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Abstract

Initializing an unmixing matrix is an important problem in source separation since
an objective function to be optimized is typically non-convex. In this paper, we
consider the problem of two-source signal separation from a two-microphone array
located on a mobile device, where a point source such as a speech signal is placed
in front of the array, while no information is available about another interference
signal. We propose a simple and computationally efficient method for estimating
the geometry and source type (a point or diffuse) of the interference signal, which
allows us to adaptively choose a suitable unmixing matrix initialization scheme. Our
proposed method, noise adaptive optimization of matrix initialization (NAOMI), is
shown to be effective through source separation simulations.
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1 Introduction

Real-time implementation of frequency-domain independent component analysis (FDICA)
[1, 2, 3] into mobile devices has recently attracted a great deal of attention from the audio
industry [4, 5, 6], because of its various potential applications such as speech enhancement
and speaker separation. However, since surrounding environments, source positions, and
source mixing rates are constantly changing in mobile device applications, it is highly
challenging to achieve a good performance in real-world environments.

Many effective approaches have been proposed for improving the performance of
FDICA by exploiting knowledge of room and sensor geometry [7], geometric informa-
tion of sound sources [2, 8, 9, 10, 11], a sophisticated prior model of speech signals [12],
higher-order frequency dependencies [13, 14], and post-processing with non-stationary
spectral subtraction [15]. However, these approaches implicitly assume knowledge of the
sound source geometry and the source type (a point source, a diffuse source, etc.), and
thus, they are valid only in limited cases. In addition, since the cost function of FDICA is
typically non-convex, FDICA is not guaranteed to converge to the global optimal solution,
when the initial unmixing matrix is incorrectly chosen [3, 16, 17]. Thus, unmixing matrix
initialization is a key factor for successfully implementing FDICA in mobile devices.

A popular unmixing matrix initialization technique is the combination of delay-and-
sum (DS) and null beamformers (NBF) [3, 16, 17], which is known to be robust to
the FDICA permutation problem [3]. However, beamformer-based initialization heavily
depends on the sound source geometry and the source type. Thus, beamformer-based
initialization itself is not suited for mobile use, without a reasonable estimator of the
source geometry and the source type.

In this paper, we propose an algorithm called noise adaptive optimization of matrix
initialization (NAOMI) for estimating the source geometry and the source type. We
consider the problem of two-source separation from a two-microphone array, where a point
source such as a speech signal is placed in front of the array, while another interfering
source should be separated and removed using FDICA. The interfering source is either
another point source that is not located directly in front of the microphones (e.g., a
speech signal that is not intended to be captured by the microphones) or a diffuse source
(e.g., loud background music or airplane engine rumble). To identify the type of the
interfering source, we first estimate its direction of arrival (DOA) at each frequency bin
using covariance fitting [18], and then use the variance of the estimated DOAs to classify
the interfering source. The initial unmixing matrix is then selected based on the estimated
source type. The effectiveness of the proposed method for speech de-noising is evaluated
through source separation simulations.

2 Problem Formulation

In this section, we formulate FDICA and review beamformer-based unmixing matrix
initialization methods.



Noise Adaptive Optimization of Matrix Initialization 3

2.1 Frequency-Domain Independent Component Analysis
(FDICA)

The K observed signals by N microphones in real environments can be modeled as con-
volutive mixtures:

xj(t) :=
K∑
i=1

P∑
k=1

aji(k)si(t− k + 1), j = 1, . . . , N, (1)

where si is the signal from source i, xj is the observed signal at microphone j, and aji is
the P -tap impulse response from source i to microphone j. Converting the time-domain
convolutive mixtures into the frequency domain by the Short-Time Fourier Transform
(STFT), we can express the convolutive mixture at frequency f of the τ -th windowed
frame as

x(f, τ) := A(f)s(f, τ), (2)

where x(f, τ) = [x1(f, τ), . . . xN(f, τ)]
⊤ ∈ CN is the observed signal vector at the

microphones, A(f) = [a1(f), . . . ,aK(f)] ∈ CN×K is the mixing matrix, s(f, τ) =
[s1(f, τ), . . . , sK(f, τ)]

⊤ ∈ CK is the source signal, and ⊤ denotes a transpose of ma-
trix. In this paper, we assume that the numbers of observed signals and microphones are
N = K = 2.

