVB
B(k,s)(B

(k,s)) =
H′(k,s)∏
h=1

NL′(k,s)(b
(k,s)
h ; b̂

(k,s)

h , σ
(k,s)2
bh

IL′(k,s)),

where, for γ̂
(k,s)VB
h being the solution given by Corollary 1,

â
(k,s)
h = ±

√
γ̂
(k,s)VB
h δ̂

(k,s)
h · ω(k,s)

ah
, b̂

(k,s)

h = ±
√

γ̂
(k,s)VB
h δ̂

(k,s)−1
h · ω(k,s)

bh
,

σ(k,s)2
ah

=
1

2M ′(k,s)(γ̂
(k,s)VB
h δ̂

(k,s)−1
h + σ2c

(k,s)−2
ah )

·

{
−
(
η̂
(k,s)2
h − σ2(M ′(k,s) − L′(k,s))

)
+

√
(η̂

(k,s)2
h − σ2(M ′(k,s) − L′(k,s)))2 + 4M ′(k,s)σ2η̂

(k,s)2
h

}
,

σ
(k,s)2
bh

=
1

2L′(k,s)(γ̂
(k,s)VB
h δ̂

(k,s)
h + σ2c

(k,s)−2
bh

)

·

{
−
(
η̂
(k,s)2
h + σ2(M ′(k,s) − L′(k,s))

)
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Algorithm 1 Mean update (MU) algorithm for (empirical) VB SAMF.

1: Initialization: Û (s) ← 0(L,M) for s = 1, . . . , S, σ2 ← ∥V ∥2Fro/(LM).
2: for s = 1 to S do
3: The (empirical) VB solution of U ′(k,s) = B(k,s)A(k,s)⊤ for each k = 1, . . . , K(s), given

{Û (s′)}s′ ̸=s, is computed by Corollary 1 (Corollary 2).

4: Û (s) ← G({B̂(k,s)Â(k,s)⊤}K(s)

k=1 ;X (s)).
5: end for
6: σ2 is estimated by Lemma 1, given the VB posterior on {Θ(s)

A , Θ
(s)
B }Ss=1 (computed by

Corollary 3).
7: Repeat 2 to 6 until convergence.

+

√
(η̂

(k,s)2
h + σ2(M ′(k,s) − L′(k,s)))2 + 4L′(k,s)σ2η̂

(k,s)2
h

}
,

δ̂
(k,s)
h =

1

2σ2M ′(k,s)c
(k,s)−2
ah

{
(M ′(k,s) − L′(k,s))(γ

(k,s)
h − γ̂

(k,s)VB
h )

+

√
(M ′(k,s) − L′(k,s))2(γ

(k,s)
h − γ̂

(k,s)VB
h )2 +

4σ4L′(k,s)M ′(k,s)

c
(k,s)2
ah c

(k,s)2
bh

}
,

η̂
(k,s)2
h =

η
(k,s)2
h if γ

(k,s)
h > γ̃

(k,s)
h ,

σ4

c
(k,s)2
ah

c
(k,s)2
bh

otherwise.

Note that the corollaries above assume that L′(k,s) ≤ M ′(k,s) for all (k, s). However, we
can easily obtain the result for the case when L′(k,s) > M ′(k,s) by considering the transpose
Û ′(k,s)⊤ of the solution. Also, we can always take the mapping X (s) so that L′(k,s) ≤M ′(k,s)

holds for all (k, s) without any practical restriction. This eases the implementation of the
algorithm.

When σ2 is known, Corollary 1 and Corollary 2 provide the global analytic solution
of the partial problem, where the variables on which {Û (s′)}s′ ̸=s depends are fixed. Note
that they give the global analytic solution for single-term (S = 1) SAMF.

3.3 Mean Update Algorithm

Using Corollaries 1–3 and Lemma 1, we propose an algorithm for SAMF, which we
call the mean update (MU) algorithm. We describe its pseudo-code in Algorithm 1, where
0(d1,d2) denotes the d1 × d2 matrix with all entries equal to zero. Note that, under the
empirical Bayesian framework, all unknown parameters are estimated from observation,
which allows inference without manual parameter tuning.

The MU algorithm is similar in spirit to the backfitting algorithm (Hastie and Tib-
shirani, 1986; D’Souza et al., 2004), where each additive term is updated to fit a dummy
target. In the MU algorithm, Z(s) defined in Eq.(21) corresponds to the dummy target
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in the backfitting algorithm. Although each of the corollaries and the lemma above guar-
antee the global optimality for each step, the MU algorithm does not generally guarantee
the simultaneous global optimality over the entire parameter space. Nevertheless, exper-
imental results in Section 5 show that the MU algorithm performs very well in practice.

When Corollary 1 or Corollary 2 is applied in Step 3 of Algorithm 1, a singular value
decomposition (23) of Z ′(k,s), defined in Eq.(21), is required. However, for many practical
SMF terms, including the row-wise, the column-wise, and the element-wise terms as well
as the segment-wise term (which will be defined in Section 5.4), Z ′(k,s) ∈ RL′(k,s)×M ′(k,s)

is
a vector or scalar, i.e., L′(k,s) = 1 or M ′(k,s) = 1. In such cases, the singular value and the
singular vectors are given simply by

γ
(k.s)
1 = ∥Z ′(k,s)∥, ω(k.s)

a1
= Z ′(k,s)/∥Z ′(k,s)∥, ω

(k.s)
b1

= 1 if L′(k,s) = 1,

γ
(k.s)
1 = ∥Z ′(k,s)∥, ω(k.s)

a1
= 1, ω

(k.s)
b1

= Z ′(k,s)/∥Z ′(k,s)∥ if M ′(k,s) = 1.

