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Abstract

One of the fundamental assumptions behind many supervised machine learning al-
gorithms is that training and test data follow the same probability distribution.
However, this important assumption is often violated in practice, for example, be-
cause of an unavoidable sample selection bias or non-stationarity of the environ-
ment. Due to violation of the assumption, standard machine learning methods
suffer a significant estimation bias. In this article, we consider two scenarios of such
distribution change — the covariate shift where input distributions differ and class-
balance change where class-prior probabilities vary in classification — and review
semi-supervised adaptation techniques based on importance weighting.
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1 Introduction

The goal of supervised learning such as regression and classification is to learn an input-
output dependency from input-output paired training samples so that test output y′ for
unseen test input x′ can be accurately estimated. Various supervised learning algorithms
were developed thus far, and they have been demonstrated to be useful in a wide range of
applications. Most of the popular machine learning algorithms assume that training and
test data follow the same probability distribution, based on which learning machines can
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generalize to unseen test data from training data [63, 25, 10]. However, this fundamental
assumption is often violated in practice, and this causes standard supervised learning
algorithms suffer significant estimation bias.

In this article, we consider two scenarios. The first setup is the covariate shift [44, 48],
where training and test input data follow different distributions but the input-output
relation does not change between training and test phases. The other setup is called class-
balance change in classification [42, 17], where the class-prior probabilities are different
in training and test phases but the input distribution of each class does not change. For
these two scenarios, we review semi-supervised adaptation techniques, where importance
weighting plays an essential role.

More specifically, we consider the semi-supervised learning problem where input-
output training samples {(xi, yi)}ni=1 and input-only test samples {x′

i′}n
′

i′=1 are available.
In the standard semi-supervised learning setup, training and test samples are regarded
as being drawn from the same probability distribution [13]. In contrast, in this article,
we suppose that they are drawn from different distributions: {(xi, yi)}ni=1 are drawn in-
dependently from a joint probability distribution with density p(x, y) and {x′

i′}n
′

i′=1 are
drawn independently from a marginal probability distribution with density

∫
p′(x, y)dy,

where p(x, y) and p′(x, y) are different:

p(x, y) ̸= p′(x, y).

Our goal is to learn the input-output relation for test samples. The situation where train-
ing and test samples follow different distributions is also referred to as non-stationarity
adaptation, dataset-shift adaptation, transfer learning, and domain adaptation. The semi-
supervised learning setup with differing training and testing distributions is sometimes
called unsupervised transfer or unsupervised adaptation in literature because no supervi-
sion is available from the test domain.

2 Adaptation Techniques for Covariate Shift

The covariate shift [44, 48] is the situation where input distributions change but the
conditional distribution of outputs given inputs remains unchanged:

p(x) ̸= p′(x) and p(y|x) = p′(y|x).

Figure 1 illustrates an example of covariate shift regression: Training input samples
{xi}ni=1 are drawn from the left-hand side of the domain, whereas test input samples
{x′

i′}n
′

i′=1 are drawn from the right-hand side. This problem is similar to extrapolation
since the prediction is made in a low density region of the training set.

2.1 Importance-Weighted Learning

For this covariate-shift regression problem, let us use a simple linear model,

fθ(x) = θ1 + θ2x,
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Figure 1: Covariate shift. Input distributions change but the conditional distribution of
outputs given inputs does not changed.
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(a) Ordinary least-squares
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(b) Importance-weighted least-
squares

Figure 2: Regression under covariate shift. Dashed lines denote learned functions.

and train this model by ordinary least-squares :

min
θ

n∑
i=1

(
fθ(xi)− yi

)2
.

The learned result illustrated in Figure 2(a) shows that the obtained function fits the
training samples {(xi, yi)}ni=1 very well, but it does not give good prediction of outputs
for the test input samples {x′

i′}n
′

i′=1 (i.e., samples denoted by “×”).
Under the covariate shift, it is expected that only training samples whose input points

are close to test input samples {x′
i′}n

′

i′=1 are useful. This intuitive idea can be realized by
weighting the training loss according to the importance, which is the ratio between p′(x)
and p(x).

w(x) :=
p′(x)

p(x)
.
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In Figure 2(b), the learned result obtained by importance-weighted least-squares [44],

min
θ

n∑
i=1

w(xi)
(
fθ(xi)− yi

)2
,

is illustrated. This shows that importance weighting can improve the accuracy of predict-
ing outputs for the test input samples {x′

i′}n
′

i′=1.
The above importance-weighted least-squares can be regarded as an application of

importance weighting to approximating the generalization error (or the expected test
loss):