Let us define the separated signals y(f, τ) = [y1(f, τ), · · · , yN(f, τ)]⊤ ∈ CN as

y(f, τ) := W (f)x(f, τ), (3)

where W (f) ∈ CN×N is called the unmixing matrix. Then, the goal of FDICA is to
estimate the unmixing matrix W (f) such that W (f)A(f) = I up to scaling and permu-
tation, where I is the identity matrix. In this paper, we employ an information-theoretic
approach [1, 19]:

W ∗(f) := argmin
W (f)

∫
p(y(f)) log

p(y(f))∏K
k=1 pk(yk(f))

dy(f), (4)

where p(y(f)) is the probability density function (pdf) of y(f), y(f) =
[y1(f), . . . , yK(f)]

⊤, pk(yk(f)) is the marginal pdf of yk(f). Note that y(f, τ) is the
sample-approximated signal of y(f). The unmixing matrix W (f) can be obtained by
using the following iterative formula [1]:

W (l+1)(f) = W (l)(f) + η
{
I− Eτ [ϕ(f, τ)y

H(f, τ)]W (l)(f)
}
, (5)

where H is the Hermitian transpose of a matrix, W (l)(f) is l-th iteration of W (f), η is a
step-size parameter, and Eτ [y(f, τ)] is the expectation of y(f, τ) with respect to τ . The
nonlinear function ϕ(·) is defined by

ϕ(f, τ) := [ϕ1(f, τ) · · ·ϕK(f, τ)]
⊤, (6)

ϕk(f, τ) := sgn(Re{yk(f, τ)}) + jsgn(Im{yk(f, τ)}), (7)
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where sgn(·) is the sign function and Re{·} and Im{·} denote the real and imaginary parts
of a complex number, respectively.

Since the cost function (4) is scale- and permutation-invariant with respect to W (f),
removing scaling and permutation ambiguity is an important issue in FDICA. In this
paper, we employ the projection-back method for removing scaling ambiguity [2]:

Ŵ (f)←− diag(Ŵ−1(f))Ŵ (f), (8)

where diag(W ) denotes the diagonal matrix with diagonal elements W1,1,W2,2, . . . ,WK,K .
To alleviate the permutation ambiguity, we may use post-processing methods based on
correlation [2] or the direction of arrival (DOA) [10].

Finally, we can obtain a separated time-domain signal of k-th channel by ap-
plying the inverse Fourier transform to separated frequency-domain signal ŷk =
[ŷk(1), ŷk(2), . . . , ŷk(Nf )]

⊤, where Nf is the number of frequency bins.
Since the cost function of FDICA (4) is non-convex with respect to W (f) [19],

W (∞)(f) may not converge to the global optimal solution when the initial unmixing
matrix W (0)(f) is set inappropriately. Thus, it would be more promising to initialize the
unmixing matrix adaptively depending on the source positions or source types.

2.2 Beamformer-Based Unmixing Matrix Initialization

We assume that one of the two signal sources is a point source located in front of the
microphone array. In such a case, the possible combinations of sound source types are
point source + point source or point source + diffuse source, where we define a point source
as a speech signal located near the microphone array, while a diffuse source is defined as
a widely spread source located far from the microphone array. Below, we review two
popular beamformer-based unmixing matrix initialization techniques for the point source
+ point source and point source + diffuse source cases, respectively.

2.2.1 Initialization with Null Beamformer (NBF)

NBF-based initialization is often used for separating mixtures of two point sources, i.e.,
speech + speech, and is given as follows [3]:

W (0)(f) :=

[
1 −ei2πfd sin(θ2)/Vc

1 −ei2πfd sin(θ1)/Vc

]
, (9)

where θ1 and θ2 are the DOAs of the point sources, d is the distance between the two
microphones, and Vc is the speed of sound. The first row of Eq.(9) cancels the signal
from direction θ2 and enhances the signal from direction θ1, while the second row cancels
the signal from direction θ1 and enhances the signal from direction θ2. By using the
same θ1 and θ2 values to initialize the unmixing matrix for every frequency, NBF-based
initialization is considered robust to the permutation problem. However, if the DOAs of
point sources θ1 and θ2 are incorrectly set,W

(∞)(f) might fail to converge to an acceptable
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solution. In addition, if the observed signal is point source + diffuse source, NBF-based
initialization is not a reasonable choice, since the DOA of a diffuse source is usually not
well-defined.