4 Discussion

In this section, we first relate MIR to ARD. Then, we introduce the standard VB iteration
for SAMF, which is used as a baseline in the experiments. After that, we discuss related
previous work, and the limitation of the current work.

4.1 Relation between MIR and ARD

The MIR effect (Nakajima and Sugiyama, 2011) induced by factorization actually has
a close connection to the automatic relevance determination (ARD) effect (Neal, 1996).
Assume CA = IH , where Id denotes the d-dimensional identity matrix, in the plain MF
model (18)–(20) (here we omit the suffixes k and s for brevity), and consider the following
transformation: BA⊤ 7→ U ∈ RL×M . Then, the likelihood (18) and the prior (19) on A
are rewritten as

p(Z ′|U) ∝ exp

(
− 1

2σ2
∥Z ′ − U∥2Fro

)
, (31)

p(U |B) ∝ exp

(
−1

2
tr
(
U⊤(BB⊤)†U

))
, (32)

where † denotes the Moore-Penrose generalized inverse of a matrix. The prior (20) on
B is kept unchanged. p(U |B) in Eq.(32) is so-called the ARD prior with the covariance
hyperparameter BB⊤ ∈ RL×L. It is known that this induces the ARD effect, i.e., the
empirical Bayesian procedure where the prior covariance hyperparameter BB⊤ is also
estimated from observation induces strong regularization and sparsity (Neal, 1996); see
also Efron and Morris (1973) for a simple Gaussian case.

In the current context, Eq.(32) induces low-rank sparsity on U if no restriction on
BB⊤ is imposed. Similarly, we can show that (γe

l )
2 in Eq.(2), (γd

m)
2 in Eq.(3), and E2

l,m in
Eq.(4) act as prior variances shared by the entries in ũl ∈ RM , um ∈ RL, and Ul,m ∈ R,
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respectively. This explains the mechanism how the factorization forms in Eqs.(2)–(4)
induce row-wise, column-wise, and element-wise sparsity, respectively.

When we employ the SMF-term expression (5), MIR occurs in each partition. There-
fore, partition-wise sparsity and low-rank sparsity in each partition is observed. Corol-
laries 1 and 2 theoretically support this fact: Small singular values are discarded by
thresholding in Eqs.(26) and (27).

4.2 Standard VB Iteration

Following the standard procedure for the VB approximation (Bishop, 1999; Lim and Teh,
2007; Babacan et al., 2012), we can derive the following algorithm, which we call the
standard VB iteration:

Â(k,s)=σ−2Z ′(k,s)⊤B̂(k,s)Σ
(k,s)
A , (33)

Σ
(k,s)
A =σ2

(
B̂(k,s)⊤B̂(k,s)+L′(k,s)Σ

(k,s)
B +σ2C

(k,s)−1
A

)−1

, (34)

B̂(k,s)=σ−2Z ′(k,s)Â(k,s)Σ
(k,s)
B , (35)

Σ
(k,s)
B =σ2

(
Â(k,s)⊤Â(k,s)+M ′(k,s)Σ

(k,s)
A +σ2C

(k,s)−1
B

)−1

. (36)

Iterating Eqs.(33)–(36) for each (k, s) in turn until convergence gives a local minimum of
the free energy (14).

In the empirical Bayesian scenario, the hyperparameters {C(k,s)
A , C

(k,s)
B }K(s)

k=1,
S
s=1 are also

estimated from observations. The following update rules give a local minimum of the free
energy:

c(k,s)2ah
= ∥â(k,s)

h ∥2/M ′(k,s) + (Σ
(k,s)
A )hh, (37)

c
(k,s)2
bh

= ∥b̂
(k,s)

h ∥2/L′(k,s) + (Σ
(k,s)
B )hh. (38)

When the noise variance σ2 is unknown, it is estimated by Eq.(22) in each iteration.
The standard VB iteration is computationally efficient since only a single parameter

in {Â(k,s), Σ
(k,s)
A , B̂(k,s), Σ

(k,s)
B , c

(k,s)2
ah , c

(k,s)2
bh
}K(s)

k=1,
S
s=1 is updated in each step. However, it is

known that the standard VB iteration is prone to suffer from the local minima problem
(Nakajima et al., 2013). On the other hand, although the MU algorithm also does not
guarantee the global optimality as a whole, it simultaneously gives the global optimal
solution for the set {Â(k,s), Σ

(k,s)
A , B̂(k,s), Σ

(k,s)
B , c

(k,s)2
ah , c

(k,s)2
bh
}K(s)

k=1 for each s in each step.
In Section 5, we will experimentally show that the MU algorithm tends to give a better
solution (i.e., with a smaller free energy) than the standard VB iteration.

