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Abstract

The large volume principle proposed by Vladimir Vapnik, which advocates that hypotheses lying

in an equivalence class with a larger volume are more preferable, is a useful alternative to the large

margin principle. In this paper, we introduce a new discriminative clustering model based on the

large volume principle called maximum volume clustering (MVC), and then propose two approxi-

mation schemes to solve this MVC model: A soft-label MVC method using sequential quadratic

programming and a hard-label MVC method using semi-definite programming, respectively. The

proposed MVC is theoretically advantageous for three reasons. The optimization involved in hard-

label MVC is convex, and under mild conditions, the optimization involved in soft-label MVC is

akin to a convex one in terms of the resulting clusters. Secondly, the soft-label MVC method pos-
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telligence and Statistics (Niu et al., 2011). The preliminary work was done when GN was studying at Depart-

ment of Computer Science and Technology, Nanjing University, and BD was studying at Institute of Automa-

tion, Chinese Academy of Sciences. A Matlab implementation of maximum volume clustering is available from

http://sugiyama-www.cs.titech.ac.jp/∼gang/software.html.
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sesses a clustering error bound. Thirdly, MVC includes the optimization problems of a spectral

clustering, two relaxed k-means clustering and an information-maximization clustering as special

limit cases when its regularization parameter goes to infinity. Experiments on several artificial and

benchmark data sets demonstrate that the proposed MVC compares favorably with state-of-the-art

clustering methods.

Keywords: discriminative clustering, large volume principle, sequential quadratic programming,

semi-definite programming, finite sample stability, clustering error bound

1. Introduction

Clustering has been an important topic in machine learning and data mining communities. Over the

past decades, a large number of clustering algorithms have been developed. For instance, k-means

clustering (MacQueen, 1967; Hartigan and Wong, 1979; Girolami, 2002), spectral clustering (Shi

and Malik, 2000; Meila and Shi, 2001; Ng et al., 2002), maximum margin clustering (MMC) (Xu

et al., 2005; Xu and Schuurmans, 2005), dependence-maximization clustering (Song et al., 2007;

Faivishevsky and Goldberger, 2010) and information-maximization clustering (Agakov and Barber,

2006; Gomes et al., 2010; Sugiyama et al., 2011). These algorithms have been successfully applied

to diverse real-world data sets for exploratory data analysis.

To the best of our knowledge, MMC, which partitions the data samples into two clusters based

on the large margin principle (LMP) (Vapnik, 1982), is the first clustering approach that is directly

connected to the statistical learning theory (Vapnik, 1998). For this reason, it has been extensively

investigated recently, for example, a generalization (Valizadegan and Jin, 2007) and many approxi-

mations for speedup (Zhang et al., 2007; Zhao et al., 2008b,a; Li et al., 2009; Wang et al., 2010).

However, LMP is not the only way to go in statistical learning theory. The large volume prin-

ciple (LVP) was also introduced by Vapnik (1982) for hyperplanes and then extended by El-Yaniv

et al. (2008) for soft response vectors. Roughly speaking, learning methods based on LVP should

prefer hypotheses in certain large-volume equivalence classes. See Figure 1 as an illustrative com-

parison of two principles. Here, C1, C2 and C3 represent three data clouds, and our goal is to choose

a better hypothesis from two candidates h1 and h2. A hypothesis is a line (e.g., h1), and an equiv-

alence class is a set of lines which equivalently separate data samples (e.g., H1). Hence, there are

two equivalence classes H1 and H2. Given an equivalence class H1 (or H2), its margin is measured

by the distance between two lines around it and its volume is measured by the area of the region

around it in the figure. Though LMP prefers h1 due to the larger margin of H1 than H2, we should

choose h2 when considering LVP since H2 has a larger volume than H1.

In this paper, we introduce a novel discriminative clustering approach called maximum volume

clustering (MVC), which serves as a prototype to partition the data samples into two clusters based

on LVP. We motivate our MVC as follows. Given the samples Xn, we construct an Xn-dependent

hypothesis space H (Xn). If H (Xn) has a measure on it, namely the power, then we can talk about

the likelihood or confidence of each equivalence class (Vapnik, 1998). Similarly to the margin used

in MMC, the notion of volume (El-Yaniv et al., 2008) can also be regarded as an estimation of the

power. Therefore, the larger the volume is, the more confident we are of the data partition, and we

consider the partition lying in the equivalence class with the maximum volume as the best partition.

Similarly to the majority of clustering methods, the optimization problem involved in MVC is

combinatorial and thus NP-hard, so we propose two approximation schemes:
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Figure 1: Large margin vs. large volume separation of three data clouds into two clusters. In this

figure, the three data clouds are C1, C2 and C3, and the two candidate hypotheses are h1

and h2. A hypothesis is a line (e.g., h1), and an equivalence class is a set of lines which

equivalently separate data samples (e.g., H1). More specifically, we shape H1 and H2 by

horizontally translating and rotating h1 and h2. Then given an equivalence class H1 (or

H2), its margin is measured by the distance between two lines around it and its volume

is measured by the area of the region around it (where we integrate all unit line segments

and treat the resulting area as its volume). The large margin principle prefers h1 and the

large volume principle prefers h2, since they consider different complexity measures.

• A soft-label MVC method that can be solved by sequential quadratic programming (Boggs

and Tolle, 1995) in O(n3) time;

• A hard-label MVC method as a semi-definite programming problem (De Bie and Cristianini,

2004; Lanckriet et al., 2004) that can be solved in O(n6.5) time.
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Subsequently, we show that the primal problem of soft-label MVC can be reduced to the optimiza-

tion problems of unnormalized spectral clustering (von Luxburg, 2007), plain and kernel k-means

clustering after relaxations (Ding and He, 2004), and squared-loss mutual information based clus-

tering (Sugiyama et al., 2011), as the regularization parameter of MVC approaches infinity. Hence,

MVC might be regarded as a natural extension of many existing clustering methods. Moreover, we

establish two theoretical results:

• A theory called finite sample stability for analyzing the soft-label MVC method. It suggests

that under mild conditions, different locally optimal solutions to soft-label MVC would in-

duce the same data partition, and thus the non-convex optimization of soft-label MVC seems

like a convex one;

• A clustering error bound for the soft-label MVC method. It upper bounds the distance be-

tween the partition returned by soft-label MVC and any partially observed partition based on

transductive Rademacher complexity (El-Yaniv and Pechyony, 2009).

Experiments on three artificial and fourteen benchmark data sets (i.e., ten IDA benchmarks, USPS,

MNIST, 20Newsgroups and Isolet) demonstrate that the proposed MVC approach is promising.

The rest of this paper is organized as follows. First of all, we briefly review the large volume

approximation in Section 2. Then, we propose the model and algorithms of MVC in Section 3, and

show that they are closely related to several existing clustering methods in Section 4. In Section 5,

we present the theory of finite sample stability. In Section 6, we derive the clustering error bound.

Next, a comparison with related works is made in Section 7. Experimental results are reported in

Section 8. Finally, we give concluding remarks and future prospects in Section 9.

2. Large Volume Approximation

Suppose that we are given a set of objects Xn = {x1, . . . ,xn}, where xi ∈ X for i = 1, . . . ,n, and most

often but not necessarily, X ⊂ Rd for some natural number d. We will construct a hypothesis space

H (Xn) that depends on Xn, such that for any hypothesis h ∈ H (Xn) ⊂ Rn, [h]i stands for a soft

response or confidence-rated label of xi, where [·]i means the i-th component of a vector. We will

then pick a soft response vector h∗ following the large volume principle and partition Xn into two

clusters {xi | [h∗]i > 0} and {xi | [h∗]i < 0}.1
As El-Yaniv et al. (2008), assume that we have a symmetric positive-definite matrix Q ∈ Rn×n

which contains the pairwise information about Xn. Consider the hypothesis space

HQ := {h | h⊤Qh≤ 1},

which is geometrically an origin-centered ellipsoid E(HQ) in Rn. The set of sign vectors

{sign(h) | h ∈HQ}

contains all 2n possible dichotomies of Xn. In other words, the hypothesis space HQ has been parti-

tioned into a finite number of equivalence classes H1, . . . ,H2n , such that for fixed k ∈ {1,2, . . . ,2n},

1. Due to our clustering model that will be defined as optimization (2) in page 2646, [h∗]i = 0 hardly happens in practice,

and we simply assume [h∗]i 6= 0 in our problem setting.
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all hypotheses in Hk will generate the same dichotomy of Xn. The power of an equivalence class Hk

is defined as a probability mass

P (Hk) :=
∫

Hk

p(h)dh, k = 1, . . . ,2n,

where p(h) is the underlying probability density of h over HQ. The hypotheses in Hk with a large

power P (Hk) are preferred according to statistical learning theory (Vapnik, 1998).

When no specific domain knowledge is available (i.e., p(h) is unknown), it would be natural to

assume the continuous uniform distribution p(h) = 1/∑2n

k=1 V (Hk), where

V (Hk) :=
∫

Hk

dh, k = 1, . . . ,2n,

is the volume of Hk as well as the geometric volume of the k-th quadrant of E(HQ). Consequently,

P (Hk) is proportional to V (Hk), and the larger the value of V (Hk) is, the more confident we are of

the data partition sign(h∗) where h∗ is chosen from Hk.

However, it is very hard to accurately compute the geometric volume of a single n-dimensional

convex body let alone for all 2n convex bodies, so we employ an efficient approximation introduced

by El-Yaniv et al. (2008) as follows. Let λ1 ≤ ·· · ≤ λn be the eigenvalues of Q, and v1, . . . ,vn be

the associated normalized eigenvectors. Then, vi and 1/
√

λi are the direction and length of the i-th

principal axis of E(HQ). Note that a small angle from some h ∈ Hk to vi with a small/large index i

(i.e., a long/short principal axis) implies that V (Hk) is large/small. Based on this key observation,

we define

V (h) :=
n

∑
i=1

λi

(
h⊤vi

‖h‖2

)2

=
h⊤Qh

‖h‖2
2

, (1)

where h⊤vi/‖h‖2 means the cosine of the angle between h and vi. We subsequently expect V (h)
to be small when h lies in a large-volume equivalence class, and conversely to be large when h lies

in a small-volume equivalence class.

3. Maximum Volume Clustering

In this section, we define our clustering model and propose two approximation algorithms.

3.1 Basic Formulation

Motivated by Xu et al. (2005), we think of the binary clustering problem from a regularization view-

point. If we had labels Yn = {y1, . . . ,yn} where yi ∈ {−1,+1}, we could find a certain classification

method to compute

ϑ(Xn,Yn) := min
h∈H (Xn,Yn)

∆(Yn,h)+ γW (Xn,h),

where H (Xn,Yn) is a hypothesis space (which depends upon Xn and Yn), ∆(Yn,h) is an overall loss

function, W (Xn,h) is a regularization function, and γ > 0 is a regularization parameter. The value

of ϑ(Xn,Yn) is generally a measure of classification quality.

When the labels Yn are absent, a clustering method tries to minimize ϑ(Xn,y) over all possible

assignments y ∈ {−1,+1}n for given Xn, that is, to solve the problem

y∗ = argmin
y∈{−1,+1}n

ϑ(Xn,y).
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Generally speaking, ϑ(Xn,y
∗) can be regarded as a measure of clustering quality. The smaller the

value of ϑ(Xn,y
∗) is, the more satisfied we are with the resulting data partition y∗.

In our discriminative clustering model, we hope to use V (h) in Equation (1) as our regularization

function. Formally speaking, given the matrix Q, by instantiating ∆(y,h) =−2h⊤y, we define the

basic model of maximum volume clustering (MVC) as

min
y∈{−1,+1}n

min
h∈HQ

−2h⊤y+ γ · h
⊤Qh

‖h‖2
2

, (2)

where HQ = {h | h⊤Qh ≤ 1} is the hypothesis space mentioned in Section 2, and γ > 0 is a regu-

larization parameter. Optimization problem (2) is computationally intractable, due to not only the

non-convexity of V (h) but also the integer feasible region of y which makes (2) combinatorial. In

the next two subsections, we will discuss two approximation schemes of (2) in detail.