2.2.2 Initialization with Delay-and-Sum and Null Beamformer (DS-NBF)

When the source type is point source + diffuse source, we can not estimate the DOA
of the diffuse source. In such a case, the following initial unmixing matrix is often used
[16, 17]:

W (0)(f) :=

[
1
2

1
2
ei2πfd sin(θ1)/Vc

1 −ei2πfd sin(θ1)/Vc

]
, (10)

where the first row of Eq.(10) enhances the signal from direction θ1, while the second row
cancels the signal from direction θ1, i.e., enhances the signal from all other directions.
DS-NBF initialization does not require the DOA of the diffuse source. Thus, DS-NBF
initialization is well suited for the point source + diffuse source separation problem.
However, it may not work well for the separation of two point sources, necessitating an
automatic method for classifying the type of interfering source.

3 Noise Adaptive Optimization of Matrix Initializa-

tion (NAOMI)

In this section, we propose the noise adaptive optimization of matrix initialization
(NAOMI) algorithm for the estimation of the source geometry and source type, where
we assume that the geometry of a target source is known. NAOMI consists of two com-
ponents: Estimating the geometry of the interfering sound source (i.e., θ2) and classifying
the type of the interfering source based on the estimated geometry. Then we choose the
NBF or DS-NBF initialization scheme adaptively depending on the type of interfering
source.

3.1 Estimating the Geometry of the Interfering Sound Source

Let df(θ) ∈ CN denotes the response of the microphone array to a plane wave of unit
amplitude arriving from direction θ at frequency f ; we will refer to df(·) as an array
manifold or steering vector. If we assume that narrow-band sources s1(f, τ) and s2(f, τ)
are impinging on the microphone array at angles θ1 and θ2, respectively, then the vector
array input x(f, τ) ∈ CN can be represented as

x(f, τ) = s1(f, τ)df(θ1) + s2(f, τ)df(θ2), (11)

where we assumed that a1(f, τ) = df(θ1) and a2(f, τ) = df(θ2). Here, we assume that
the direction of the target source θ1 is given in advance (i.e., df(θ1) is computed using
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microphone array structure information). In particular, when a target source is located
in front of a microphone array, we have df(0) = [1

2
1
2
]⊤.

If s1(f, τ) and s2(f, τ) are independent and zero-mean signals, then we can express
the covariance matrix of x(f, τ) as

Rxx(f) = Rs1s1(f) +Rs2s2(f), (12)

where σ2
1(f) = Eτ [s

2
1(f, τ)], σ

2
2(f) = Eτ [s

2
2(f, τ)], Eτ [s

2
1(f, τ)] is the expectation of s21(f, τ)

with respect to τ , Rs1s1(f) = σ2
1(f)df(θ1)df(θ1)

H is the covariance matrix of a known
target signal, and Rs2s2(f) = σ2

2(f)df(θ2)df(θ2)
H is the covariance matrix of an unknown

interference signal.
Since the interference covariance matrix Rs2s2(f) is not available in practice, we need

to estimate Rs2s2(f) from the observed signals. From Eq.(12), Rs2s2(f) can be written as

Rs2s2(f) = Rxx(f)− σ2
1(f)df(θ1)d

H
f (θ1), (13)

where df(θ1) is assumed to be known and σ2
1(f) is the unknown parameter. Since Rs2s2(f)

is independent of the target signal x1, we want to remove the df(θ1)-component from
Rxx(f) as much as possible. That is, estimation ofRs2s2(f) can be achieved by maximizing
σ2
1(f). Moreover, since the covariance matrix is positive semidefinite, Rs2s2(f) should

fulfill the positive semi-definiteness. Then, the estimation problem of Rs2s2(f) can be
formulated as

maxσ2
1(f) s.t. Rxx(f)− σ2

1(f)df(θ1)d
H
f (θ1) ⪰ 0, (14)

where ⪰ 0 means the positive semi-definiteness of a matrix. This formulation is known
as covariance fitting, and is often used for robust beamformer estimation [20, 18]. The
optimal σ2(f) is given as (see Eqs.(8) and (9) in [20] for the detail derivation)