4.3 Related Work

As widely known, traditional PCA is sensitive to outliers in data and generally fails
in their presence. Robust PCA (Candès et al., 2011) was developed to cope with large
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outliers that are not modeled within the traditional PCA. Unlike methods based on robust
statistics (Huber and Ronchetti, 2009; Fischler and Bolles, 1981; Torre and Black, 2003;
Ke and Kanade, 2005; Gao, 2008; Luttinen et al., 2009; Lakshminarayanan et al., 2011),
Candès et al. (2011) explicitly modeled the spiky noise with an additional element-wise
sparse term (see Eq.(9)). This model can also be applied to applications where the task
is to estimate the element-wise sparse term itself (as opposed to discarding it as noise).
A typical such application is foreground/background video separation (Figure 3).

The original formulation of robust PCA is non-Bayesian, and the sparsity is induced
by the ℓ1-norm regularization. Although its solution can be efficiently obtained via the
augmented Lagrange multiplier (ALM) method (Lin et al., 2009), there are unknown
algorithmic parameters that should be carefully tuned to obtain its best performance.
Employing a Bayesian formulation addresses this issue: A sampling-based method (Ding
et al., 2011) and a VB method (Babacan et al., 2012) were proposed, where all unknown
parameters are estimated from the observation.

Babacan et al. (2012) conducted an extensive experimental comparison between their
VB method, called a VB robust PCA, and other methods. They reported that the ALM
method (Lin et al., 2009) requires careful tuning of its algorithmic parameters, and the
Bayesian sampling method (Ding et al., 2011) has high computational complexity that
can be prohibitive in large-scale applications. Compared to these methods, the VB robust
PCA is favorable both in terms of computational complexity and estimation performance.

Our SAMF framework contains the robust PCA model as a special case where the
observed matrix is modeled as the sum of a low-rank and an element-wise sparse terms.
The VB algorithm used in Babacan et al. (2012) is the same as the standard VB iteration
introduced in Section 4.2, except a slight difference in the hyperprior setting. Accordingly,
our proposal in this paper is an extension of the VB robust PCA in two ways—more
variation in sparsity with different types of factorization and higher accuracy with the
MU algorithm. In Section 5, we experimentally show advantages of these extensions. In
our experiment, we use a SAMF counterpart of the VB robust PCA, named ‘LE’-SAMF
in Section 5.1, with the standard VB iteration as a baseline method for comparison.

Group LASSO (Yuan and Lin, 2006) also provides a framework for arbitrary sparsity
design, where the sparsity is induced by the ℓ1-regularization. Although the convexity of
the group LASSO problem is attractive, it typically requires careful tuning of regulariza-
tion parameters, as the ALM method for robust PCA. On the other hand, group-sparsity
is induced by model-induced regularization in SAMF, and all unknown parameters can be
estimated, based on the Bayesian framework.

Another typical application of MF is collaborative filtering, where the observed matrix
has missing entries. Fitting the observed entries with a low-rank matrix enables us to
predict the missing entries. Convex optimization methods with the trace-norm penalty
(i.e., singular values are regularized by the ℓ1-penalty) have been extensively studied
(Srebro et al., 2005; Rennie and Srebro, 2005; Cai et al., 2010; Ji and Ye, 2009; Tomioka
et al., 2010).

Bayesian approaches to MF have also been actively explored. A maximum a posteriori
(MAP) estimation, which computes the mode of the posterior distributions, was shown
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to be equivalent to the ℓ1-MF when Gaussian priors are imposed on factorized matrices
(Srebro et al., 2005). Salakhutdinov and Mnih (2008) applied the Markov chain Monte
Carlo method to MF for the fully-Bayesian treatment. The VB approximation (Attias,
1999; Bishop, 2006) has also been applied to MF (Bishop, 1999; Lim and Teh, 2007;
Ilin and Raiko, 2010), and it was shown to perform well in experiments. Its theoretical
properties, including themodel-induced regularization, have been investigated in Nakajima
and Sugiyama (2011).

4.4 Limitations of SAMF and MU Algorithm

Here, we note the limitations of SAMF and the MU algorithm. First, in the current
formulation, each SMF term is not allowed to have overlapping groups. This excludes
important applications, e.g., simultaneous feature and sample selection problems (Jacob
et al., 2009). Second, the MU algorithm cannot be applied when the observed matrix has
missing entries, although SAMF itself still works with the standard VB iteration. This
is because the global analytic solution, on which the MU algorithm relies, holds only for
the fully-observed case. Third, we assume the Gaussian distribution for the dense noise
(E in Eq.(7)), which may not be appropriate for, e.g., binary observations. Variational
techniques for non-conjugate likelihoods, such as the one used in Seeger and Bouchard
(2012), are required to extend SAMF to more general noise distributions. Fourth, we
rely on the VB inference so far, and have not known if the fully-Bayesian treatment with
additional hyperpriors can improve the performance. Overcoming some of the limitations
described above is a promising future work.

5 Experimental Results

In this section, we first experimentally compare the performance of the MU algorithm and
the standard VB iteration. Then, we test the model selection ability of SAMF, based on
the free energy comparison. After that, we demonstrate the usefulness of the flexibility
of SAMF on benchmark datasets and in a real-world application.