G :=

∫∫
loss(y, fθ(x))p

′(x, y)dxdy,

where loss(y, ŷ) denotes a point-wise loss when y is predicted by ŷ. More specifically, the
generalization error G can be approximated by the importance-weighted average of the
training loss:

G =

∫∫
loss(y, fθ(x))p

′(y|x)p′(x)dxdy

=

∫∫
loss(y, fθ(x))p

′(y|x)p
′(x)

p(x)
p(x)dxdy

=

∫∫
loss(y, fθ(x))w(x)p(x, y)dxdy

≈ 1

n

n∑
i=1

loss(yi, fθ(xi))w(xi).

Note that this importance weighting idea can be applied to any likelihood/loss-based
learning algorithms, including Fisher discriminant analysis, logistic regression, the support
vector machine, boosting, and the conditional random field, and it also plays an important
role for reducing the estimation bias in active learning and experimental design scenarios
[65, 28, 47, 26, 54, 52]. See [48] for more thorough discussion on importance-weighted
learning.

To implement importance-weighted learning, importance values {w(xi)}ni=1 are neces-
sary. However, training and test input densities p(x) and p′(x) are unknown in practice,
and thus the importance values should be estimated from data. A naive approach is to
estimate p(x) from {xi}ni=1 and p′(x) from {x′

i′}n
′

i′=1 separately and then take their ratio.
However, such a two-step procedure is not accurate because the error incurred in the
estimation of p(x) and p′(x) can be increased when their ratio is computed in the second
stage. Thus, directly estimating the ratio w(x) without estimating p(x) and p′(x) is more
preferable.

Following this idea, various methods of importance estimation have been developed,
for example, based on density estimation of p′(x) after uniformization of p(x) [16, 14], lo-
gistic regression for discriminating data from p(x) and p′(x) [36, 15, 7], moment matching
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between p′(x) and p(x)w(x) [36, 18, 29], integral equations between p′(x) and p(x)w(x)
[64, 37], density matching between p′(x) and p(x)w(x) under the Kullback-Leibler diver-
gence [58, 34, 61, 67, 70], least-squares importance fitting of w(x) to p′(x)/p(x) [27, 29],
and importance fitting of w(x) to p′(x)/p(x) under the Bregman divergence [56].

Among them, the least-squares importance fitting method has various practical advan-
tages, for example, an analytic-form solution that can be computed efficiently is available,
cross-validation is available for hyperparameter tuning, the optimal convergence rate is
achieved both in parametric and non-parametric settings [27, 29], and the highest numer-
ical stability in terms of condition numbers is achieved among a class of importance esti-
mators [30]. Furthermore, dimensionality reduction methods for improving the accuracy
of importance estimation in high-dimensional problems have been developed [49, 59, 68].
See [55] for more comprehensive discussion on direct importance estimation.

2.2 Relative Importance-Weighted Learning

Let us continue using the illustrative example described in Figure 1 and Figure 2. The true
importance function w(x) is plotted in Figure 1(a). This shows that, among many training
samples, only a small number of samples at around x = 2 have large importance weights
and other samples have almost zero weights. This implies that importance-weighted
learning in this example is rather unreliable because the learned function is essentially
obtained from only a few training samples.

Such unreliable behavior is caused by the fact that the importance function w(x) can
take very large values. To cope with this problem, the relative importance weight is useful
[71]:

w(β)(x) =
p′(x)

βp′(x) + (1− β)p(x)
,

where β ∈ [0, 1] is the relativity parameter. The relative importance weight w(β)(x) is
reduced to the ordinary importance weight w(x) when β = 0. As β is increased, the
relative importance weight gets flatter and is reduced to the uniform weight w(β)(x) = 1
when β = 1 (Figure 3). The non-negativity of the importance function, p′(x)/p(x) ≥ 0,
assures that the relative importance weight is bounded from above by 1/β:

w(β)(x) =
1

β + (1− β) p(x)
p′(x)

≤ 1

β
.

The least-squares method combined with the relative importance weight is called relative
importance-weighted least-squares :

min
θ

1

2

n∑
i=1

w(β)(xi)
(
fθ(xi)− yi

)2
,

where the relativity parameter β controls the trade-off between bias and variance.
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Figure 3: Relative importance. p′(x) is the normal distribution with mean 0 and variance
1, and p(x) is the normal distribution with mean 0.5 and variance 1.