σ̂2
1(f) =

1

dH
f (θ1)R

−1
xx (f)df(θ1)

, (15)

while an estimate of Rs2s2(f) is given by

R̂s2s2(f) = Rxx(f)− σ̂2
1(f)df(θ1)d

H
f (θ1). (16)

SinceRs2s2(f) is assumed to be a rank one matrix, df(θ2) is estimated from the normalized

eigenvector ofRs2s2(f) associated with a leading eigenvalue, which we denote by d̂f . Thus,
we estimate the DOA of the interfering point source as

θ̂2(f) = argmax
θ
|d̂H(f)df(θ)|, f = 1, . . . , Nf , (17)

where Nf is the number of frequency bins.
The goal here is to estimate the DOA of an interference signal from Nf DOAs, and

the simplest way would be to average Nf DOAs (i.e., θ̂2 = 1
Nf

∑Nf

f=1 θ̂2(f)). However, it
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is in practice difficult to estimate θ2(f) accurately at low frequencies due to the small
time-difference between the observed signals at the two microphones, and spatial aliasing
occurs if f > Vc

2d
. Thus, simple averaging tends to perform poorly. For this reason, we

instead use DOAs from only a certain range of frequencies to estimate θ2 as

θ̂2 =
1

fe − fs

fe∑
f=fs

θ̂2(f), (18)

where fs is the low-frequency cutoff and the high-frequency cutoff is fe ≤ Vc

2d
.

Note that the computational cost of the above method is almost equivalent to that of
a single update iteration of Eq.(5) for all frequency bins. Thus, the proposed method is
computationally very efficient.

3.2 Source Type Classification

In the case of point source + point source, the estimated DOA of the interfering source
at each frequency bin is close to the true DOA. On the other hand, since a diffuse source
consists of the reverberation or mixture of many sound sources, the estimated DOAs of a
diffuse source tend to be spread over various frequency bins. Here, we propose using the
variance of estimated DOAs to decide whether the source mixture type is point source +
point source or point source + diffuse source. The variance of estimated DOAs is given
by

σ̂2 =
1

fe − fs

fe∑
f=fs

(θ2(f)− θ̂2)
2. (19)

Finally, we select the initial unmixing matrix using NBF if σ̂2 < ρ (point source + point
source) or DS-NBF if σ̂2 ≥ ρ (point source + diffuse source). Furthermore, if the estimated

DOA θ̂2 is close to θ1, the separation performance is degraded. To mitigate this problem,
we heuristically choose the DS-NBF beamformer when |θ̂2−θ1| < ϵ, where ϵ is a threshold
parameter.

A pseudo code of the proposed algorithm is described in Algorithm 1. Note that line 9
is for the decorrelation and normalization of the unmixing matrix [21]. Usually, this step
should be executed at every iteration. However, it is computationally rather demanding
for mobile devices, so we decided to execute this only once. As shown later, the proposed
method still performs well in experiments.

4 Experiments

In this section, we assess the effectiveness of the proposed method NAOMI through ex-
periments.
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Algorithm 1 Noise Adaptive Optimization of Matrix Initialization (NAOMI)
1: θ1 = 0;
2: compute θ̂2;
3: for f = 0; f ≤ FFTSize

2 + 1; f++ do

4: if σ̂2 < ρ or |θ̂2 − θ1| ≥ ϵ then

5: W (0)(f) =

[
1 −ei2πfd sin(θ̂2)/Vc

1 −ei2πfd sin(θ1)/Vc

]
;

6: else

7: W (0)(f) =

[
1
2

1
2e

i2πfd sin(θ1)/Vc

1 −ei2πfd sin(θ1)/Vc

]
;

8: end if
9: W (0)(f) = (W (0)(f)Rxx(f)W

(0)(f)
H
)−

1
2W (0)(f);

10: for l = 0; l < L; l++ do
11: W (l+1)(f) = W (l)(f) + η

{
I − Eτ [ϕ(f, τ)y

H(f, τ)]W (l)(f)
}
;

12: end for

13: end for

4.1 Setup

We use two microphones separated by 5.4cm, signals sampled at 8kHz, and 1024-sample
frame size with 50% overlap. The detailed recording settings are described in Table 1.