5.1 Mean Update vs. Standard VB

We compare the algorithms under the following model:

V = ULRCE + E ,

where

ULRCE =
4∑

s=1

U (s) = U low-rank + U row + U column + U element. (39)

Here, ‘LRCE’ stands for the sum of the Low-rank, Row-wise, Column-wise, and Element-
wise terms, each of which is defined in Eqs.(1)–(4). We call this model ‘LRCE’-SAMF. As
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explained in Section 2.3, ‘LRCE’ -SAMF may be used to separate the clean signal U low-rank

from a possible row-wise sparse component (constantly broken sensors), a column-wise
sparse component (accidental disturbances affecting all sensors), and an element-wise
sparse component (randomly distributed spiky noise). We also evaluate ‘LCE’-SAMF,
‘LRE’-SAMF, and ‘LE’-SAMF, which can be regarded as generalizations of robust PCA
(Candès et al., 2011; Ding et al., 2011; Babacan et al., 2012). Note that ‘LE’-SAMF
corresponds to an SAMF counterpart of robust PCA.

First, we conducted an experiment with artificial data. We assume the empirical VB
scenario with unknown noise variance, i.e., the hyperparameters {C(k,s)

A , C
(k,s)
B }K(s)

k=1,
S
s=1 and

the noise variance σ2 are also estimated from observations. We use the full-rank model
(H = min(L,M)) for the low-rank term U low-rank, and expect the MIR effect to find the
true rank of U low-rank, as well as the non-zero entries in U row, U column, and U element.

We created an artificial dataset with the data matrix size L = 40 and M = 100,
and the rank H∗ = 10 for a true low-rank matrix U low-rank∗ = B∗A∗⊤. Each entry in
A∗ ∈ RM×H∗

and B∗ ∈ RL×H∗
was drawn from N1(0, 1). A true row-wise (column-wise)

part U row∗ (U column∗) was created by first randomly selecting ρL rows (ρM columns) for
ρ = 0.05, and then adding a noise subject to NM(0, ζIM) (NL(0, ζIL)) for ζ = 100 to each
of the selected rows (columns). A true element-wise part U element∗ was similarly created
by first selecting ρLM entries, and then adding a noise subject to N1(0, ζ) to each of the
selected entries. Finally, an observed matrix V was created by adding a noise subject to
N1(0, 1) to each entry of the sum ULRCE∗ of the above four true matrices.

It is known that the standard VB iteration (reviewed in Section 4.2) is known to be
sensitive to initialization (Nakajima et al., 2013). We set the initial values in the following

way: The mean parameters {Â(k,s), B̂(k,s)}K(s)

k=1,
S
s=1 were randomly created so that each

entry follows N1(0, 1). The covariances {Σ(k,s)
A , Σ

(k,s)
B }K(s)

k=1,
S
s=1 and the hyperparameters

{C(k,s)
A , C

(k,s)
B }K(s)

k=1,
S
s=1 were set to be identity. The initial noise variance was set to σ2 = 1.

Note that we rescaled V so that ∥V ∥2Fro/(LM) = 1, before starting iteration. We ran the
standard VB algorithm 10 times, starting from different initial points, and each trial is
plotted by a solid line (labeled as ‘Standard(iniRan)’) in Figure 6.

Initialization for the MU algorithm (described in Algorithm 1) is simple: We just set

Û (s) = 0(L,M) for s = 1, . . . , S, and σ2 = 1. Initialization of all other variables is not
needed. Furthermore, we empirically observed that the initial value for σ2 does not affect
the result much, unless it is too small. Note that, in the MU algorithm, initializing σ2 to
a large value is not harmful, because it is set to an adequate value after the first iteration
with the mean parameters kept Û (s) = 0(L,M). The result with the MU algorithm is
plotted by the dashed line in Figure 6.

Figures 6(a)–6(c) show the free energy, the computation time, and the estimated rank,
respectively, over iterations, and Figure 6(d) shows the reconstruction errors after 250 iter-

ations. The reconstruction errors consist of the overall error ∥ÛLRCE−ULRCE∗∥Fro/(LM),

and the four component-wise errors ∥Û (s)−U (s)∗∥Fro/(LM). The graphs show that the MU
algorithm, whose iteration is computationally slightly more expensive than the standard
VB iteration, immediately converges to a local minimum with the free energy substan-
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Û

−
U

∗
‖
2 F
ro
/
(L

M
)

 

 

O
ve

ra
ll

Lo
w

−
ra

nk

R
ow

C
ol

um
n

E
le

m
en

t

MeanUpdate
Standard(iniML)
Standard(iniMLSS)
Standard(iniRan)

(d) Reconstruction error

Figure 6: Experimental results with ‘LRCE’-SAMF for an artificial dataset (L = 40,M =
100, H∗ = 10, ρ = 0.05).

tially lower than the standard VB iteration. The estimated rank agrees with the true
rank Ĥ = H∗ = 10, while all 10 trials of the standard VB iteration failed to estimate the
true rank. It is also observed that the MU algorithm well reconstructs each of the four
terms.

We can slightly improve the performance of the standard VB iteration by adopt-
ing different initialization schemes. The line labeled as ‘Standard(iniML)’ in Fig-

ure 6 indicates the maximum likelihood (ML) initialization, i.e, (â
(k,s)
h , b̂

(k,s)

h ) =

(γ
(k,s)1/2
h ω

(k,s)
ah , γ

(k,s)1/2
h ω

(k,s)
bh

). Here, γ
(k,s)
h is the h-th largest singular value of the (k, s)-th

PR matrix V ′(k,s) of V (such that V
′(k,s)
l′,m′ = VX (s)(k,l′,m′)), and ω

(k,s)
ah and ω

(k,s)
bh

are the
associated right and left singular vectors. Also, we empirically found that starting from
small σ2 alleviates the local minima problem. The line labeled as ‘Standard(iniMLSS)’
indicates the ML initialization with σ2 = 0.0001. We can see that this scheme successfully
recovered the true rank. However, the free energy and the reconstruction error are still
substantially worse than the MU algorithm.