3.2 Soft-Label Approximation

We now try to optimize h alone by removing y. After exchanging the order of the minimizations of

y and h in optimization (2), it is easy to see that the optimal y should be sign(h), since the second

term is independent of y and the first term is minimized when y = sign(h) for fixed h. Therefore,

(2) becomes

min
h∈HQ

−2‖h‖1 + γ · h
⊤Qh

‖h‖2
2

. (3)

Similarly to El-Yaniv et al. (2008), we replace the feasible region HQ with Rn, and relax (3) into

min
h∈Rn

−2‖h‖1 + γh⊤Qh s.t. ‖h‖2 = 1. (4)

Although the optimization is done in Rn, the regularization is done relative to HQ. Optimization (4)

is the primal problem of soft-label MVC (MVC-SL).

Optimization (4) is non-convex mainly attributed to the minimization of negative ℓ1-norm rather

than the equality constraint of ℓ2-norm. In order to solve this optimization, we resort to sequential

quadratic programming (SQP) (Boggs and Tolle, 1995). The basic idea of SQP is modeling a non-

convex problem by a sequence of convex subproblems: At each step, it uses a quadratic model for

the objective function and linear models for the constraints. A nonlinear optimization problem with

a quadratic objective function and linear constraints is known as quadratic programming (QP). An

SQP constructs and solves a local QP at each iteration, yielding a step toward the optimum.

More specifically, let us include a class balance constraint −b≤ h⊤1n ≤ b with a user-specified

class balance parameter b > 0 to prevent skewed clustering sizes. Denote the objective function of

optimization (4) by

f (h) :=−2h⊤sign(h)+ γh⊤Qh,

and the auxiliary functions by

f1(h) := h⊤h−1,

f2(h) := h⊤1n,
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where 1n means the all-one vector in Rn. Subsequently, let λ1 be the smallest eigenvalue of Q, the

corresponding Lagrange function should be2

L(h,η,µ,ν) = f (h)−η f1(h)−µ( f2(h)−b)+ν( f2(h)+b),

where η < γλ1 is the Lagrangian multiplier for the constraint f1(h) = 0, and µ,ν ≥ 0 are the La-

grangian multipliers for the constraint −b≤ f2(h)≤ b. Then, given constant h and variable p with

a tiny norm, the auxiliary functions can be approximated by

f1(h+p)≈ p⊤∇ f1(h)+ f1(h),

f2(h+p) = p⊤∇ f2(h)+ f2(h),

so the constraints are replaced with

p⊤∇ f1(h)+ f1(h) = 0,

−b≤ p⊤∇ f2(h)+ f2(h)≤ b.

Nevertheless, it would be incorrect to adopt the second-order Taylor expansion of f (h+p) as our

new objective function, since we need to capture the curvature of f1(h+p). The correct way is to

use the quadratic model3

L(h+p,η)≈ 1

2
p⊤∇2L(h,η)p+p⊤∇L(h,η)+L(h,η)

and form our objective at any fixed (h,η) into

min
p∈Rn

1

2
p⊤∇2L(h,η)p+p⊤∇ f (h),

according to Boggs and Tolle (1995, p. 9). As a consequence, the subproblem of the t-th iteration is

a simple QP at the current estimate (ht ,ηt):

min
pt∈Rn

p⊤t (γQ−ηtIn)pt +2p⊤t
(
γQht − sign(ht)

)

s.t. 2p⊤t ht +h⊤t ht = 1

−b≤ p⊤t 1n +h⊤t 1n ≤ b,

(5)

where In is the identity matrix of size n. The new estimate (ht+1,ηt+1) is given by

ht+1 = ht +p∗t , (6)

ηt+1 =
h⊤t
(
γQht+1−ηtp

∗
t − sign(ht)

)

h⊤t ht

, (7)

2. We will ignore variables µ and ν later, since first-order terms of L(h,η,µ,ν) would disappear in the second-order

derivative ∇2L(h,η,µ,ν). The Lagrange function L(h,η) itself has no constraint on h, so we impose η < γλ1 to

make sure that L(h,η) is bounded from below. Otherwise, the subproblem may be ill-defined.

3. Note that minimizing −h⊤y in optimization (2) or −‖h‖1 in optimization (4) has an effect to push h away from the

coordinate axes of Rn. Thus, [h]i = 0 hardly happens in practice and we assume that ‖h‖1 is always differentiable.
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Algorithm 1 MVC-SL

Input: stopping criterion ε,

symmetric positive-definite matrix Q,

regularization parameter γ,

class balance parameter b

Output: soft response vector h∗

1: Initialize (h0,η0), recommended but not required, from Equation (9)

2: t← 0

3: repeat

4: Obtain p∗t through optimization (5)

5: Update ht+1 through Equation (6)

6: Update ηt+1 through Equation (7)

7: if ηt+1 ≥ γλ1 then break

8: t← t +1

9: until ‖ht −ht−1‖2 + |ηt−ηt−1| ≤ ε

10: return h∗ = ht

where p∗t is the optimal solution to (5). Notice that we cannot obtain ηt+1 directly from (5) and in

fact Equation (7) comes from the best fit in the least-square sense of the following equation

∇2L(ht ,ηt)p
∗
t +∇ f (ht)−ηt+1∇ f1(ht) = 0. (8)

The MVC-SL algorithm based on SQP is summarized in Algorithm 1. In our experiments, we

use an initial solution (h0,η0) defined as

h0 =
1√
n

sign

(
v2−

1

n
1n1
⊤
nv2

)
, η0 = 0, (9)

where v2 is the eigenvector associated with the second smallest eigenvalue of Q. The construction

of h0 is explained as follows. The term (v2−1n1
⊤
nv2/n) equals Cnv2, where Cn = In−1n1

⊤
n/n is

the centering matrix of size n. It means that we cut v2 at the mean value of its components to form

two initial clusters, and normalize the corresponding soft response vector into the unit norm as h0.

The asymptotic time complexity of each iteration is at most O(n3), and the convergence rate of SQP

iterations is independent of n (Boggs and Tolle, 1995). Moreover, it takes O(n2) time to compute

h0. Hence, the overall computational complexity of Algorithm 1 is no more than O(n3).

3.3 Hard-Label Approximation

As opposed to the soft-label approximation, we can also optimize y alone. Let h = α ◦y, where

α = |h| is a vector of element-wise absolute values, y = sign(h) is a vector of the corresponding

signs, and ◦ means the element-wise product. We would like to further introduce a hyperparameter

C to bound each component of α, which might be helpful for dealing with outliers. Subsequently,
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the primal problem of hard-label MVC (MVC-HL) is written as

min
y∈{−1,+1}n

min
α∈Rn

−2α⊤1n + γα⊤
(

Q◦yy⊤
)
α

s.t. α⊤α= 1

0n ≤α≤C1n,

(10)

where 0n means the all-zero vector in Rn.

By employing the technique described in Lanckriet et al. (2004), let M = yy⊤ and then opti-

mization (10) can be relaxed to

min
M∈Rn×n

min
η∈R

max
α∈Rn

2α⊤1n− γα⊤(Q◦M)α+η(α⊤α−1)

s.t. M � 0

diag(M) = 1n

0n ≤α≤C1n,

(11)

where the function diag(·) forms the diagonal entries of a square matrix into a column vector, and

� 0 indicates the positive semi-definiteness of a symmetric matrix.4 The relaxation from (10) to

(11) is mainly achieved by replacing M ∈ {−1,+1}n×n and rank(M) = 1 with M ∈ Rn×n, M � 0

and diag(M) = 1n. As a result, optimization (11) is a semi-definite programming (SDP) provided

(γQ◦M−ηIn)� 0. Let ν ≥ 0n and µ≥ 0n be the Lagrangian multipliers for 0n ≤α and α≤C1n,

then (11) is equivalent to

min
M,µ,ν,η

max
α

2α⊤(1n−µ+ν)−α⊤(γQ◦M−ηIn)α+2Cµ⊤1n−η

s.t. M � 0

diag(M) = 1n

µ≥ 0n,ν ≥ 0n.

(12)

When considering the variable α in (12), the optimal α should be

α= (γQ◦M−ηIn)
†(1n−µ+ν),

where † is the operator of the pseudo inverse, and we can form (12) into

min
M,µ,ν,η

(1n−µ+ν)⊤(γQ◦M−ηIn)
†(1n−µ+ν)+2Cµ⊤1n−η

s.t. M � 0

diag(M) = 1n

µ≥ 0n,ν ≥ 0n

under an additional condition that (1n−µ+ν) is orthogonal to the null space of (γQ ◦M−ηIn).
Eventually, by the extended Schur complement lemma (De Bie and Cristianini, 2004), we arrive at

4. We imply by M � 0 that M is symmetric and will not explicitly write M⊤= M for convenience.
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a standard SDP formulation:

min
M,µ,ν,η,t

t

s.t. M � 0

diag(M) = 1n

µ≥ 0n,ν ≥ 0n(
γQ◦M−ηIn (1n−µ+ν)
(1n−µ+ν)⊤ t +η−2Cµ⊤1n

)
� 0.

(13)

The asymptotic time complexity of optimization (13) is O(n6.5) if directly solved by any stan-

dard SDP solver (De Bie and Cristianini, 2004). It could be reduced to O(n4.5) with the subspace

tricks (De Bie and Cristianini, 2006), which essentially make use of the spectral properties of Q to

control the trade-off between the computational cost and the accuracy.

After we obtain M∗, y∗ could be recovered from the rank one approximation of M∗ by either

thresholding (De Bie and Cristianini, 2004) or randomized rounding (Raghavan and Thompson,

1985; De Bie and Cristianini, 2006). In our experiments, we use the former technique: The eigen-

vector v∗ associated with the largest eigenvalue of M∗ is extracted, and then y∗ is recovered as

y∗ = sign

(
v∗− 1

n
1n1
⊤
nv
∗
)
,

where the threshold is the center of v∗ (cf., the construction of h0 in MVC-SL).

4. Generality

MVC is a general framework and closely related to several existing clustering methods. The primal

problem of MVC-SL can in fact be reduced to the optimization problems of unnormalized spectral

clustering (USC) (von Luxburg, 2007, p. 6), relaxed plain and kernel k-means clustering (Ding and

He, 2004), and squared-loss mutual information based clustering (SMIC) (Sugiyama et al., 2011)

as special limit cases. We demonstrate these claims in this section.

First of all, consider USC. The relaxed RatioCut problem can formulate USC from a graph cut

point of view as

min
f∈Rn

f⊤Lun f s.t. f⊥1n,‖ f‖2 =
√

n (14)

when the number of clusters is two, where Lun is the unnormalized graph Laplacian (von Luxburg,

2007, pp. 10–11). Note that we can rewrite the primal problem of MVC-SL defined in (4) as

min
h∈Rn

−2‖h‖1/γ+h⊤Qh s.t. ‖h‖2 = 1. (15)

Optimizations (15) and (4) share exactly the same optimal solution with/without the class balance

constraint −b ≤ h⊤1n ≤ b, though (15) has an optimal objective value γ times smaller than (4)’s.

Now, let Q = Lun + εIn with arbitrarily chosen ε > 0 to make sure the positive definiteness of Q.

Assume that f ∗ is the solution to (14), and h∗m is the solution to (15) with Q specified as above, a

class balance parameter b = 0, and a regularization parameter γm = m given a natural number m.

Subsequently, it is obvious that

lim
m→∞

h∗m = f ∗/
√

n,
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and

lim
m→∞
−2‖h∗m‖1/γm +h∗⊤m Qh∗m = f ∗⊤Lun f ∗/n+ ε,

since ‖h∗m‖1 ≤
√

n‖h∗m‖2 =
√

n and then limm→∞ ‖h∗m‖1/γm = 0. Therefore, USC may be viewed

as a special limit case of MVC-SL, that is, a special case with the specification Q = Lun + εIn of a

limit case as γ→ ∞.

Remark 1 The motivation of f⊥1n in USC is very different from h⊤1n = 0 in MVC-SL for class

balancing. When Lun is constructed from a fully connected similarity graph, the constraint f⊥1n

means that the feasible region of optimization (14) is in a space spanned by all eigenvectors of Lun

except the trivial eigenvector 1n. Note that h⊤1n = 0 just asks for strictly balanced soft responses

and is not equivalent to sign(h)⊤1n = 0 that demands strictly balanced cluster assignments.