Now let us consider the problem of estimating the relative importance weight w(β)(x)
from {xi}ni=1 and {x′

i′}n
′

i′=1. We use the following linear-in-parameter model wα(x) for
learning the relative importance weight w(β)(x):

wα(x) =
b∑

j=1

αjψj(x) = α
⊤ψ(x),

where α = (α1, . . . , αb)
⊤ is the parameter vector and ψ(x) = (ψ1(x), . . . , ψb(x))

⊤ is the
basis function vector. As basis functions, we may use, for example, the Gaussian kernels:

wα(x) =
n′∑
j=1

αj exp

(
−
∥x− x′

j∥2

2σ2

)
,

where σ2 denotes the Gaussian width.
Then the parameter α is learned so that the following criterion J(α) is minimized:

J(α) =

∫ (
wα(x)− w(β)(x)

)2(
βp′(x) + (1− β)p(x)

)
dx

=

∫
α⊤ψ(x)ψ(x)⊤α

(
βp′(x) + (1− β)p(x)

)
dx

− 2

∫
α⊤ψ(x)p′(x)dx+ C,

where the third term,

C =

∫
w(β)(x)p′(x)dx,
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Figure 4: Illustration of RuLSIF. “×” in Figure 4(b) denotes an estimated relative im-
portance value at xi.

is a constant irrelevant to the parameter α and thus can be ignored. Approximating
the expectations in the first and second terms by sample averages and adding the ℓ2-
regularizer, we have the following training criterion:

min
α

[
α⊤Ĝβα− 2α⊤ĥ+ λ∥α∥2

]
,

where Ĝβ and ĥ, a b× b matrix and a b-dimensional vector, are defined as

Ĝβ =
β

n′

n′∑
i′=1

ψ(x′
i′)ψ(x

′
i′)

⊤ +
1− β

n

n∑
i=1

ψ(xi)ψ(xi)
⊤ and ĥ =

1

n′

n′∑
i′=1

ψ(x′
i′).

This training criterion is a convex quadratic function of α and its minimizer α̂ can be
obtained analytically as

α̂ =
(
Ĝβ + λI

)−1

ĥ.

This method is called relative unconstrained least-squares importance fitting (RuLSIF)
[71]. Tuning parameters such as the regularization parameter λ and the Gaussian width
σ2 can be optimized via cross-validation with respect to J .

An example of relative importance estimation by RuLSIF is illustrated in Figure 4.

2.3 Importance-Weighted Model Selection

Choice of the relativity parameter β as well as other tuning parameters such as basis
functions and regularization parameters is crucial for obtaining better performance in
practice. For model selection, various methods such as the Akaike information crite-
rion [2], the subspace information criterion [53], and cross-validation [46] are available.
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However, under the covariate shift, these model selection techniques based on training
samples {(xi, yi)}ni=1 do not give valid evaluation of the prediction accuracy of outputs
for test inputs {x′

i′}n
′

i′=1.
Under the covariate shift, importance-weighted variants of such model selection meth-

ods are useful [44, 51, 50]. The simplest model selection method called importance-
weighted cross-validation is given as follows:

1. Randomly split training samples T = {(xi, yi)}ni=1 into m disjoint subsets {Ti}mi=1

of (approximately) the same size.

2. Repeat for i = 1, . . . ,m;

(a) Obtain a learned function fi from T \Ti (i.e., all samples without Ti).

(b) Evaluate the generalization error using hold-out samples Ti as

Ĝi =


1

|Ti|
∑

(x,y)∈Ti

w(x)
(
fi(x)− y

)2
(Regression),

1

|Ti|
∑

(x,y)∈Ti

w(x)

2

(
1− sign

(
fi(x)y

))
(Classification),

where |Ti| denotes the number of elements in the set Ti.

3. Output the average of Ĝ1, . . . , Ĝm as the final evaluation Ĝ of the generalization
error:

Ĝ =
1

m

m∑
i=1

Ĝi.

2.4 Applications

Importance-weighted learning has been successfully applied to various real-world prob-
lems, including brain-computer interface [50, 33], robot control [19, 3, 20, 72], speaker
identification [69], age prediction from face images [62], activity recognition from ac-
celerometers [21], natural language processing [61], spam filtering [9], targeted advertising
[8], HIV therapy screening [6], and wafer alignment in semiconductor exposure appara-
tus [52]. Below, we describe application of covariate shift adaptation in 3D human-pose
estimation from monocular videos [66].