For the proposed method, the parameters ρ, η, and ϵ are experimentally set to 0.7,
0.01, and 20, respectively, and the number of FDICA iterations (Eq.(5)) is fixed to 100
in Sections 4.2–4.4. For conventional methods, we fix the number of FDICA iterations to
100.

To evaluate the robustness to permutation of the separated sources, we do not ex-
plicitly solve the permutation problem via post-processing methods. We use the average
noise reduction rate (NRR) as a performance measure [3].

4.2 Point Source + Point Source Separation in Anechoic
Chamber

In this experiment, we use speech signals from 2 male and 4 female speakers, recorded
in an anechoic chamber. By choosing one speaker as the point source located in front of
the array and another speaker as the interfering source, 30 speaker combinations are used
in the experiments. The interfering point source is placed at either −90, −45, 45, or 90
degrees, respectively, while the target point source is placed at 0 degree. Figure 1 shows
the placement of sound sources and microphones.

We compare the proposed method NAOMI to NBF-based initialization with nulls at 0
and 90 degrees, that with nulls at 0 and -90 degrees, and DS-NBF combination consisting
of DS at 0 degree and NBF at 0 degree [3, 16, 17]. We use the first three seconds of each
observed signal to estimate an unmixing matrix and then evaluate its estimation accuracy
using the rest of signals.
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Table 1: Recording settings.

Sampling Rate 8 [kHz]
FFT Size 1024 [sample]
FFT Shift 512 [sample]

Microphone Type OMNI, SHURE SM93
Number of Microphones 2
Interval of Microphones 5.4 [cm]

Figure 2 shows the average NRR for 30 combinations of speakers at each unknown
point-source angle as a function of the FDICA iteration number in Eq.(5). As can be seen,
the proposed method gives a high NRR for every interfering point-source position, while
the other initialization methods work only if the DOA used to initialize the unmixing
matrix matches that of the interfering point source. The results also show that the NRR
of the proposed method is close to the ideal unmixing matrix initialization.

4.3 Point Source + Point Source Separation in Reverberant
Room

Here, we use speech signals from 2 male and 4 female speakers, which are recorded in a
reverberant room with 400ms reverberation time. The interfering point source is placed at
either −90, −45, 45, or 90 degrees respectively, while the target point source is placed at 0
degree. Figure 3 shows the placement of sound sources and microphones in the reverberant
room. We compare the proposed method NAOMI to NBF-based initialization with nulls
at 0 and 90 degrees, that with nulls at 0 and -90 degrees, and DS-NBF combination
consisting of DS at 0 degree and NBF at 0 degree [3, 16, 17].

Figure 4 shows the averaged NRR for 30 combinations of speakers at each unknown
point source angle. It clearly shows that the proposed method provides a high NRR for
every point-source positions compared to existing methods, even in the presence of heavy
reverberation. Note, however, that the performance of the proposed method slightly
inferior to FDICA with ideal unmixing matrix initialization. A possible reason for this
is that DOA estimation tends to be inaccurate under heavy reverberation and thus an
estimated initial unmixing matrix can be poor. However, since we observed that FDICA
can still learn a reasonably good unmixing matrix from a slightly degraded initial matrix,
the performance degradation of FDICA caused by poor DOA estimation is limited.

4.4 Point Source + Diffuse Source Separation in Reverberant
Room

In this experiment, we use a speech signal from 2 male and 4 female speakers as a tar-
get point source located in front of the microphone array and the ambient sound of a
shinkansen (bullet train) as an interfering diffuse source. Thus, six total sound mix-
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tures are used in this experiment. Figure 5 shows the placement of sound source and
microphones.