Figure 7 shows results with ‘LE’-SAMF when L = 100, M = 300, H∗ = 20, and
ρ = 0.1. We see that the MU algorithm compares favorably with the standard VB
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Figure 7: Experimental results with ‘LE’-SAMF for an artificial dataset (L = 100,M =
300, H∗ = 20, ρ = 0.1).

iteration. We have also tested various SAMF models including ‘LCE’-SAMF, ‘LRE’-
SAMF, and ‘LE’-SAMF under different settings for L, M , H∗, and ρ, and empirically
found that the MU algorithm generally gives a better solution with lower free energy and
smaller reconstruction errors than the standard VB iteration.

Next, we conducted experiments with benchmark data. Since we do not know the true
model of these data, we only focus on the achieved free energy, which directly indicates the
approximation accuracy to the Bayes posterior (see Section 2.4). To this end, we simply
fitted SAMF models to benchmark datasets by the MU algorithm and the standard VB
iteration, and plotted the obtained free energy.

Figure 8 shows the free energy after convergence in ‘LRCE’-SAMF, ‘LCE’-SAMF,
‘LRE’-SAMF, and ‘LE’-SAMF on several datasets from the UCI repository (Asuncion
and Newman, 2007). For better comparison, a constant is added to the obtained free
energy, so that the value of the MU algorithm is zero. We can see a clear advantage of
the MU algorithm over the standard VB iteration.
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Figure 8: Free energy on benchmark data.
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Figure 9: Free energy comparison for model selection.

5.2 Model Selection Ability

We tested the model selection ability of SAMF, by checking if the ‘LE’-SAMF, ‘LC’-
SAMF, and ‘LR’-SAMF models give the lowest free energy for the artificial data created
from the corresponding models, respectively.

We created artificial(‘LE’) data from a true ‘LE’-SAMF with L = 150, M = 200,
H∗ = 20, ρ = 0.1, and ζ = 100. Likewise, we created artificial(‘LC’) and artificial(‘LR’)
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data from true ‘LC’-SAMF and ‘LR’-SAMF models, respectively. Then, we applied ‘LE’-
SAMF, ‘LC’-SAMF, and ‘LR’-SAMF models to those artificial data, and plotted the
obtained free energies in Figure 9(a). If the model selection is successful, ‘LE’-SAMF
should result in the lowest free energy than the other two models on the artificial(‘LE’)
data. The same applies to ‘LC’-SAMF and ‘LR’-SAMF, respectively.

We see in Figure 9(a) that the model selection is successful on the artificial(‘LE’) data
and the artificial(‘LR’) data, but not on the artificial(‘LC’) data. In our investigation,
we observed that SAMF sometimes mixes up the column-wise term with the low-rank
term. We expect that a column-wise noise should be captured by the column-wise term.
However, it can also be captured by either of the low-rank and the element-wise terms at
the expense of a small loss of degrees of freedom (i.e., the problem is nearly ill-posed). The
Bayesian regularization should choose the column-wise term, because it uses the lowest
degrees of freedom to capture the column-wise noise. We suspect that the difference
in regularization between the low-rank and the column-wise terms is too small for stable
model selection against the disturbance by random noise and the existence of local minima.
We also conducted the same experiment, of which the result is shown in Figure 9(b), with
stronger sparse noise with ζ = 100LM . In this case, the model selection is successful on
all three artificial data. Further investigation on handling these nearly ill-posed cases is
left as future work.

5.3 Robustness against Simulated Sparse Noise

Here, we experimentally show the usefulness of the SAMF extension beyond the robust
PCA with simulated sparse noise.

Datasets from the UCI repository consist of M samples with L dimensions. We simu-
lated sparse noise that contaminates a small number of measurements over the samples.
We also simulated some accidents that cause simultaneous contamination in all the mea-
surements of a small number of samples. As explained in Section 2.3, the SAMF model
can capture the former type of noise by the element-wise sparse term, and the latter type
of noise by the column-wise sparse term.

We created semi-artificial data in the following procedure. We first rescaled the bench-
mark data V org so that ∥V org∥2Fro/(LM) = 1. Then, artificial true sparse noise compo-
nents, U column∗ and U element∗, were created in the same way as in Section 5.1 with ρ = 0.05,
and added to V org, i.e.,

V sim = V org + U column∗ + U element∗.

Since we do not know the true model of the original benchmark data, we focus on ro-
bustness against the simulated sparse noise. For the column-wise sparse term, we evaluate
the following value:

κcolumn = ∥(Û column+ − Û column−)− U column∗∥2Fro/(LM),

where Û column+ is the column-wise sparse term estimated from the simulated data V sim,
and Û column− is the column-wise sparse term estimated from the original data V org. If a
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Figure 10: Robustness against simulated sparse noise on benchmark data. Smaller κ
indicates better performance.