On the other hand, continuous solutions to the relaxations of k-means clustering (MacQueen,

1967; Hartigan and Wong, 1979) and kernel k-means clustering (Girolami, 2002) can be obtained

by principle component analysis (PCA) and kernel PCA, respectively (Zha et al., 2002; Ding and

He, 2004). Now, let Q = εIn−CnKCn with arbitrarily chosen ε > ‖CnKCn‖2, where K is the kernel

matrix, Cn = In−1n1
⊤
n/n is the centering matrix, and ‖ · ‖2 here means the spectral norm (which is

also known as the operator norm induced by the ℓ2-norm) of a matrix. As a result,

lim
m→∞

h∗m = v∗,

and

lim
m→∞
−2‖h∗m‖1/γm +h∗⊤m Qh∗m = ε−v∗CnKCnv

∗,

where h∗m is the solution to (15) with Q specified as above and γm = m, and v∗ is the solution to the

relaxed kernel k-means clustering (Ding and He, 2004, Theorem 3.5). In addition, if X ⊂ Rd and

X ∈ Rn×d is the design matrix, we will have

lim
m→∞

h′∗m = v′∗,

and

lim
m→∞
−2‖h′∗m‖1/γm +h′∗⊤m Qh′∗m = ε−v′∗CnXX⊤Cnv

′∗,

where h′∗m is the solution to (15) with Q = εIn−CnXX⊤Cn, ε > ‖CnXX⊤Cn‖2 and γm = m, and v′∗

is the solution to the relaxed plain k-means clustering (Ding and He, 2004, Theorem 2.2). In other

words, plain k-means clustering and kernel k-means clustering after certain relaxations are special

limit cases of MVC-SL.5

Similarly to USC and two k-means clustering, the optimization problem of the binary SMIC is

another special limit case of MVC-SL. It involves the maximization of the following squared-loss

mutual information approximator

max
α1,α2∈Rn

1

n

2

∑
y=1

α⊤yK2αy−
1

2
(16)

5. When considering k-means algorithms that are referred to as certain iterative clustering algorithms rather than clus-

tering models, by no means they can be special limit cases of MVC-SL.
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under an orthonormal constraint of α1 and α2, where α1 and α2 are model parameters of posterior

probabilities and K is the kernel matrix. The optimal solutions to (16) can be obtained through

α∗1 = argmax
α∈Rn

α⊤K2α s.t. ‖α‖2 = 1, (17)

α∗2 = argmax
α∈Rn

α⊤K2α s.t.α⊥α∗1,‖α‖2 = 1. (18)

Now, let Q = εIn−K2 with arbitrarily chosen ε > ‖K‖2
2. We could then know

lim
m→∞

h∗1,m =α∗1,

and

lim
m→∞
−2‖h∗1,m‖1/γm +h∗⊤1,mQh∗1,m = ε−α∗1K2α∗1,

where h∗1,m is the solution to (15) with Q specified as above and γm = m. Likewise,

lim
m→∞

h∗2,m =α∗2,

and

lim
m→∞
−2‖h∗2,m‖1/γm +h∗⊤2,mQh∗2,m = ε−α∗2K2α∗2,

where h∗2,m is the solution to (15) with Q specified as above, γm = m, and a constraint h⊤h∗1,m = 0.

Remark 2 After optimizing (17) and (18), SMIC adopts the post-processing that encloses α∗1 and

α∗2 into posterior probabilities and enables the out-of-sample clustering ability for any x ∈ X even

if x 6∈ Xn (Sugiyama et al., 2011), while MVC-SL can use

h∗ =α∗1 sign(1⊤nα
∗
1)−α∗2 sign(1⊤nα

∗
2)

as the optimal soft response vector since there are just two clusters.

5. Finite Sample Stability

The stability of the resulting clusters is important for clustering models whose non-convex primal

problems are solved by randomized algorithms (e.g., MVC-SL and k-means clustering) rather than

relaxed to convex dual problems (e.g., MVC-HL and MMC). To this end, we investigate the finite

sample stability of the primal problem of MVC-SL in this section.

In the following, we presume that we are always able to find a locally optimal solution to opti-

mization (4) accurately. Under this presumption, we prove that the instability is resulted from the

symmetry of data samples: As long as the input matrix Q satisfies some asymmetry condition, we

could obtain the same data partition based on different locally optimal solutions, and consequently

the non-convex optimization of MVC-SL seems convex.

5.1 Definitions

Definition 3 The Hamming clustering distance for two n-dimensional soft response vectors h and

h′ is defined as

dH (h,h′) :=
1

2
min(‖sign(h)+ sign(h′)‖1,‖sign(h)− sign(h′)‖1).
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When measuring the difference of two binary clusterings, dH (h,h′) is always a natural number

smaller than n/2, since ‖sign(h)+ sign(h′)‖1 +‖sign(h)− sign(h′)‖1 = 2n.

Definition 4 (Irreducibility) A sample xi is isolated in Xn, if Qi,i > 0 and ∀ j 6= i,Qi, j = 0. A set of

samples Xn is irreducible, if no sample is isolated in Xn; otherwise Xn is reducible.

The idea behind the irreducibility of Xn is simple: If xi is isolated, we cannot decide its cluster

based on the information contained in Q no matter what binary clustering algorithm is used, unless

we assign xi to one cluster and Xn \ xi to the other cluster. We would like to remove such isolated

samples and reduce the clustering of Xn to a better-defined problem.

Next we define two symmetry concepts, the submatrix-information- (SI- for short) symmetry in

Definition 5 and the axisymmetry in Definition 7. SI-asymmetry is a part of the sufficient condition

for finite sample stability, and axisymmetry is a part of the sufficient condition for instability. The

relationship of irreducibility, axisymmetry and SI-symmetry will be proved in Theorem 10.

Definition 5 (Submatrix-Information-Symmetry) A set of samples Xn is submatrix-information-

symmetric, if there exist {δ1, . . . ,δn} ∈ {−1,+1}n and nonempty K ( {1, . . . ,n} such that

∑i∈K , j 6∈K ,δi=δ j
Qi, j = ∑i∈K , j 6∈K ,δi 6=δ j

Qi, j. (19)

Otherwise, Xn is submatrix-information-asymmetric.6

Remark 6 It is clear that

∑i∈K , j 6∈K ,δi=δ j
Qi, j = ∑i∈K , j 6∈K

δiδ jQi, j,

∑i∈K , j 6∈K ,δi 6=δ j
Qi, j =−∑i∈K , j 6∈K

δiδ jQi, j,

and thus Equation (19) is equivalent to

(
∑k∈K

δkek

)⊤
Q
(
∑k 6∈K

δkek

)
= 0, (20)

where {e1, . . . ,en} is a standard basis of Rn. From now on, we may use Equation (20) as the

condition to check SI-symmetry or SI-asymmetry for convenience.

Intuitively, the SI-symmetry of Xn says that Q has a submatrix containing the same amount of

similarity and dissimilarity information. More specifically, both {δ1, . . . ,δn} and K are valid parti-

tions of Xn, though they have different representations and functions. The partition {δ1, . . . ,δn} is a

reference for similarity and dissimilarity, and based on this partition, we categorize the information

Qi, j between xi and x j into similarity information if δi = δ j or dissimilarity information if δi 6= δ j.

On the other hand, we divide Q into four parts Q[i ∈ K ; j ∈ K ], Q[i ∈ K ; j 6∈ K ], Q[i 6∈ K ; j ∈ K ]
and Q[i 6∈ K ; j 6∈ K ] according to the partition K . The SI-symmetry of Xn shown in Equation (19)

6. Strictly speaking, saying that Xn is SI-symmetric is a bit abuse of terminology. In formal mathematical terminology,

an object is symmetric with respect to some operation, if this operation, when applied to the object, preserves certain

property. For example, in the axisymmetry, the object is Xn, the operation is φ and the property is Q. However, in the

SI-symmetry, the object is a set of two vectors {∑k∈K δkek,∑k 6∈K δkek}, the operation is replacing In with Q, and

the property is the orthogonality (preserved from the standard orthogonality to the Q-orthogonality).
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indicates that the submatrix Q[i ∈ K ; j 6∈ K ] (and likewise Q[i 6∈ K ; j ∈ K ]) contains the same

amount of similarity information (i.e., the left-hand side) and dissimilarity information (i.e., the

right-hand side).

When Xn is SI-symmetric, we could easily find two feasible solutions to optimization (4), such

that they would induce different partitions of Xn but share the same value of the objective function.

To see this, let

h+ =
∑k∈K δkek +∑k 6∈K δkek√

n
,

h− =
∑k∈K δkek−∑k 6∈K δkek√

n
.

It is easy to verify that ‖h±‖2 = 1, ‖h±‖1 =
√

n and dH (h+,h−)≥ 1. Moreover,

h⊤+Qh+ = h⊤+Qh+− (h++h−)
⊤Q(h+−h−) = h⊤−Qh−,

where we used (h++h−)⊤Q(h+−h−) = 0 by the condition Equation (20) of SI-symmetry. How-

ever, h+ and h− are not necessarily locally optimal solutions to optimization (4), and maybe no

locally optimal solution could induce the same partition with h+ or h−. The real reason for finite

sample instability is the axisymmetry of data samples defined below.

Definition 7 (Axisymmetry) A set of samples Xn is axisymmetric, if there exists a permutation φ of

{1, . . . ,n}, such that

1. ∃i ∈ {1, . . . ,n},φ(i) 6= i;

2. ∀i ∈ {1, . . . ,n},φ−1(i) = φ(i);

3. ∀1≤ i, j ≤ n,Qi, j = Qφ(i),φ( j).

The first property says that the permutation φ cannot be the identical mapping: It allows some,

but not all, sample xi mapped to itself. The second property requires that those samples mapped to

others are all paired. In other words, Xn is separated into two types of disjoint subsets according to

φ, and they are either cardinality one (i.e., {xi | φ(i) = i}) or two (i.e., {xi,xφ(i) | φ(i) 6= i}), but no

greater cardinality. The third property guarantees that Q is φ-invariant, or equivalently the samples

in the subset {xi,xφ(i) | φ(i) 6= i} cannot be distinguished by all other subsets {x j | φ( j) = j, j 6= i} or

{x j,xφ( j) | φ( j) 6= j, j 6= i, j 6= φ(i)} based on the information contained in Q, so we can exchange xi

and xφ(i) freely without modifying Q.

The axisymmetry of Xn in terms of Q is equivalent to the geometric axisymmetry of Xn in X , if

X ⊂ Rd and Q is a matrix induced from the Euclidean distance such as a Gaussian kernel matrix.

For example, as shown in Figure 2,

X4 = {(0,0),(1,0),(1,1),(0,1)},
X ′4 = {(0,0),(1,0),(1,0.5),(0,0.5)}

are axisymmetric both in R2 and in terms of Q if Q is a Gaussian kernel matrix, regardless of the

kernel width. The permutation φ for X ′4 could be {(1,2),(3,4)}, {(1,3),(2,4)} or {(1,4),(2,3)},
and besides them, φ for X4 could also be {(1),(3),(2,4)} or {(1,3),(2),(4)}. We can identify an
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Figure 2: Four-point sets that are typical in the theory of finite sample stability. Gaussian similari-

ties (σ = 1/
√

2) between nodes are visualized by the line thickness of edges. All sets in

this figure are irreducible. X4 in panel (a) is axisymmetric and SI-symmetric. X ′4 in (b)

is axisymmetric, SI-symmetric, anisotropic, and has a unique best partition. X ′′4 in (c) is

very special: It is anisotropic, SI-symmetric but not axisymmetric, since the similarity of

the diamond and circle equals the sum of the similarities of the diamond and squares. A

random set would be anisotropic and SI-asymmetric with high probability.

axis of symmetry geometrically in Rd : It must pass through either xi if φ(i) = i or (xi + xφ(i))/2 if

φ(i) 6= i for i = 1, . . . ,n. This is why we call such a property axisymmetry.