Figure 6 shows the average NRR for six speaker combinations as a function of the
FDICA iteration number given in Eq.(5). The proposed method gives a high NRR since
it choose DS-NBF as an initial projection matrix, while NBF-based initialization performs
poorly. This result clearly shows that selecting an initial unmixing matrix with respect
to the correct sound source is useful in FDICA. In addition, since we observed that
FDICA does not outperform the initial DS-NBF in this experiment, we can use this
prior knowledge to improve the source separation performance, i.e., it is possible to set
the number of FDICA iterations in point source + diffuse source small in the proposed
approach.

4.5 Environmental Adaptation in Reverberant Room

Finally, we evaluate the proposed system in a reverberant room with changing environ-
mental conditions. The total duration of signals used in this experiment is 30s, where the
source signal consists of three parts: speech (0 deg) + speech (-45 deg) (0s–10s), speech
(0 deg) + speech (45 deg) (10s–20s), and speech (0 deg) + ambient noise (20s–30s).

We use a two-second block of signals for estimating the unmixing matrix, and then
evaluate its estimation accuracy using the next non-overlapping two-second block. In
addition, we initialize an unmixing initial matrix in each block so that the proposed
method can deal with sound sources and types that change quickly. For the proposed
method, the parameters ρ, η, and ϵ are experimentally set to 0.7, 0.01, and 20, respectively,
and the number of FDICA iterations (Eq.(5)) is fixed to 100 for the two-point source
separation case and 10 for the point source + diffuse source case.

We compare the proposed method to NBF with nulls at 0 and 45 degrees, NBF with
nulls at 0 and -45 degrees, and DS-NBF. NRR as a function of time is compared among
the four methods in Figure 7. As can be seen, the proposed method gives a high NRR even
if the source mixture types are changed (with a time lag equal to the block size), while
the other initialization methods work only if DOA used to initialize the unmixing matrix
matches that of the interfering point source. Note that NRR of the proposed method in
the point source + diffuse source section (i.e., time (t) = 20–30) is higher than that of
DS-NBF. This is because we know a source type in the proposed method by Eq.(19) and
we can set the number of iterations in the point source + diffuse source case small (as
discussed in Section 4.4). This is a clear advantage of the proposed method over existing
methods.

5 Conclusions

In this paper, we proposed a simple algorithm for initialization of the FDICA unmixing
matrix called noise adaptive optimization of matrix initialization (NAOMI). The experi-
mental results showed the effectiveness of the proposed method in a realistic environment
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Microphones(height: 1.0m) 5.4cm1.0m Loudspeakers(height:1.4m) 90[deg] -45[deg]  0[deg]  45[deg] -90[deg] s1(f)s2(f)
Figure 1: Recording environment in anechoic chamber. Interference source is located
either −90, −45, 45, or 90 degrees, while target point source is placed at 0 degree.
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Figure 2: Noise reduction rate (NRR) as a function of FDICA iteration in anechoic
chamber. DOA of true sources are shown in the bracket (θ1, θ2).
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Microphones(height: 1.00m) Room height: 3.45m1.0m Loudspeakers(height:1.40m)
2.5m2.7m5.0m 5.5m5.4cm  90[deg] -45[deg]  0[deg]  45[deg] -90[deg] s1(f)s2(f)

Figure 3: Recording environment in reverberant room. Interference source is located
either −90, −45, 45, or 90 degrees, while target point source is placed at 0 degree.
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Figure 4: Noise reduction rate (NRR) as a function of FDICA iteration in reverberant
room. DOA of true sources are shown in the bracket (θ1, θ2).
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Figure 5: Recording environment in diffuse interfering-noise case.
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Figure 6: Source separation result in interfering diffuse-source case.
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Figure 7: Source separation results in varying environmental conditions.
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when compared with conventional beamformer-based initialization methods.
To extend the current algorithm for many source signals is an important future work. A

possible approach for this extension is to increase the number of microphones. However,
this straightforward extension also increases the computational cost and memory size.
Thus, to deal with many microphone in a mobile device, developing computationally
efficient FDICA with less memory consumption is necessary.
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