SAMF model perfectly captures the simulated true column-wise sparse noise U column∗ with
its column-wise sparse term, then κcolumn = 0 because the estimated column-wise sparse
term is increased by the simulated noise, i.e., Û column+− Û column−= U column∗. Therefore,
smaller κcolumn is expected to indicate higher robustness of the model against the sparse
noise. κelement is calculated in the same way, and κlow-rank and κrow-wise are calculated
without the simulated noise term, i.e., U low-rank∗ = U row-wise∗ = 0(L,M).

Figure 10 shows the values of κ averaged over 10 trials with randomly created sparse
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noise. As expected, the SAMF models (‘LRCE’-SAMF and ‘LCE’-SAMF) having the
column-wise sparse term are more reliable than the others (‘LRE’-SAMF and ‘LE’-
SAMF).

5.4 Real-world Application

Finally, we demonstrate the usefulness of the flexibility of SAMF in a foreground
(FG)/background (BG) video separation problem (Figure 3). Candès et al. (2011) formed
the observed matrix V by stacking all pixels in each frame into each column (Figure 4),
and applied robust PCA (with ‘LE’-terms)—the low-rank term captures the static BG
and the element-wise (or pixel-wise) term captures the moving FG, e.g., people walk-
ing through. As discussed in Section 4.3, SAMF is an extension of the VB robust PCA
(Babacan et al., 2012), which is the current state-of-the-art. We use ‘LE’-SAMF,

V = U low-rank + U element + E ,

which is conceptually the same as the VB robust PCA, as a baseline method for compar-
ison.

The SAMF framework enables a fine-tuned design for the FG term. Assuming that
pixels in an image segment with similar intensity values tend to share the same label
(i.e., FG or BG), we formed a segment-wise sparse SMF term: U ′(k) for each k is a
column vector consisting of all pixels in each segment. We produced an over-segmented
image from each frame by using the efficient graph-based segmentation (EGS) algorithm
(Felzenszwalb and Huttenlocher, 2004), and substituted the segment-wise sparse term for
the FG term (see Figure 5):

V = U low-rank + U segment + E .

We call this method segmentation-based SAMF (sSAMF). Note that EGS is computation-
ally very efficient: It takes less than 0.05 sec on a usual laptop to segment a 192×144 grey
image. EGS has several tuning parameters, and the obtained segmentation is sensitive
to some of them. However, we confirmed that sSAMF performs similarly with visually
different segmentations obtained over a wide range of tuning parameters (see detailed
information below on the segmentation algorithm). Therefore, careful parameter tuning
of EGS is not necessary for our purpose.

We compared sSAMF with ‘LE’-SAMF on the ‘WalkByShop1front’ video from the
Caviar dataset.1 Thanks to the Bayesian framework, all unknown parameters (except the
ones for segmentation) are estimated automatically with no manual parameter tuning.
For both models (‘LE’-SAMF and sSAMF), we used the MU algorithm, which has been
shown in Section 5.1 to be practically more reliable than the standard VB iteration. The
original video consists of 2360 frames, each of which is a color image with 384 × 288
pixels. We resized each image into 192×144 pixels, averaged over the color channels, and
sub-sampled every 15 frames (the frame IDs are 0, 15, 30, . . . , 2355). Thus, V is of the size

1http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
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of 27684 (pixels) × 158 (frames). We evaluated ‘LE’-SAMF and sSAMF on this video,
and found that both models perform well (although ‘LE’-SAMF failed in a few frames).

To contrast the methods more clearly, we created a more difficult video by sub-
sampling every 5 frames from 1501 to 2000 (the frame IDs are 1501, 1506, . . . , 1996 and
V is of the size of 27684 (pixels) × 100 (frames)). Since more people walked through in
this period, BG estimation is more challenging. The result is shown in Figure 11.

Figure 11(a) shows an original frame. This is a difficult snap shot, because a person
stayed at a same position for a while, which confuses separation. Figures 11(c) and 11(d)
show the BG and the FG terms obtained by ‘LE’-SAMF, respectively. We can see that
‘LE’-SAMF failed to separate the person from BG (the person is partly captured in the
BG term). On the other hand, Figures 11(e) and 11(f) show the BG and the FG terms
obtained by sSAMF based on the segmented image shown in Figure 11(b). We can see
that sSAMF successfully separated the person from BG in this difficult frame. A careful
look at the legs of the person makes us understand how segmentation helps separation—
the legs form a single segment (light blue colored) in Figure 11(b), and the segment-wise
sparse term (Figure 11(f)) captured all pixels on the legs, while the pixel-wise sparse term
(Figure 11(d)) captured only a part of those pixels.

We observed that, in all frames of the difficult video, as well as the easier one, sSAMF
gave good separation, while ‘LE’-SAMF failed in several frames (see movies provided as
Online Resource).

For reference, we applied the convex optimization approach (Candès et al., 2011),
which solves the minimization problem

min
U,E
∥UBG∥Tr + λ∥UFG∥1 s.t. V = UBG + UFG,

where ∥ · ∥Tr and ∥ · ∥1 denote the trace norm and the ℓ1-norm of a matrix, respectively,
by the inexact ALM algorithm (Lin et al., 2009). Figure 12 shows the obtained BG and
FG terms of the same frame as in Figure 11 with λ = 0.001, 0.005, 0.025. We see that
the performance strongly depends on the parameter value of λ, and that sSAMF gives an
almost identical result (bottom row in Figure 11) to the best ALM result with λ = 0.005
(middle row in Figure 12) without any manual parameter tuning.