Generally speaking, the concepts of axisymmetry and SI-symmetry almost coincide, if Q is a

Gaussian kernel matrix or the corresponding graph Laplacian matrix. While it is possible to delib-

erately construct counter-examples that are SI-symmetric but not axisymmetric, it is improbable to

meet a counter-example in practice. For instance, as illustrated in panel (c) of Figure 2,

X ′′4 = {(0,0),(
√

ln(5/3),0),(
√

ln(10/3),0),(
√

ln(5/3),
√

ln2)}
≈ {(0,0),(0.7147,0),(1.0973,0),(0.7147,0.8326)}

is SI-symmetric but not axisymmetric in terms of Gaussian kernel matrix Q when σ = 1/
√

2, yet

X ′′4 is SI-asymmetric whenever σ 6= 1/
√

2.

Definition 8 (Anisotropy) A set of samples Xn is anisotropic, if Q has n distinct eigenvalues.
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The anisotropy of Xn is the other part of the sufficient condition for finite sample stability. The

name comes from a geometric interpretation of the ellipsoid E(HQ): All its principal axes achieve

distinct lengths when Q has distinct eigenvalues, and thus E(HQ) is anisotropic and not rotatable.

The concepts of anisotropy and axisymmetry are not complementary, since they concern different

aspects of different objects, that is, the rotation of E(HQ) vs. the reflection of Xn. In Figure 2, X4 is

axisymmetric, X ′4 is axisymmetric and anisotropic, and most random sets are just anisotropic. There

might be Xn neither axisymmetric nor anisotropic. Nonetheless, when considering the more general

SI-symmetry and certain families of Q such as Gaussian kernel matrices, Xn is anisotropic as long

as it is SI-asymmetric.

All definitions have been discussed. The theoretical results will be presented next.

5.2 Theoretical Results

The following lemma will be used in Theorems 11 and 13. All proofs are provided in Appendix A.

Lemma 9 Let Xn be an irreducible set of samples, v1, . . . ,vn be the normalized eigenvectors of Q,

and {e1, . . . ,en} be a standard basis of Rn. Then, ∀i, j ∈ {1, . . . ,n}, vi 6=±e j.

The following two theorems describe the relationship between the properties defined above.

Theorem 10 A set of samples Xn is SI-symmetric, if it is reducible or axisymmetric.

Theorem 11 If Xn is an SI-asymmetric set of samples, and there exists κ> 0 such that Q1,1 =Q2,2 =
· · ·= Qn,n = κ, then Xn is anisotropic.

We are ready to deliver our main theorems. To begin with, given a constant η, we define (recall

the assumption that ‖h‖1 is differentiable thanks to the non-sparsity of h)

G(h) := γh⊤Qh−η‖h‖2
2−2‖h‖1,

g(h) :=
1

2
∇G(h) = γQh−ηh− sign(h).

Theorem 12 (Twin Minimum Theorem) Assume that n> 2, Xn is an axisymmetric set of samples,

φ is the corresponding permutation, and I = {{i,φ(i)} | φ(i) 6= i} is the index set of those paired

samples given φ. For every minimum h∗ of optimization (4), if

1. ∀i, [h∗]i 6= 0, and

2. ∃{i,φ(i)} ∈ I , [h∗]φ(i)[h
∗]i < 0,

then h∗ has a twin minimum h⋆ satisfying G(h⋆) = G(h∗) and dH (h∗,h⋆)≥ 1. The only exception

is

∀i ∈ {1, . . . ,n}, [h∗]φ(i)[h∗]i < 0.

In order to explain the implication of Theorem 12, let us recall X4 and X ′4 shown in Figure 2.

There are many twin minima when considering the perfectly symmetric X4, but it is same even for

those convex relaxations of MMC due to the post-processing. On the other hand, X ′4 illustrates an

exception: While X4 allows φ(i) = i, this is impossible for X ′4. More specifically, any minimum h∗
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corresponding to partition (+1,−1,−1,+1) has no twin minimum, since φ can be {(1,2),(3,4)},
{(1,3),(2,4)} or {(1,4),(2,3)} for X ′4, and

∀φ,(∃i, [h∗]φ(i)[h∗]i < 0)→ (∀i, [h∗]φ(i)[h∗]i < 0).

It suggests that if we permute h∗ according to φ, then sign(h⋆) = ±sign(h∗) is the same partition

and thus dH (h∗,h⋆) = 0. Another minimum h that corresponds to (+1,+1,−1,−1) and satisfies

dH (h∗,h) ≥ 1 should have G(h) > G(h∗). In a word, local minima that correspond to different

partitions for X ′4 are not equally good and the best partition is still unique, as illustrated in panel (b)

of Figure 2. The genuine instability emerges only when the best partition is not unique, like X4 in

panel (a) of Figure 2.

Theorem 13 (Equivalent Minima Theorem) All minima of optimization (4) are equivalent with

respect to dH , provided that

1. Xn is SI-asymmetric;

2. Xn is anisotropic.

By combining Theorem 11 and Theorem 13, we have a corollary immediately.

Corollary 14 All minima of optimization (4) are equivalent with respect to dH , provided that

1. Xn is SI-asymmetric;

2. There exists κ > 0 such that Q1,1 = Q2,2 = · · ·= Qn,n = κ.

To sum up, if Q has the two properties listed above, different locally optimal solutions to opti-

mization (4) would ideally induce the same data partition. Nevertheless, the output of the algorithm

is not in the same form as the solution to optimization (4), since the variable η has been introduced,

and we cannot foresee its optimal value when we analyze the original model. Spectral clustering is

consistent (von Luxburg et al., 2008), but it has a similar problem in finite sample stability, that is,

when the graph Laplacian has distinct eigenvalues and the unique spectral decomposition leads to a

stable spectral embedding, the following k-means clustering can still introduce high instability due

to the non-convex nature of the distortion function.

Remark 15 We rely on a Karush-Kuhn-Tucker stationarity condition g(h∗) = 0n in the proofs of

Theorems 12 and 13, where h∗ is the optimal solution to (4). Actually, the objective function

of (4) usually has a non-zero derivative and the objective function of (3) always has a non-zero

derivative in their feasible regions. Therefore, we introduce the functions G(h) and g(h) to analyze

MVC-SL from a theoretical point of view. In MVC-SL, Equation (7) comes from the least-square

fitting of Equation (8), and if t → ∞, we will have p∗t → 0n and then Equation (8) will turn into

g(h∗) = limt→∞ g(ht) = 0n.

6. Clustering Error Bound

In this section, we derive a clustering error bound for MVC-SL based on transductive Rademacher

complexity (El-Yaniv and Pechyony, 2009).

It is extremely difficult, if possible, to evaluate clustering methods in an objective and domain-

independent manner (von Luxburg et al., 2012). However, when the goals and interests are clear, it
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makes sense to evaluate clustering results using classification benchmark data sets, where the class

structure coincides with the desired cluster structure according to the goals and interests.

In real-world applications, we often find some experts to cluster a small portion Xn′ of Xn where

n′ < n according to their professional knowledge, test a lot of clustering methods with a lot of simi-

larity measures, see their agreement with given clustering of Xn′ , and eliminate those low agreement

methods. This procedure may be viewed as propagating the knowledge of experts from Xn′ to Xn.

Here, we derive a data-dependent clustering error bound to guarantee the quality of this propa-

gation of knowledge. The key technique is transductive Rademacher complexity for deriving data-

dependent transductive error bounds. To begin with, we follow El-Yaniv and Pechyony (2009) for

the definition of transductive Rademacher complexity:

Definition 16 Fix positive integers m and u. Let H ⊆Rm+u be a hypothesis space, p∈ [0,1/2] be a

parameter, and σ = (σ1, . . . ,σm+u)
⊤ be a vector of independent and identically distributed random

variables, such that

σi :=





+1 with probability p,

−1 with probability p,

0 with probability 1−2p.

Then, the transductive Rademacher complexity of H with parameter p is defined as

Rm+u(H , p) :=

(
1

m
+

1

u

)
Eσ

{
suph∈H σ⊤h

}
.

For the sake of comparison, we give a definition of inductive Rademacher complexity following

El-Yaniv and Pechyony (2009).7

Definition 17 Let p(x) be a probability density on X , and Xn = {x1, . . . ,xn} be a set of independent

observations drawn from p(x). Let H be a class of functions from X to R, and σ = (σ1, . . . ,σn)
⊤ be

a vector of independent and identically distributed random variables, such that

σi :=

{
+1 with probability 1/2,

−1 with probability 1/2.

The empirical Rademacher complexity of H conditioned on Xn is

R̂
(ind)

n (H ) :=
2

n
Eσ

{
suph∈H σ⊤h | Xn

}
,

where h= (h(x1), . . . ,h(xn))
⊤, and the inductive Rademacher complexity of H is

R
(ind)

n (H ) := EXn

{
R̂

(ind)
n (H )

}
.

The transductive Rademacher complexity of H is an empirical quantity that depends only on p.

Given fixed Xn, we have Rm+u(H ) = 2R̂
(ind)

m+u (H ) when p = 1/2 and m = u.8 Whenever p < 1/2,

7. Albeit there are many definitions of Rademacher complexity, for example, Koltchinskii (2001), Bartlett and Mendel-

son (2002), Meir and Zhang (2003) and Bousquet et al. (2004), they are similar and conceptually equivalent.

8. A class of functions conditioned on fixed data is equivalent to a hypothesis space of soft response vectors.
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some Rademacher variables will attain zero values and reduce the complexity. We simply consider

p0 = mu/(m+ u)2 and abbreviate Rm+u(H , p0) to Rm+u(H ) as El-Yaniv and Pechyony (2009) in

Lemma 18 and Theorem 19, though these theoretical results hold for all p > p0 since Rm+u(H , p)
is monotonically increasing with p. Please refer to El-Yaniv and Pechyony (2009) for the detailed

discussions about transductive Rademacher complexity.

Lemma 18 Let H ′
Q be the set of all possible h returned by Algorithm 1 for the given Q, η∗ be the

optimal η when Algorithm 1 stops,

µ = suph∈H ′Q
sign(h)⊤(γQ−η∗In)

−1 sign(h),

and λ1, . . . ,λn be the eigenvalues of Q. Then, for the transductive Rademacher complexity of H ′
Q,

the following upper bound holds for any integer n′ = 1,2, . . . ,n−1,

Rn(H
′

Q)≤
√

2

n′(n−n′)
min




√

n,

(
n

∑
i=1

n

(γλi−η∗)2

)1/2

,

(
n

∑
i=1

µ

γλi−η∗

)1/2


 .

The proof of Lemma 18 can be found in Appendix B. By Lemma 18 together with Theorem 2

of El-Yaniv and Pechyony (2009), we can immediately obtain the clustering error bound:

Theorem 19 Assume that y∗ is the ground truth partition of Xn, and L is a random set of size n′

chosen uniformly from the set {L | L ⊂ {1, . . . ,n},#L = n′}. Let ℓ(z) = min(1,max(0,1− z)) for

z ∈R be the surrogate loss, H ′
Q be the set of all possible h returned by Algorithm 1 for the given Q,

η∗ be the optimal η when Algorithm 1 stops,

µ = suph∈H ′Q
sign(h)⊤(γQ−η∗In)

−1 sign(h),

λ1, . . . ,λn be the eigenvalues of Q, and c0 =
√

32(1+ ln4)/3. For any h ∈H ′
Q, with probability at

least 1−δ over the choice of L , we have

dH (h,y∗)≤ n

n′
min

{

∑
i∈L

ℓ([h]i[y
∗]i),∑

i∈L

ℓ(−[h]i[y∗]i)
}

+
c0n√

n′
+

√
2n2(n−n′)2

n′(2n−1)(2n−2n′−1)
ln(1/δ) (21)

+

√
2(n−n′)

n′
min




√

n,

(
n

∑
i=1

n

(γλi−η∗)2

)1/2

,

(
n

∑
i=1

µ

γλi−η∗

)1/2


 .