We use the HumanEva-I dataset [45], which contains synchronized multi-view videos
and motion-capture data for 3 subjects performing multiple activities: Walking, jogging,
boxing, throwing and catching, and gesturing. As input x, we extract the histogram-
of-oriented-gradient (HoG) feature [11] of 270 dimensions from videos taken by 3 color
cameras with 9630 image-pose frames for each camera. Output y is a corresponding
pose vector, which means that we consider a multi-dimensional regression problem. We
randomly select n samples from the set of 3 × 4815 = 14445 frames for training and use
the remaining 14445 frames for testing.

We consider the following scenarios:
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Selection bias: The training set contains data from all 3 subjects, whereas the test set
only contains data from a single subject.

Subject transfer: The training set contains data from 2 subjects, whereas the test set
contains data from the remaining subject not included in the training set.

As regression algorithms, we use kernel regression (KR) [1], twin Gaussian processes
regression (TGP) [11], and the weighted k-nearest neighbor (WkNN) method [43]. See
[66] for the details of these algorithms. For KR and TGP, we consider their importance-
weighted variants which are referred to as IWKR and IWTGP.

Each pose is represented by 20 3D-joint markers: y = [y(1)⊤, . . . ,y(20)⊤]⊤ ∈ R60, where
y(m) ∈ R3 for m = 1, . . . , 20. Error between true pose y∗ and its estimate ŷ is measured
by the average Euclidean distance:

Error(y∗, ŷ) =
1

20

20∑
m=1

∥ŷ(m) − y∗(m)∥.

Figure 5 shows the pose estimation error as a function of the training sample size n
averaged over all motions and 10 runs. The graphs clearly show that IWTGP and IWKR
outperform their non-adaptive counterparts and the baseline WkNN method.

3 Adaptation Techniques for Class-Balance Change

Class-balance change [42, 17] is the classification problem where class-prior probabilities
change but the conditional distribution of input x given class y remains unchanged:

p(y) ̸= p′(y) and p(x|y) = p′(x|y). (1)

Figure 6 illustrates an example of classification under class-balance change. When the
class balances are different in the training and test phases, naive training of a classifier
yields significant estimation bias even if the class-conditional input density is unchanged.

In the same way as covariate shift adaptation, estimation bias caused by class-balance
change can be canceled by weighting the training loss according to the class-balance ratio:

w(y) =
p′(y)

p(y)
.

Below, we focus on binary classification where label y takes either +1 or −1 for sim-
plicity.

3.1 Class-Balance Estimation

The training class-balance p(y) can be naively estimated by ny/n if ny samples belong to
class y in the training set {(xi, yi)}ni=1. The test class-balance p

′(y) can also be estimated
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Figure 5: 3D human-pose estimation error as a function of the number of training samples
averaged over all motions for each subject. The best method and comparable ones in terms
of the average error according to the paired t-test at the significance level 5% are specified
by ‘◦’.
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Figure 6: Change in class balances shifts the optimal classification boundary. Class-
conditional input density is the same between the training and test phases (i.e., p(x|y) =
p′(x|y)), but class-prior probabilities are different (i.e., p(y) ̸= p′(y)).
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Figure 7: p′(y) can be estimated by fitting a mixture of training class-wise densities p(x|y)
to test input density p′(x).

in the same way if a labeled test set {(x′
i′ , y

′
i′)}n

′

i′=1 is available. However, we are considering
a semi-supervised learning setup where only an unlabeled test set {x′

i′}n
′

i′=1 is available.
Thus, p′(y) cannot be estimated naively.

In the semi-supervised learning setup under Eq.(1), p′(y) can be estimated by fitting
a mixture qπ(x) of training class-wise densities p(x|y) to test input density p′(x) (see
Figure 7):

qπ(x) = πp(x|y = +1) + (1− π)p(x|y = −1).

The value of the parameter π corresponds to p′(y = +1), whereas 1 − π corresponds to
p′(y = −1).

For the fitting of qπ to p′, we may use the Kullback-Leibler (KL) divergence [32] or the
Pearson (PE) divergence [35]:

KL(p′∥qπ) =
∫
p′(x) log

p′(x)

qπ(x)
dx,

PE(p′∥qπ) =
∫
qπ(x)

(
p′(x)

qπ(x)
− 1

)2

dx.
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These divergences can be accurately approximated from samples by directly estimating
the density ratio p′(x)/qπ(x) without density estimation of p′(x) and qπ(x) [55]. However,
the density ratio function p′(x)/qπ(x) is sensitive to small variation, and therefore it is
not robust against outliers.