Below, we give detailed information on the segmentation algorithm, the computation
time, and Online Resource.

Segmentation Algorithm

For the efficient graph-based segmentation (EGS) algorithm (Felzenszwalb and Hutten-
locher, 2004), we used the code publicly available from the authors’ homepage.2 EGS has
three tuning parameters: sigma, the smoothing parameter; k, the threshold parameter;
minc, minimum segment size. Among them, k dominantly determines the typical size of
segments (larger k leads to larger segments). To obtain over-segmented images for sSAMF
in our experiment, we chose k = 50, and the other parameters are set to sigma = 0.5 and

2http://www.cs.brown.edu/~pff/
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(a) Original (b) Segmented

(c) BG (‘LE’-SAMF) (d) FG (‘LE’-SAMF)

(e) BG (sSAMF) (f) FG (sSAMF)

Figure 11: ‘LE’-SAMF vs segmentation-based SAMF.

minc = 20 as recommended by the authors. We also tested other parameter setting, and
observed that FG/BG separation by sSAMF performed almost equally for 1 ≤ k ≤ 100,
despite the visual variation of segmented images (see Figure 13). Overall, we empiri-
cally observed that the performance of sSAMF is not very sensitive to the selection of
segmented images, unless it is highly under-segmented.



Variational Bayesian Sparse Additive Matrix Factorization 27

(a) BG (ALM λ = 0.001) (b) FG (ALM λ = 0.001)

(c) BG (ALM λ = 0.005) (d) FG (ALM λ = 0.05)

(e) BG (ALM λ = 0.025) (f) FG (ALM λ = 0.025)

Figure 12: Results with the inexact ALM algorithm (Lin et al., 2009) for λ = 0.001 (top
row), λ = 0.005 (middle row), and λ = 0.025 (bottom row) .

Computation Time

The computation time for segmentation by EGS was less than 10 sec (for 100 frames).
Forming the one-to-one map X took more than 80 sec (which is expected to be improved).
In total, sSAMF took 600 sec on a Linux machine with Xeon X5570(2.93GHz), while ‘LE’-
SAMF took 700 sec. This slight reduction in computation time comes from the reduction
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(a) Original image (b) Segmented (k = 1)

(c) Segmented (k = 10) (d) Segmented (k = 100)

Figure 13: Segmented images by the efficient graph-based segmentation (EGS) algorithm
with different k values. They are visually different, but with all these segmentations,
FB/BG separation results by sSAMF were almost identical. The original image (a) is the
same frame (m = 55 in the difficult video) as the one in Figure 11.

in the number K of partitions for the FG term, and hence the number of calculations of
partial analytic solutions.

Online Resource

Online Resource consists of two movies that show the performance of ‘LE’-SAMF (a SAMF
counterpart of robust PCA) and sSAMF over all frames of the easy video (SAMF_1.mpg)
and the difficult video (SAMF_2.mpg). The format of both movies is exactly the same as
Figure 11, i.e., the top row shows an original frame and its segmentation, the middle row
shows the BG and the FG terms obtained by ‘LE’-SAMF, and the bottom row shows the
BG and the FG terms obtained by sSAMF.
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6 Conclusion

In this paper, we proposed a sparse additive matrix factorization (SAMF) model, which
allows us to design various forms of factorization that induce various types of sparsity. We
then proposed a variational Bayesian (VB) algorithm called the mean update (MU), which
gives the global optimal solution for a large subset of parameters in each step. Through
experiments, we showed that the MU algorithm compares favorably with the standard VB
iteration. We also demonstrated the usefulness of the flexibility of SAMF in a real-world
foreground/background video separation experiment, where image segmentation is used
for automatically designing an SMF term.

Future work is to overcome the limitations discussed in Section 4.4. Analysis of con-
vergence properties of the MU algorithm, and theoretical elucidation of the reason why
the MU algorithm tends to give a better solution than the standard VB algorithm are
also our important future work.
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A Proof of Theorem 1 and Lemma 1

First, we consider the single-term SAMF (S = 1). In this case, the likelihood and the
priors are written as follows:

p(V |{A(k), B(k)}Kk=1) ∝ exp

(
− 1

2σ2

∥∥V −G({B(k)A(k)⊤}Kk=1;X )
∥∥2
Fro

)
, (40)

p(A(k)) ∝ exp

(
−1

2
tr
(
A(k)C

(k)−1
A A(k)⊤

))
, (41)

p(B(k)) ∝ exp

(
−1

2
tr
(
B(k)C

(k)−1
B B(k)⊤

))
. (42)

Let V ′(k) ∈ RL′(k)×M ′(k) be the partitioned-and-rearranged (PR) observed matrix for k-th
partition, i.e.,

V
′(k)
l′,m′ = VX (k,l′,m′). (43)

Since the map X is one-to-one, the following lemma holds:

Lemma 2 Eq.(40) can be factorized as follows:

p(V |{A(k), B(k)}Kk=1) ∝
K∏
k=1

exp

(
− 1

2σ2

∥∥V ′(k) −B(k)A(k)⊤∥∥2
Fro

)
. (44)

Next, we consider the general case when S ≥ 1. Substituting Eqs.(10)–(12) and (16)
into Eq.(14), we obtain the following lemma:

Lemma 3 The free energy (14) for SAMF under the constraint (15) is given by
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s=1

K(s)∑
k=1

(
M ′(k,s) log

|C(k,s)
A |

|Σ(k,s)
A |

+ L′(k,s) log
|C(k,s)

B |
|Σ(k,s)

B |

)
+
∥V ∥2

σ2


+

1

2

S∑
s=1

K(s)∑
k=1

tr
{
C

(k,s)−1
A (Â(k,s)⊤Â(k,s) +M ′(k,s)Σ

(k,s)
A )

+C
(k,s)−1
B (B̂(k,s)⊤B̂(k,s) + L′(k,s)Σ

(k,s)
B )

}



Variational Bayesian Sparse Additive Matrix Factorization 33

+
1

2σ2
tr

{
−2V ⊤

(
S∑

s=1

G({B̂(k,s)Â(k,s)⊤}K(s)

k=1 ;X (s))

)

+2
S∑

s=1

S∑
s′=s+1

G⊤({B̂(k,s)Â(k,s)⊤}K(s)

k=1 ;X (s))G({B̂(k,s′)Â(k,s′)⊤}K(s′)

k=1 ;X (s′))

}

+
1

2σ2

S∑
s=1

K(s)∑
k=1

tr
(
(Â(k,s)⊤Â(k,s) +M ′(k,s)Σ

(k,s)
A )(B̂(k,s)⊤B̂(k,s) + L′(k,s)Σ

(k,s)
B )

)

− 1

2

S∑
s=1

K(s)∑
k=1

(L′(k,s) +M ′(k,s))H ′(k,s) (45)

Combining Lemma 2 and Lemma 3, we have the following lemma:

Lemma 4 Given {Û (s)}s′ ̸=s = {{B̂(k,s′)Â(k,s′)⊤}K(s′)

k=1 }s′ ̸=s, the free energy (14) for SAMF

under the constraint (15) can be expressed as a function of {Â(k,s), B̂(k,s), Σ
(k,s)
A , Σ

(k,s)
B }K(s)

k=1

as follows:

F (s)({Â(k,s), B̂(k,s), Σ
(k,s)
A , Σ

(k,s)
B }K(s)

k=1 ) =
K(s)∑
k=1

F (k,s) + const.,

where

F (k,s) =
M ′(k,s)

2
log
|C(k,s)

A |
|Σ(k,s)

A |
+

L′(k,s)

2
log
|C(k,s)

B |
|Σ(k,s)

B |

+
1

2
tr
{
C

(k,s)−1
A (Â(k,s)⊤Â(k,s) +M ′(k,s)Σ

(k,s)
A ) + C

(k,s)−1
B (B̂(k,s)⊤B̂(k,s) + L′(k,s)Σ

(k,s)
B )

+ σ−2
(
−2Â(k,s)⊤Z ′(k,s)⊤B̂(k,s)

+(Â(k,s)⊤Â(k,s) +M ′(k,s)Σ
(k,s)
A )(B̂(k,s)⊤B̂(k,s) + L′(k,s)Σ

(k,s)
B )

)}
. (46)

The following proposition is known:

Proposition 1 (Bishop, 1999; Lim and Teh, 2007): The VB posterior for the plain MF
model

p(V |A,B) ∝ exp

(
− 1

2σ2
∥V −BA⊤∥2Fro

)
, (47)

p(A) ∝ exp

(
−1

2
tr
(
AC−1

A A⊤)) , (48)

p(B) ∝ exp

(
−1

2
tr
(
BC−1

B B⊤)) , (49)
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is written as

rVB(A,B) =
M∏

m=1

NH(ãm; ˜̂am, ΣA)
L∏
l=1

NH(b̃l;
˜̂
bl, ΣB). (50)

The free energy is written as

FMF =
M

2
log
|CA|
|ΣA|

+
L

2
log
|CB|
|ΣB|

+ const.

+
1

2
tr
{
C−1

A

(
Â⊤Â+MΣA

)
+ C−1

B

(
B̂⊤B̂ + LΣB

)
+σ−2

(
−2Â⊤V ⊤B̂ +

(
Â⊤Â+MΣA

)(
B̂⊤B̂ + LΣB

))}
. (51)

Now, we find that, given {Û (s)}s′ ̸=s = {{B̂(k,s′)Â(k,s′)⊤}K(s′)

k=1 }s′ ̸=s, Eqs.(16) and (46) for
each (k, s) reduce to Eqs.(50) and (51), respectively, where V is replaced with Z ′(k,s). This
completes the proof of Theorem 1.

Finally, we consider the noise variance σ2 estimation. By assumption, we know
all values of {{Â(k,s), B̂(k,s), Σ

(k,s)
A , Σ

(k,s)
B }K(s)

k=1 }Ss=1 that specify the VB posterior on

{Θ(s)
A , Θ

(s)
B }Ss=1. {{Σ

(k,s)
A , Σ

(k,s)
B }K(s)

k=1 }Ss=1 are positive-definite, because they are covariance
matrices. Then, Eq.(45) goes to infinity either when σ2 → 0 or when σ2 →∞. Further-
more, Eq.(45) is differentiable with respect to σ2(> 0). Consequently, any minimizer of
Eq.(45) is necessarily a stationary point. By differentiating Eq.(45), we obtain Eq.(22) as
a stationarity condition, which proves Lemma 1. 2