There are four terms in the right-hand side of inequality (21). The first term is a measure of the

clustering error on Xn′ = {xi | i∈L} by the surrogate loss times the ratio n/n′. More specifically, we

would like to select a proper similarity measure via given clustering {[y∗]i | i∈ L} to make the error

on Xn′ as small as possible, under the assumption that the error rates on Xn′ and Xn should be close

for a fixed similarity measure (the given {[y∗]i | i ∈ L} are not used for training). The second term

depends only on n and n′, i.e., the sizes of the whole set and the clustered subset. Besides n and n′,
the third term further depends on the significance level δ, as in common error bounds. The last term
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is the upper bound of (n− n′)Rn(H
′

Q), which carries out the complexity control of H ′
Q implicitly:

The smaller the value of Rn(H
′

Q) is, the more confident we are that dH (h,y∗) would be small, if the

error on Xn′ is small. When considering the average clustering error measured by dH (h,y∗)/n, the

order of the error bound is O(1/
√

n′) since the second term dominates the third and fourth terms.

Remark 20 Our problem setting is equivalent to neither semi-supervised clustering nor transduc-

tive classification: We do not reveal any labels to the clustering algorithm in Theorem 19; instead,

a set of randomly chosen labels are revealed to an evaluator who then returns the evaluation of the

quality of any possible partition generated by the algorithm. We can use the theory of transductive

Rademacher complexity to derive a clustering error bound for Algorithm 1, since it can be viewed

as a transductive algorithm that ignores all revealed labels.

7. Related Works

In this section, we review related works and qualitatively compare the proposed MVC with them.

7.1 Maximum Margin Clustering

Among existing clustering methods, maximum margin clustering (MMC) is closest to MVC. Both

of them originate from statistical learning theory, but their geneses and underlying criteria are still

different: The primal problems of all MMC adopt a regularizer ‖w‖2
2 from the margin, while MVC

relies on the regularizer V (h) in Equation (1) from the volume. The hypothesis shared by all MMC

is the hyperplane for induction, while the hypothesis in MVC is the soft response vector for trans-

duction. The latter is more natural, since clustering is more transductive than inductive.

The family of MMC algorithms was initiated by Xu et al. (2005). It follows the support vector

machine (SVM) (Boser et al., 1992; Cortes and Vapnik, 1995) and its hard-margin version can be

formulated as

min
y∈{−1,+1}n

min
w,ξ
‖w‖2

2

s.t. yiw
⊤xi ≥ 1, i = 1, . . . ,n.

The value of yiw
⊤xi is called the functional margin of (xi,yi), whereas the value of yiw

⊤xi/‖w‖2

is called the geometric margin of (xi,yi). MMC can maximize the geometric margin of all xi ∈ Xn

over y ∈ {−1,+1}n by minimizing ‖w‖2 and requiring the minimal functional margin to be one

simultaneously. Likewise, the primal problem of the soft-margin MMC is

min
y∈{−1,+1}n

min
w,ξ
‖w‖2

2 +C
n

∑
i=1

ξi

s.t. yiw
⊤xi ≥ 1−ξi,ξi ≥ 0, i = 1, . . . ,n,
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where C > 0 is a regularization parameter, and ξ= (ξ1, . . . ,ξn)
⊤ is a vector of slack variables. Then,

it can be relaxed into a standard SDP dual

min
M,µ,ν,t

t

s.t. M � 0

diag(M) = 1n

µ≥ 0n,ν ≥ 0n(
M ◦K (1n−µ+ν)

(1n−µ+ν)⊤ t−2Cµ⊤1n

)
� 0,

(22)

and solved by any standard SDP solver in O(n6.5) time.

Remark 21 Xu et al. (2005) initially imposed three groups of linear constraints on the entries of M

in MMC:

1. ∀i jk, Mi,k ≥Mi, j +M j,k−1;

2. ∀i jk, Mi,k ≥−Mi, j−M j,k−1;

3. ∀i, −b≤ ∑ j Mi, j ≤ b.

However, Xu and Schuurmans (2005) and Valizadegan and Jin (2007) considered (22) as the dual

problem of MMC, sometimes equipped with an additional class balance constraint −b1n ≤M1n ≤
b1n. In other words, the first and second groups of constraints were ignored.

Subsequently, generalized maximum margin clustering (GMMC) (Valizadegan and Jin, 2007)

relaxes the restriction that the original MMC only considers homogeneous hyperplanes and hence

demands every possible clustering boundary to pass through the origin. Furthermore, GMMC is a

convex relaxation of MMC, and its computational complexity is O(n4.5) that is remarkably faster

than MMC. In fact, GMMC optimizes an n-dimensional vector rather than an n× n matrix. More

specifically, the hard-margin GMMC converts the original MMC following Lanckriet et al. (2004)

into a dual problem as

min
y∈{−1,+1}n

min
ν,λ

1

2
(1n +ν+λy)⊤diag(y)K−1 diag(y)(1n +ν+λy)

s.t. ν ≥ 0n,

where the function diag(·) here converts a column vector into a diagonal matrix. The trick here is

(
K ◦yy⊤

)−1

= (diag(y)K diag(y))−1 = diag(y)K−1 diag(y),

since y ∈ {−1,+1}n. By a tricky substitution w = (diag(y)(1n +ν);λ) ∈ Rn+1 where we use the

semicolon to separate the rows of a vector or matrix (i.e., (A;B) = (A⊤,B⊤)⊤), it becomes

min
w∈Rn+1

w⊤(In;1⊤n)K
−1(In,1n)w+Ce

(
(1⊤n,0)w

)2

s.t. [w]2i ≥ 1, i = 1, . . . ,n,

(23)
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where ((1⊤n,0)w)2 is another regularization to remove the translation invariance from the objective

function and Ce is the corresponding regularization parameter. Let

W = (In;1⊤n)K
−1(In,1n)+Ce(1n;0)(1⊤n,0)−diag((γ;0)).

The SDP dual of optimization (23) is then

max
γ∈Rn

γ⊤1n s.t.W � 0,γ ≥ 0n.

This is the dual problem of the hard-margin GMMC. The dual problem of the soft-margin GMMC

is slightly different such that γ is upper bounded:

max
γ∈Rn

γ⊤1n s.t.W � 0,0n ≤ γ ≤Cδ1n, (24)

where Cδ is a regularization parameter to control the trade-off between the clustering error and the

margin. After obtaining the optimal γ, the partition can be inferred from the sign of the eigenvector

of W associated with the zero eigenvalue, since the Karush-Kuhn-Tucker complementary condition

is Ww = 0n+1, and sign([w]i) = sign([y]i) for i = 1, . . . ,n.

There exist a few faster MMC algorithms. Iterative support vector regression (IterSVR) (Zhang

et al., 2007) replaces SVM with the hinge loss in the inner optimization subproblem with SVR with

the Laplacian loss, while for each inner SVR the time complexity is at most O(n3) and the empirical

time complexity is usually between O(n) and O(n2.3). Cutting-plane maximum margin clustering

(CPMMC) (Zhao et al., 2008b) can be solved by a series of constrained concave-convex procedures

within a linear time complexity O(sn) where s is the average number of non-zero features. Unlike

MMC and GMMC that rely on SDP or IterSVR and CPMMC that are non-convex, label-generation

maximum margin clustering (LGMMC) (Li et al., 2009) is scalable yet convex so that it can achieve

its globally optimal solution. Roughly speaking, LGMMC replaces the hinge loss in SVM with the

squared hinge loss to get an alternative MMC:

min
y∈{−1,+1}n

min
w,ξ

1

2
‖w‖2

2−ρ+
C

2

n

∑
i=1

ξ2
i

s.t. yiw
⊤xi ≥ ρ−ξi, i = 1, . . . ,n

−b≤ y⊤1n ≤ b.

After a long derivation, LGMMC can be expressed as a multiple kernel learning problem:

min
µ∈R2n

max
α
− 1

2
α⊤
(

∑t:−b≤y⊤t 1n≤b
µtK ◦yty

⊤
t +

1

C
In

)
α

s.t. µ⊤12n = 1,µ≥ 02n

α⊤1n = 1,α≥ 0n.

This optimization is again solved by the cutting plane method, that is, finding the most violated yt

iteratively, and the empirical time complexity of multiple kernel learning has the same order as the

complexity of SVM which usually scales between O(n) and O(n2.3).
On the other hand, the stability of MVC is by no means inferior to those non-convex MMC in

terms of the resulting clusters. The optimization involved in MVC-HL is a convex SDP problem;
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the optimization involved in MVC-SL is a non-convex SQP problem, while under mild conditions,

it seems convex if one only cares the resulting clusters. Moreover, MVC-SL has a clustering error

bound, and to the best of our knowledge no MMC has such a result. Although the asymptotic time

complexity of MVC-SL is O(n3), its computation time has exhibited less potential of growth in our

experiments than the computationally-efficient LGMMC (see Figure 5 in page 2669).

7.2 Spectral Clustering

Spectral clustering (SC) (Shi and Malik, 2000; Meila and Shi, 2001; Ng et al., 2002) is also closely

related to MVC. SC algorithms include two steps, a spectral embedding step to unfold the manifold

structure and embed the input data into a low-dimensional space in a geodesic manner, and then a

k-means clustering step to carry out clustering using the embedded data.

Given a similarity matrix W ∈ Rn×n and the corresponding degree matrix D = diag(W1n), we

have three popular graph Laplacian matrices: The unnormalized graph Laplacian is defined as

Lun := D−W,

and two normalized graph Laplacian are

Lsym := D−1/2LunD−1/2 = In−D−1/2WD−1/2

Lrw := D−1Lun = In−D−1W.

The first matrix is denoted by Lsym since it is a symmetric matrix and the second one by Lrw since

it is closely related to a random walk. Each popular graph Laplacian corresponds to a popular SC

algorithm according to von Luxburg (2007). Unnormalized SC computes the first k eigenvectors of

Lun where the eigenvalues are all positive and listed in an increasing order. Shi and Malik (2000)

computes the first k generalized eigenvectors of the generalized eigenvalue problem Lunu = λDu

that are also the eigenvectors of Lrw, and hence it is called normalized SC.9 The other normalized

SC algorithm, namely Ng et al. (2002), computes the first k eigenvectors of Lsym, puts them into an

n× k matrix, and normalizes all rows of that matrix to the unit norm, that is, projects the embedded

data further to the k-dimensional unit sphere. Anyway, the main idea is to change the representation

from Rd to Rk and then run k-means clustering.

MVC-SL is able to integrate the two steps of unnormalized SC into a single optimization when

the number of clusters is two and the highly non-convex k-means step is unnecessary. Furthermore,

a vital difference between MVC and SC is that the basic model of MVC has a loss function which

pushes hypotheses away from the coordinate axes and always leads to non-sparse optimal solutions.

When considering the finite sample stability, the spectral embedding step of SC is stable if MVC-SL

is stable but not vice versa, since SC only requires that the graph Laplacian has distinct eigenvalues;

the k-means step is always unstable for fixed data due to the non-convex distortion function which

is essentially an integer programming, but it is stable for different random samplings from the same

underlying distribution, if the globally optimal solution is unique (Rakhlin and Caponnetto, 2007).

In addition, there are a few theoretical results about the infinite sample stability or the consistency

of SC. Globally optimal solutions to k-means clustering converge to a limit partition of the whole

data space X , if the underlying distribution has a finite support, and the globally optimal solution

9. Actually, two algorithms were proposed in Shi and Malik (2000): The two-way cut algorithm only makes use of the

second eigenvector and the k-way cut algorithm uses all first k eigenvectors.
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to the expectation of the distortion function with respect to the underlying distribution is unique

(Ben-David et al., 2007). Eigenvectors of graph Laplacian also converge to eigenvectors of certain

limit operators, while the conditions for convergence are very general for Lsym, but are very special

for Lun so that they are not easily satisfied (von Luxburg et al., 2005, 2008). In contrast, the infinite

sample stability of MVC is currently an open problem.

Remark 22 Certain SC algorithms such as Belkin and Niyogi (2002) ignore the first eigenvector

by extracting the second to k-th eigenvectors of some graph Laplacian, and thus change the repre-

sentation to Rk−1 rather than Rk. Nevertheless, the multiplicity of the eigenvalue zero of the graph

Laplacian equals the number of connected components of the similarity graph, and the eigenspace

of eigenvalue zero is spanned by the indicator vectors of the connected components (von Luxburg,

2007, Propositions 2 and 4). As a consequence, all three aforementioned SC algorithms keep the

first eigenvector in order to deal with disconnected similarity graphs.