Here we consider the L2-distance between p′ and qπ:

L2(p′, qπ) =

∫ (
p′(x)− qπ(x)

)2
dx.

The L2-distance can also be accurately approximated from samples by directly estimating
the density difference p′(x)− qπ(x), without density estimation of p′(x) and qπ(x) [57].

Historically, non-parametric estimation of mixture proportion π under the L2-distance
was first investigated in [22], which uses empirical distribution functions. Following this
seminal work, its variant based on kernel density estimation has been developed [60],
and this is further extended to choosing the kernel bandwidths jointly [23]. In the related
context of two-sample homogeneity testing under the L2-distance, the use of kernel density
estimators with fixed and equal bandwidths has been investigated [4].

3.2 L2-Distance Approximation

Here, we explain how the L2-distance can be directly approximated from data via di-
rect density-difference estimation [31, 57]. For simplicity, we consider the approximation
problem of the L2-distance between p and p′,

L2(p, p′) =

∫
f(x)2dx, where f(x) = p(x)− p′(x), (2)

from {xi}ni=1 and {x′
i′}n

′

i′=1.
We use the following Gaussian density-difference model:

g(x) =
n+n′∑
j=1

αj exp

(
−∥x− cj∥2

2σ2

)
,

where

(c1, . . . , cn, cn+1, . . . , cn+n′) = (x1, . . . ,xn,x
′
1, . . . ,x

′
n′)

are Gaussian centers. The parameter α = (α1, . . . , αn+n′)⊤ in the density-difference model
is learned so that the following criterion J(α) is minimized:

J(α) =

∫ (
g(x)− f(x)

)2
dx

=

∫
g(x)2dx− 2

∫
g(x)f(x)dx+ C,
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where the third term,

C =

∫
f(x)2dx,

is a constant irrelevant to the parameter α and thus can be ignored. The first term can
be computed analytically as ∫

g(x)2dx = α⊤Uα,

where U is the (n+ n′)× (n+ n′) matrix with the (j, j′)-th element defined by

Uj,j′ =

∫
exp

(
−∥x− cj∥2

2σ2

)
exp

(
−∥x− cj′∥2

2σ2

)
dx

= (πσ2)d/2 exp

(
−∥cj − cj′∥2

4σ2

)
.

Approximating the expectations in the second term by sample averages and adding the
ℓ2-regularizer, we have the following training criterion:

min
α

[
α⊤Uα− 2α⊤v̂ + λ∥α∥2

]
,

where v̂ is the (n+ n′)-dimensional vector with the j-th element defined by

v̂j =
1

n

n∑
i=1

exp

(
−∥xi − cj∥2

2σ2

)
− 1

n′

n′∑
i′=1

exp

(
−∥x′

i′ − cj∥2

2σ2

)
.

This training criterion is a convex quadratic function of α and its minimizer α̂ can be
obtained analytically as

α̂ = (U + λI)−1 v̂.

This method is called the least-squares density-difference (LSDD) estimator [57]. Tuning
parameters such as the regularization parameter λ and basis function ψ can be optimized
via cross-validation with respect to J . An example of density-difference estimation by
LSDD is illustrated in Figure 8.

If the true density-difference f in Eq.(2) is replaced with the LSDD estimator, we
obtain the following L2-distance estimator:

α̂⊤Uα̂.

Similarly, from another expression of the L2-distance estimator,

L2(p, p′) =

∫
f(x)

(
p(x)− p′(x)

)
dx,
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Figure 8: Illustration of LSDD. “×” in Figure 8(b) denotes an estimated density difference
value at xi and x

′
i′ .

we obtain the following L2-distance estimator:

v̂⊤α̂.

It was shown that the linear combination of these estimators,

2v̂⊤α̂− α̂⊤Uα̂,

tends to have smaller bias [57], and thus this would be a more reliable L2-distance esti-
mator in practice.

3.3 Experiments

Here, we use four UCI benchmark datasets [5] for experiments, where we randomly choose
10 labeled training samples from each class and 50 unlabeled test samples following true
class-prior:

π∗ = 0.1, 0.2, . . . , 0.9.

The LSDD method is compared with the following methods:

KDEi: Kernel density estimation (KDE) is used to approximate p′(x) and qπ(x) from
data and then the L2-distance is computed [60]. Two Gaussian widths are indepen-
dently chosen based on 5-fold least-squares cross-validation [24].