7.3 Approximate Volume Regularization

The connection of approximate volume regularization (AVR) (El-Yaniv et al., 2008) and MVC is

analogous with the connection of SVM and MMC.

Compared with MVC, AVR is a transductive method for classification so that the label vector

y is constant and only the soft response vector h needs to be optimized. More specifically, given

m labeled data {(x1,y1), . . . ,(xm,ym)} and u unlabeled data {xm+1, . . . ,xm+u}, the label vector is

denoted by y = (y1, . . . ,ym,0, . . . ,0)
⊤∈ Rm+u, and the primal problem of AVR is defined as

min
h∈Rm+u

− 1

m
h⊤y+ γh⊤Qh s.t. ‖h‖2 = t, (25)

where t is a hyperparameter to control the scale of h. Since y is constant, optimization (25) can be

directly solved using Lagrangian multipliers and the Karush-Kuhn-Tucker conditions

−y/m+2γQh−2ηh= 0,

h⊤h− t2 = 0.

Let the eigen-decomposition of Q be Q =V ΛV⊤ and di = [V⊤y]i, then we get an equation about the

optimal η:

1

4m2

m+u

∑
i=1

d2
i

(γλi−η)2
− t2 = 0. (26)

Thanks to the special structure of (26), a binary search procedure is enough for finding its smallest

root η∗, and the optimal h is recovered by

h∗ =
1

2m
(γQ−η∗Im+u)

−1y.

On the other hand, MVC involves a combinatorial optimization similarly to the most clustering

models and several semi-supervised learning models such as MMC. This difficulty caused by the

integer feasible region is intrinsically owing to the clustering problem and has no business with the

large volume approximation V (h). In order to solve the basic model, we proposed two approxima-

tion schemes based on sequential quadratic programming and semi-definite programming that are

much more complicated than finding the smallest root of Equation (26) as in AVR.

2664



MAXIMUM VOLUME CLUSTERING

8. Experiments

In this section, we numerically evaluate the performance of the proposed MVC algorithms.

8.1 Setup

Seven clustering algorithms were included in our experiments:

• Kernel k-means clustering (KM; Zha et al., 2002),

• Normalized spectral clustering (NSC; Ng et al., 2002),

• Maximum margin clustering (MMC; Xu et al., 2005),

• Generalized MMC (GMMC; Valizadegan and Jin, 2007),

• Label-generation MMC (LGMMC; Li et al., 2009),

• Soft-label maximum volume clustering (MVC-SL),

• Hard-label maximum volume clustering (MVC-HL).

The CVX package (Grant and Boyd, 2011), which is a Matlab-based modeling system for disciplined

convex programming, was used to solve the QP problem (5) for MVC-SL and the SDP problems

(13), (22) and (24) for MVC-HL, MMC and GMMC.

Table 1 summarizes the specification of data sets in our experiments. We first evaluated all seven

algorithms on three artificial data sets. MVC-HL and MMC were excluded from the middle-scale

experiments since they were very time-consuming when n > 100. The IDA benchmark repository10

contains thirteen benchmark data sets for binary classification, and ten of them that have no intrinsic

within-class multi-modality were included. Additionally, we made intensive comparisons based on

four well-known benchmark data sets for classification: USPS and MNIST11 contain 8-bit gray-scale

images of handwritten digits ‘0’ through ‘9’ with the resolution 16×16 and 28×28, 20Newsgroups

sorted by date12 contains term-frequency vectors of documents that come from twenty newsgroups,

and Isolet13 contains acoustic features of isolated spoken letters from ‘A’ to ‘Z’.

In our experiments, the performance was measured by the clustering error rate

1

n
dH (y,y∗) =

1

2n
min(‖y+y∗‖1,‖y−y∗‖1),

where y is the label vector returned by clustering algorithms and y∗ is the ground truth label vector.

The similarity measure was either the Gaussian similarity

Wi, j = exp

(
−‖xi− x j‖2

2

2σ2

)

with a hyperparameter σ, the cosine similarity

Wi, j =





〈xi,x j〉
‖xi‖2‖x j‖2

if xi ∼k x j,

0 otherwise,

10. The data sets were downloaded from http://ida.first.gmd.de/˜raetsch/data/benchmarks.htm.

11. The data sets are available at http://cs.nyu.edu/˜roweis/data.html.

12. The data set is available at http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html.

13. The data set is available at http://archive.ics.uci.edu/ml/datasets/isolet.
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# Classes # Features # Data # Samplings

Artificial Data

2gaussians 2 3 - 12×10

2moons 2 2 400 12×10

2circles 2 2 315 12×10

IDA Benchmarks

Breast-cancer 2 9 200 100

Diabetes 2 8 468 100

Flare-solar 2 9 666 100

German 2 20 700 100

Heart 2 13 170 100

Image 2 18 1300 20

Ringnorm 2 20 400 100

Splice 2 60 1000 20

Titanic 2 3 150 100

Twonorm 2 20 400 100

Other Benchmarks

USPS 10 256 11000 8×10

MNIST 10 784 70000 8×10

20Newsgroups 7 26214 18846 8×10

Isolet 26 617 7797 8×10

Table 1: Specification of artificial and benchmark data sets.

with a hyperparameter k, where xi ∼k x j means that xi and x j are among the k-nearest neighbors of

each other, or the locally-scaled Gaussian-like similarity (Zelnik-Manor and Perona, 2005)

Wi, j = exp

(
−‖xi− x j‖2

2

2σiσ j

)

with a hyperparameter k, where σi = ‖xi− x
(k)
i ‖2 is called the local scaling factor of xi and x

(k)
i is

the k-th nearest neighbor of xi in Xn. The kernel matrix was K =W for KM, MMC and LGMMC,

and K = W + In/n for GMMC since it would be very unstable without this small eigenvalue shift.

NSC relied on the graph Laplacian Lsym constructed from W . Due to the requirement of positive

definiteness of Q for MVC, we also slightly shifted the eigenvalues of certain positive semi-definite

matrices and adopted Q = Lsym + In/n for MVC-SL and Q =W + In/n for MVC-HL.

Numerical issues always exist and there may be more than one candidate h0 for MVC-SL. Let

λ1 ≤ ·· · ≤ λn be the eigenvalues of Q, and v1, . . . ,vn be the associated normalized eigenvectors. In

our implementation, we initialize MVC-SL by a few eigenvectors whose eigenvalues are close to

λ2. Specifically, we construct a set of candidate eigenvectors V = {vi | |λi−λ2| < 10−4}, and if

#V > 10, we say that Q is ill-defined and only keep ten such vi in V . Next we obtain one h0 from

each vi ∈ V and solve the SQP problem based on each h0. At last, the solution h∗ resulting in the

smallest objective value −2‖h∗‖1 + γh∗⊤Qh∗ would be selected as the final solution to MVC-SL.

This trick can sometimes improve the performance significantly, while the cost is the increase of the

computation time by no more than ten times.
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Figure 3: Visualization of artificial data sets.

8.2 Artificial Data Sets

To begin with, we compare the clustering error and the computation time of all seven algorithms

based on three artificial data sets. As visualized in Figure 3, 2gaussians is a three-dimensional data

set generated as follows. We first randomly sampled X+
n/2

from a Gaussian distribution with zero

mean and covariance matrix diag(100,4) and X−
n/2

from the other Gaussian distribution with zero

mean and covariance matrix diag(4,100), set the third dimension as +3 for X+
n/2

and −3 for X−
n/2

and combined X+
n/2

and X−
n/2

into Xn. Subsequently, 2moons is a two-dimensional data set with two

non-Gaussian crescent-like clusters, and 2circles is another two-dimensional data set with two non-

Gaussian ring-like clusters. The Gaussian similarity was applied to all algorithms, and σ was fixed

to mσ/10, where mσ is the mean pairwise distance given by

mσ =
∑1≤i< j≤n ‖xi− x j‖2

n(n−1)/2
=

∑n
i, j=1 ‖xi− x j‖2

n(n−1)
, (27)

since ‖xi− x j‖2 = 0 when i = j. Then, the regularization parameter C of MMC was the best value

among {10−3,1,103}, that is, we ran MMC three times using C = 10−3,1,103 and recorded the

best performance, since there lacks a uniformly effective model selection framework for clustering

algorithms. The regularization parameter C of LGMMC was also selected from {10−3,1,103} in

the same way. For GMMC, the regularization parameter Ce was set to 104 following Valizadegan

and Jin (2007) and the other regularization parameter Cδ was the best candidate in {10−3,1,103}.
We fixed the stopping threshold ε to 10−6, the regularization parameter γ to 10−2 and let the class
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(b) 2moons, small scale
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(c) 2circles, small scale
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(d) 2gaussians, middle scale
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(e) 2moons, middle scale
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Figure 4: Means of the clustering error (in %) on 2gaussians, 2moons and 2circles.

balance parameter b adaptively be 1/n for MVC-SL, while for MVC-HL, we fixed C to 1 and tried

γ ∈ {10−3,1,103}.
The experimental results in terms of the means of the clustering error are reported in Figure 4.

All of the results were obtained by repeatedly running an algorithm on 10 random samplings with

given sample size n, and the sample sizes were {50,60,70,80,90,100} for the small-scale experi-

ments and {50,100,150,200,250,300} for the middle-scale experiments. We can see that among

the three data sets, 2gaussians is most difficult such that LGMMC still had a mean clustering error

around twenty percents even when n = 300, and 2circles is easiest because MMC, MVC-SL and

MVC-HL already got near zero errors when n = 80 and LGMMC, GMMC and NSC also achieved

perfect partitions after n = 150. In contrast, KM cannot deal with these artificial data well due to

the non-convex distortion function and the random initialization of cluster centers, even though it

was equipped with the Gaussian similarity. Surprisingly, NSC was worse than KM on 2guassians,

whereas MVC-SL based on the almost same input Q = Lsym + In/n had much lower clustering

errors, which implies that the highly non-convex k-means step may be a bottleneck of NSC.

Next we report the corresponding computation time of these algorithms in Figure 5. All of the

results were measured in average seconds per run on Xeon X5670 processors. Note that the worst

case running time (i.e., the asymptotic time complexity) of KM is super-polynomial in the sample

size n (Arthur and Vassilvitskii, 2006), and so is the worst case running time of NSC. On the other

hand, the asymptotic time complexities of LGMMC, MVC-SL, GMMC, MMC and MVC-HL are

O(n3), O(n3), O(n4.5), O(n6.5) and O(n6.5), respectively. In our experiments, NSC was the most

computationally-efficient algorithm and almost always faster than KM, since the k-means invoked

by NSC after the spectral embedding converged in fewer iterations than KM. While LGMMC was

2668



MAXIMUM VOLUME CLUSTERING

 

 

KM 

 

NSC  

 

LGMMC  

 

MVC−SL  

 

GMMC  

 

MMC  

 

MVC−HL

50 60 70 80 90 100
−2

−1

0

1

2

3

Sample size

C
P

U
 t

im
e

 (
s
e

c
, 

lo
g

1
0
 s

c
a

le
)

(a) 2gaussians, small scale

50 60 70 80 90 100

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Sample size

C
P

U
 t

im
e

 (
s
e

c
, 

lo
g

1
0
 s

c
a

le
)

(b) 2moons, small scale
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(c) 2circles, small scale
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(d) 2gaussians, middle scale
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(f) 2circles, middle scale

Figure 5: Means of the CPU time (in sec, per run) on 2gaussians, 2moons and 2circles.

consistently faster than GMMC, MVC-SL lay between them and was comparable with GMMC in

the small-scale experiments and comparable with LGMMC in the middle-scale experiments. As a

result, the computation time or empirical time complexity of MVC-SL exhibited less potential of

growth than LGMMC and GMMC. The worst-case computational complexities of MVC-HL and

MMC made them extremely time-consuming, poorly scalable to middle or large sample sizes, and

hence impractical despite their low mean clustering errors on 2guassians and 2circles.

Furthermore, we investigate three important properties of MVC-SL, and report the results over

100 random samplings in Figure 6.

Firstly, panel (a) shows the mean and median values about the number of iterations required by

MVC-SL, where each mean is shown with the standard error, and each median is shown with the

median absolute deviation divided by the square root of the number of random samplings (i.e., 10).

As mentioned before, the convergence rate of SQP iterations is independent of the sample size n,

and we can see that MVC-SL usually stopped within just a few iterations in our experiments. This

phenomenon implies that the empirical time complexity of MVC-SL is directly proportional to the

internal QP solver.

Secondly, we examine the distribution of η∗ which may influence the stability of the resulting

clusters. Fortunately, panel (b) shows that η∗ for fixed data set and fixed sample size were highly

concentrated, and the mean and median values exhibited a strong correlation with the sample size

as well as a weak correlation with the data set.

Thirdly, recall that there may be more than one candidate h0 and we initialize MVC-SL using

V = {vi | |λi−λ2| < 10−4}. Although all v ∈ V appear nearly equally good to NSC, they could

induce initial solutions of very different qualities for MVC-SL, as shown in panel (c). The vectors
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Figure 6: Experimental results concerning three important properties of MVC-SL.

v2, v0, h0, and h∗ are all treated as soft response vectors, and the means with standard errors of

the clustering error are plotted in panel (c), where v2 is the eigenvector of Q and Lsym associated

with λ2, v0 is the eigenvector selected by MVC-SL, and h0 and h∗ are the corresponding initial and

final solutions. We can see that h∗ was better than h0 and h0 was better than v0. Moreover, v0 was

significantly superior to v2 on 2guassians. It is interesting and surprising that both h0 and v0 were

significantly inferior to v2 on 2circles when n = 100, but they still resulted in h∗ with the lowest

mean clustering error. In a word, not only good initial solutions but also the SQP method contribute

to the success of MVC-SL, which in turn implies that the underlying large volume principle should

be reasonable for clustering.

8.3 Benchmark Data Sets

In the following, we discuss the experiments on the benchmarks listed in Table 1: The experiments

involving ten IDA benchmarks are discussed in the first part, then USPS and MNIST in the second

part, 20Newsgroups in the third part, and Isolet in the fourth part.

8.3.1 IDA BENCHMARKS

We compare KM, NSC, LGMMC, GMMC, and MVC-SL on ten data sets in the IDA benchmark

repository that are designed for binary classification tasks and have one hundred fixed realizations
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KM NSC LGMMC MVC-SL GMMC SVM

Breast-cancer 38.9±0.65 26.4±0.18 27.2±0.19 25.6±0.17 30.5±0.23 26.0
Diabetes 30.3±0.17 30.6±0.18 27.6±0.13 30.4±0.15 28.6±0.15 23.5
Flare-solar 35.5±0.20 44.9±0.11 37.6±0.16 44.5±0.12 N/A 32.4
German 39.4±0.20 30.2±0.09 30.1±0.09 30.2±0.09 N/A 23.6
Heart 18.5±0.38 18.0±0.23 18.7±0.28 18.8±0.22 18.9±0.21 16.0
Image 41.0±0.36 40.5±0.15 39.7±0.20 40.9±0.11 N/A 2.96

Ringnorm 4.68±0.11 2.20±0.06 6.61±0.11 2.17±0.06 2.07±0.06 1.66

Splice 29.1±1.41 35.5±0.44 25.5±0.72 36.1±0.44 N/A 10.9
Titanic 27.2±0.59 26.8±0.42 23.1±0.36 21.9±0.37 26.1±0.43 22.4
Twonorm 3.61±0.78 2.28±0.07 2.18±0.07 2.20±0.07 2.08±0.06 2.96

Table 2: Means with standard errors of the clustering error (in %) on IDA benchmark data sets. For

each data set, the best algorithm and comparable ones based on the unpaired t-test at the

significance level 5% are highlighted in boldface. Additionally, means of the classification

error of highly-tuned SVM provided by IDA are also listed for comparison.

for each data set except that the data sets Image and Splice only have twenty realizations. For each

realization of each data set, we ignored the test data and tested five clustering algorithms using the

training data, yet GMMC was not tested on the data sets Flare-solar, German, Image and Splice as it

required a very long execution time when n≥ 600. The Gaussian similarity was applied and σ was

the best value among {4mσ,2mσ,mσ,mσ/2,mσ/4} for each realization and each algorithm, where

the variable mσ was the mean pairwise distance defined in Equation (27). An exception is the data

set Ringnorm where the locally-scaled similarity with k = 7 was applied, since it consists of data

from two highly overlapped Gaussian distributions and can be treated as a multi-scale data set.14

The settings for other hyperparameters of LGMMC, GMMC, and MVC-SL were exactly same as

the experiments on the artificial data sets, specifically, C ∈ {10−3,1,103} for LGMMC, Ce = 104

and Cδ ∈ {10−3,1,103} for GMMC, and ε = 10−6, γ = 10−2 and b = 1/n for MVC-SL.

Table 2 describes the means with standard errors of the clustering error rate by each algorithm

on each data set. For the sake of comparison, Table 2 also lists the means of the classification error

rate of highly-tuned SVM provided by the official web site of the IDA benchmark repository.

We could see from Table 2 that LGMMC and MVC-SL were either the best algorithm or com-

parable to the best algorithm based on the unpaired t-test at the significance level 5% on five data

sets. The clustering errors of five algorithms exhibited large differences on five data sets, namely,

Breast-cancer, Flare-solar, German, Ringnorm and Splice, among which MVC-SL was one of the

best algorithms on three data sets, and LGMMC was one of the best algorithms on two data sets.

The clustering errors exhibited merely small differences on the other five data sets. Moreover, the

fully supervised SVM has a mean classification error obviously smaller than the lowest mean clus-

tering error on the data sets German, Image and Splice, and larger than the lowest mean clustering

error on the data sets Breast-cancer, Titanic and Twonorm. It should not be surprising or confusing

since the classification error is the out-of-sample test error on the test data whereas the clustering

error is the in-sample test error on the same data to be clustered.

14. In fact, Ringnorm violates the underlying assumption when evaluating clustering results using classification data sets,

that is, the class structure and the cluster structure must coincide with each other. However, 2circles does not violate

this assumption, since those ring-like clusters are neither Gaussian distributions nor overlapped clusters.
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8.3.2 IMAGES OF HANDWRITTEN DIGITS

Secondly, we take the images of handwritten digits in USPS and MNIST. Instead of testing KM,

NSC, LGMMC, GMMC and MVC-SL on all forty-five pairwise clustering tasks, a few challeng-

ing tasks were selected, namely, the pairs {1,7},{1,9},{8,9},{3,5},{3,8},{5,8} of USPS and

{1,7},{7,9},{8,9},{3,5},{3,8},{5,8} of MNIST. The task digits 7 vs. 9 of USPS is too hard for

all algorithms and then we selected an easier task digits 1 vs. 9. Unlike the training data in the IDA

benchmark repository that are already standardized (i.e., normalized to mean zero and standard de-

viation one) by the provider, the 8-bit gray-scale images in USPS/MNIST are raw data represented

by 256-/784-dimensional vectors of integers between 0 and 255. The popular pre-processing is to

divide each integer by 255 and thus change the representation to vectors of floating-point numbers

between 0 and 1. As a consequence, 〈xi,x j〉 is always nonnegative for any 1 ≤ i, j ≤ n and we

can use the cosine similarity for NSC, where in our experiments the hyperparameter k of the k-

nearest neighbors was the best value among {3,4,5,6,7,8} for each random sampling. The same

cosine similarity was also applied to MVC-SL. However, this cosine similarity did not work for the

other three algorithms here, and then we still used the Gaussian similarity with σ as the best value

among {4mσ,2mσ,mσ,mσ/2,mσ/4} for each random sampling, where mσ was the mean pairwise

distance defined in Equation (27). The settings for other hyperparameters of LGMMC, GMMC,

and MVC-SL were exactly same as the experiments on the artificial data sets.

Figure 7 reports the means of the clustering error by each algorithm on each task. The sample

sizes were {50,100,150,200,250,300,400,500} for all tasks, and each mean value was obtained

by repeatedly running an algorithm on 10 random samplings. Given a certain task with sample size

n, we first merged all data of the two classes and then randomly sampled a subset of size n, so the

classes in the resulting subset were not necessarily balanced when n was small. Moreover, Table 3

summarizes the means with standard errors of the clustering error, in which each algorithm has 80

random samplings on each task. Since the sample sizes here varied in a large range, we performed

the paired t-test of the null hypothesis that the difference of the clustering error is from a Gaussian

distribution with mean zero and unknown variance, against the alternative hypothesis that the mean

is not zero.

We can see from Figure 7 that the easiest task is MNIST 1 vs. 7, such that the mean clustering

errors of MVC-SL and NSC were less than two percents when n ≥ 100, and the hardest tasks are

MNIST 7 vs. 9 and 5 vs. 8, where no algorithm was better than twenty-five percents. Both Figure 7

and Table 3 show that the relatively easy tasks include the pairs {1,7},{1,9},{3,8} of USPS and

{1,7},{8,9},{3,8} of MNIST, while the relatively hard tasks are the pairs {8,9},{3,5},{5,8} of

USPS and {7,9},{3,5},{5,8} of MNIST. In addition, according to Figure 7, the mean clustering

errors of MVC-SL were basically non-increasing except in panel (f) USPS 5 vs. 8, and MVC-SL,

NSC and GMMC usually outperformed KM and LGMMC, as in Table 3. Similarly, MVC-SL was

either the best algorithm or comparable to the best algorithm on ten out of twelve tasks according

to Table 3, among which it was best on eight tasks and outperformed all others on seven tasks. The

second best algorithm GMMC was best on four tasks, and then NSC was comparable on two tasks.

In a word, MVC-SL was fairly promising on USPS and MNIST.

8.3.3 NEWSGROUP DOCUMENTS

The benchmark 20Newsgroups has three versions containing 19997, 18846, and 18828 newsgroup

documents, partitioned nearly evenly across twenty different newsgroups. The second version with
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(b) USPS, 1 vs. 9
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(c) USPS, 8 vs. 9
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(d) USPS, 3 vs. 5
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(e) USPS, 3 vs. 8
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(f) USPS, 5 vs. 8
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(g) MNIST, 1 vs. 7
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(h) MNIST, 7 vs. 9
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(i) MNIST, 8 vs. 9
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(j) MNIST, 3 vs. 5
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(k) MNIST, 3 vs. 8
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(l) MNIST, 5 vs. 8

Figure 7: Means of the clustering error (in %) on USPS and MNIST.
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KM NSC LGMMC MVC-SL GMMC

USPS, 1 vs. 7 19.5±0.36 12.2±0.91 19.2±0.68 10.3±0.89 17.3±0.37

USPS, 1 vs. 9 18.0±0.55 6.9±0.85 16.6±0.54 6.3±0.77 14.7±0.38

USPS, 8 vs. 9 27.5±0.72 22.5±0.89 26.7±0.87 21.8±0.93 20.8±0.80

USPS, 3 vs. 5 29.2±0.61 19.9±0.97 28.1±0.72 17.0±0.96 24.2±0.62

USPS, 3 vs. 8 17.4±0.52 12.9±0.46 15.9±0.47 12.6±0.47 10.6±0.48

USPS, 5 vs. 8 21.1±0.65 19.4±0.59 20.8±0.74 19.7±0.67 19.3±0.84

MNIST, 1 vs. 7 5.5±0.36 2.1±0.35 3.7±0.21 2.0±0.35 2.8±0.19

MNIST, 7 vs. 9 43.1±0.44 30.1±0.59 37.4±0.58 29.7±0.62 33.9±0.56

MNIST, 8 vs. 9 16.1±0.96 6.4±0.77 14.7±0.80 5.9±0.75 7.2±0.36

MNIST, 3 vs. 5 32.1±0.65 23.5±0.66 30.9±0.52 21.8±0.72 28.3±0.47

MNIST, 3 vs. 8 21.2±0.49 11.9±0.54 19.8±0.58 11.6±0.59 16.4±0.54

MNIST, 5 vs. 8 39.2±0.47 33.2±1.17 34.7±0.79 33.0±1.22 27.4±0.80

Table 3: Means with standard errors of the clustering error (in %) on USPS and MNIST. For each

task, the best algorithm and comparable ones based on the paired t-test at the significance

level 5% are highlighted in boldface.