KDEj In the KDE-based method, two Gaussian widths are jointly chosen based on 5-fold
cross-validation in terms of the LSDD criterion [23]. That is, the cross-validated
LSDD criterion is computed as a function of two Gaussian widths and the best pair
that minimizes the criterion is selected.

EM: The class-prior estimation method based on the expectation-maximization algo-
rithm [42]. This method actually corresponds to distribution matching under the
KL divergence.
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The left graphs in Figure 9 plot the mean and standard error of the squared difference
between true and estimated class-balances π over 1000 runs. These graphs show that
LSDD tends to provide better class-balance estimates than alternative approaches.

Next, we use the estimated class balance to train a classifier. We use a weighted
ℓ2-regularized least-squares classifier [41]. That is, a class label ŷ for a test input x is
estimated by

ŷ = sign

(
n∑

ℓ=1

θ̂ℓK(x,xℓ)

)
,

where K(x,x′) is the Gaussian kernel function with kernel width κ. {θ̂ℓ}nℓ=1 are learned
parameters given by

(θ̂1, . . . , θ̂n) := argmin
θ1,...,θn

 n∑
i=1

πyi
nyi/n

(
n∑

ℓ=1

θℓK(xi,xℓ)− yi

)2

+ δ

n∑
ℓ=1

θ2ℓ

 ,
where π+1 = π̂, π−1 = 1−π̂, π̂ is a class-balance estimate, and δ (≥ 0) is the regularization
parameter. The Gaussian width κ and the regularization parameter δ are chosen by 5-fold
weighted cross-validation [50] in terms of the misclassification error.

The right graphs in Figure 9 plot the test misclassification error over 1000 runs. The
results show the LSDD-based method provides lower classification errors, which would be
brought by good estimates of test class-balances.

4 Conclusion

In this article, we reviewed semi-supervised adaptive learning techniques for the covariate
shift and class-balance change scenarios. In both cases, importance weighting plays an
essential role. MATLAB implementations of the algorithms reviewed in this article are
available from

“http://sugiyama-www.cs.titech.ac.jp/~sugi/software/”.

See [38] for more general discussion on learning under different training and test distri-
butions.

If input-output samples are available from both training and test domains, weighted
learning according to the joint importance p′(x, y)/p(x, y) can in principle be used for
transferring training samples {(xi, yi)}ni=1 to the test domain even when p(x, y) and
p′(x, y) do not have an explicit link such as the covariate shift and class-balance change
[6, 55]. In this situation, not only transferring information from the training domain to
the test domain, but also the opposite transfer from the test domain to the training do-
main is possible simultaneously. This is the idea of multi-task learning [12] and is also an
important branch of modern machine learning research.
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Figure 9: Results of class-balance adaptation. Left: Squared error of class-balance esti-
mation. Right: Misclassification error by a weighted ℓ2-regularized least-squares classifier
with weighted cross-validation.
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Learning from input-output samples has already been studied extensively in statis-
tics and machine learning. However, collecting input-output samples is often expensive
and time-consuming in practice. Therefore, learning with side information such as ad-
ditional input-only samples (semi-supervised learning) and additional related learning
tasks (transfer learning and multi-task learning), as well as new models of input-output
data collection such as crowdsourcing [40] and self-taught learning [39], will be important
challenges in the arriving big data era.
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A. Schwaighofer, and N. Lawrence, editors, Dataset Shift in Machine Learning, pages
131–160, Cambridge, MA, USA, 2009. MIT Press.

[19] H. Hachiya, T. Akiyama, M. Sugiyama, and J. Peters. Adaptive importance sam-
pling for value function approximation in off-policy reinforcement learning. Neural
Networks, 22(10):1399–1410, 2009.

[20] H. Hachiya, J. Peters, and M. Sugiyama. Reward weighted regression with sample
reuse. Neural Computation, 11(23):2798–2832, 2011.

[21] H. Hachiya, M. Sugiyama, and N. Ueda. Importance-weighted least-squares prob-
abilistic classifier for covariate shift adaptation with application to human activity
recognition. Neurocomputing, 80:93–101, 2012.

[22] P. Hall. On the non-parametric estimation of mixture proportions. Journal of the
Royal Statistical Society, Series B, 43(2):147–156, 1981.



Learning under Non-Stationarity 19

[23] P. Hall and M. P. Wand. On nonparametric discrimination using density differences.
Biometrika, 75(3):541–547, 1988.
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