18846 documents is recommended by the original provider15 and hence is used in our experiments.

The documents in 20Newsgroups can be further grouped into seven topics: They are ‘alt’, ‘comp’,

‘misc’, ‘rec’, ‘sci’, ‘soc’ and ‘talk’, with 799, 4891, 975, 3979, 3952, 997 and 3253 documents

respectively, where comp consists of five classes, each of rec, sci and talk consists of four classes,

and each of alt, misc and soc consists of a single class. We prepared nine pairwise clustering tasks

which included all tasks between the four multi-modal topics and all tasks between the three uni-

modal topics. The term-frequency vectors were processed into term-frequency-inverse-document-

frequency vectors using the script written by the provider16 for the whole data set. We tried all of

the three similarity measures, and found that for any algorithm no one was consistently better than

the other two. However, the locally-scaled similarity generally fitted all five algorithms, where the

hyperparameter k was the best value in {3,4,5,6,7,8} for each random sampling. The settings for

other hyperparameters of LGMMC, GMMC and MVC-SL were exactly same as the experiments

on the artificial data sets.

Figure 8 reports the means of the clustering error by each algorithm on each task. The sample

sizes were {50,100,150,200,250,300,400,500} for all tasks, and each mean value was averaged

over 10 random samplings. Similarly to the random samplings of USPS and MNIST, the classes in

each random sampling here were not necessarily balanced when n was small. In addition, Table 4

summarizes the means with standard errors of the clustering error, in which each algorithm has 80

random samplings on each task. The paired t-test was performed due to the varied sample sizes.

We can see from Figure 8 and Table 4 that the tasks between the four multi-modal topics are

more difficult than the tasks between the three uni-modal topics. Two tasks involving misc (i.e., alt

vs. misc and misc vs. soc) are easiest, and three tasks involving sci (i.e., comp vs. sci, rec vs. sci,

and sci vs. talk) are hardest. Moreover, MVC-SL, NSC and GMMC usually outperformed KM and

LGMMC, and Figure 8 also illustrates that the mean clustering errors of MVC-SL were basically

non-increasing. As shown in Table 4, MVC-SL was either the best algorithm or comparable to the

15. See http://qwone.com/˜jason/20Newsgroups/.

16. See http://www.cad.zju.edu.cn/home/dengcai/Data/code/tfidf.m.
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(b) comp vs. sci
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(d) rec vs. sci
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(f) sci vs. talk
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(g) alt vs. misc
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(h) alt vs. soc
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(i) misc vs. soc

Figure 8: Means of the clustering error (in %) on 20Newsgroups.

best algorithm on eight out of nine tasks, among which it was best on six tasks and outperformed

all others on four tasks. The second best algorithm NSC was best on three tasks, and then GMMC

was best on two tasks and comparable on one task. In a word, MVC-SL was also fairly promising

on 20Newsgroups.

8.3.4 ISOLATED SPOKEN LETTERS

The final benchmark is Isolet from the UCI machine learning repository. The data were collected

by letting 150 subjects speak the name of each letter of the alphabet twice, while two ‘F’ and one

‘M’ were dropped due to difficulties in recording. Unlike the features of the previous benchmarks

USPS, MNIST and 20Newsgroups, the acoustic features of Isolet are extracted by different ways

and possess different physical meanings, including spectral coefficients, contour features, sonorant
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KM NSC LGMMC MVC-SL GMMC

comp vs. rec 37.9±0.77 21.0±1.46 33.1±0.57 18.1±1.41 16.8±0.74

comp vs. sci 37.2±0.65 27.8±1.20 33.1±0.61 24.9±1.17 25.1±0.69

comp vs. talk 32.3±0.93 13.3±1.69 31.1±0.73 13.3±1.65 13.3±0.80

rec vs. sci 42.0±0.55 23.3±0.84 40.0±0.73 22.3±0.85 27.0±1.01

rec vs. talk 36.8±0.76 15.6±1.11 34.1±1.02 14.3±1.08 18.8±1.08

sci vs. talk 38.5±0.71 23.5±1.01 36.4±0.67 20.8±0.97 24.1±0.86

alt vs. misc 23.3±1.85 1.0±0.12 15.5±1.07 1.1±0.13 5.5±0.60

alt vs. soc 32.0±1.05 11.3±1.01 21.7±0.95 10.7±0.85 12.7±0.91

misc vs. soc 14.1±1.32 1.7±0.16 10.5±0.67 1.8±0.16 6.6±0.60

Table 4: Means with standard errors of the clustering error (in %) on 20Newsgroups. For each task,

the best algorithm and comparable ones based on the paired t-test at the significance level

5% are highlighted in boldface.

KM NSC LGMMC MVC-SL GMMC

B vs. P 40.8±0.64 38.7±1.04 36.5±0.86 33.4±1.25 32.3±1.30

T vs. D 32.4±0.93 31.7±1.48 21.8±1.24 21.2±1.02 11.2±1.09

B vs. D 41.6±0.55 42.1±0.63 34.8±0.73 37.7±0.82 39.4±0.73

A vs. H 6.9±0.68 0.8±0.19 2.7±0.41 0.9±0.21 0.6±0.15

G vs. J 7.6±0.32 6.6±0.72 5.7±0.28 4.8±0.28 3.6±0.22

M vs. N 36.4±0.49 39.6±0.87 37.2±0.47 31.1±0.64 35.6±0.47

Table 5: Means with standard errors of the clustering error (in %) on Isolet. For each task, the best

algorithm and comparable ones based on the paired t-test at the significance level 5% are

highlighted in boldface.

features, pre-sonorant features and post-sonorant features. All features are real-valued and scaled

into the range −1 to +1. Generally speaking, all five algorithms can easily deal with the majority

of pairwise clustering tasks, if we randomly choose two letters. Therefore, similarly to USPS and

MNIST, a few challenging tasks that might sometimes be difficult for the mankind were selected:

The letters B vs. P, T vs. D, B vs. D, A vs. H, G vs. J, and M vs. N. The hyperparameters here were

slightly different from the previous experiments for better performance. The cosine similarity was

applied to NSC, and the hyperparameter k was the best value in {1,2,3,4,5,6} for each random

sampling. The Gaussian similarity was still used for KM, LGMMC and GMMC, and the hyperpa-

rameter σ was the best value in {2mσ,mσ,mσ/2,mσ/4,mσ/8} for each random sampling, where mσ

was defined in Equation (27). For MVC-SL, we adopted either Q = Lsym + In/n where Lsym was

constructed from the cosine similarity or Q = nIn−W with the Gaussian similarity depending on

the task and the sample size n, and the hyperparameter k or σ was chosen in the same way. A key

observation here was that for certain tasks such as M vs. N, the former specification was preferable

for small n, whereas the latter specification was more advisable for relatively large n. The settings

for other hyperparameters were exactly same as the experiments on the artificial data sets.

Figure 9 reports the means of the clustering error by each algorithm on each task. The sample

sizes were {50,100,150,200,250,300,400,500} for all tasks, and each mean value was averaged
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Figure 9: Means of the clustering error (in %) on Isolet.

over 10 random samplings. Similarly to the random samplings of USPS and MNIST, the classes in

each random sampling here were not necessarily balanced when n was small. In addition, Table 5

summarizes the means with standard errors of the clustering error, in which each algorithm has 80

random samplings on each task. The paired t-test was performed due to the varied sample sizes.

We can see from Figure 9 and Table 5 that the tasks A vs. H and G vs. J are very easy, and the

tasks B vs. P, B vs. D and M vs. N are very hard. Interestingly, T vs. D is much easier than B vs. P

and B vs. D, such that the lowest mean clustering errors on B vs. P and B vs. D were almost three

times larger than the lowest mean clustering error on T vs. D. Unlike the curves shown in Figures

7 and 8, the mean clustering errors of MVC-SL in Figure 9 were basically non-increasing only in

panel (d) A vs. H. Furthermore, LGMMC instead of NSC became a competitive algorithm besides

GMMC and MVC-SL in Table 5, unlike the performance in Tables 3 and 4. According to Table 5,

GMMC was the best algorithm on four tasks, MVC-SL was best on one task and also comparable

to the best algorithm on one task, and LGMMC was best on one task. Nevertheless, MVC-SL was

still satisfying on Isolet, if considering that MVC-SL consumed less than five percents of the total

computation time while GMMC consumed over ninety percents, and thus GMMC was remarkably

less computationally-efficient than MVC-SL.

9. Conclusions

We proposed a new discriminative clustering model called maximum volume clustering (MVC) to

partition the data samples into two clusters based on the large volume principle. Two algorithms to
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approximate the basic model of MVC were developed: MVC-HL relaxes MVC to a semi-definite

programming problem that is convex but time-consuming; MVC-SL employs sequential quadratic

programming that is non-convex but computationally-efficient. Then, we demonstrated that MVC

includes the optimization problems of some well-known clustering methods as special limit cases,

and discussed the finite sample stability and the clustering error bound of MVC-SL in great detail.

Based on the encouraging experimental results on three artificial and fourteen benchmark data sets,

we conclude that the proposed MVC approach is promising, especially for images and text.

The future work includes but is not limited to the following three directions: Multi-way exten-

sion, improved optimization, and model selection and specification of Q. We briefly discuss these

future directions below.

First of all, the basic model of MVC is currently binary, and it needs a multi-way extension to

partition the data samples into more than two clusters. To this end, we should extend the definition

of the volume before extending the basic model of MVC. Unlike the margin, there exists no multi-

class definition of the volume hitherto. We may borrow the idea of the multi-class definition of the

margin in Crammer and Singer (2001) based on which the first multi-way extension of MMC was

proposed (Xu and Schuurmans, 2005).

Secondly, the proposed approximation schemes and optimization algorithms for MVC may be

improved. However, we believe that the improvement cannot be straightforward. We have consid-

ered several options and found that none of them befits MVC well. Recall that the primal problem of

MVC-SL defined in (4) is non-convex, and the concave-convex procedure and constrained concave-

convex procedure (CCCP) (Yuille and Rangarajan, 2003; Smola et al., 2005) seem able to solve it.

In fact, the former technique can only be applied to the Lagrange function L(h,η), and η as an op-

timization variable may diverge even though h is guaranteed to converge given constant η. On the

other hand, the latter technique accepts any first-order equality constraint and any inequality con-

straint involving the difference of two convex functions, but the second-order equality constraint like

h⊤h = 1 is unacceptable. If we relax the equality constraint h⊤h = 1 into an inequality constraint

h⊤h≤ 1, we will get

min
h∈Rn

−2‖h‖1 + γh⊤Qh s.t. h⊤h≤ 1. (28)

Unfortunately, CCCP fails to solve optimization (28) again, since now we cannot assume that ‖h‖1

is differentiable, and then we cannot easily linearize the concave part of the energy function. Note

that the popular trick to cope with ℓ1-regularization is futile here, since (28) is never equivalent to

min
h∈Rn

−2α⊤1n + γh⊤Qh

s.t. h⊤h≤ 1,−α≤ h≤α,α≥ 0n.

Similarly, (28) itself is not quadratically-constrained quadratic programming (QCQP) (Boyd and

Vandenberghe, 2004) due to the minimization of negative ℓ1-norm, but it can be reformulated as a

QCQP with an optimization variable essentially in R2n:

min
y∈[−1,+1]n

min
h∈Rn

−2h⊤y+ γh⊤Qh s.t. h⊤h≤ 1. (29)

Although optimization (29) is convex in y and convex in h, it is not jointly convex in y and h, so

no off-the-shelf QCQP solver is applicable and we need relax it via semi-definite programming or

reformulation-linearization technique (Sherali and Adams, 1998) once more. Actually, the feasible
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region [−1,+1]n of y is as difficult as the combinatorial {−1,+1}n, and all of optimizations (2),

(4), (28) and (29) are NP-hard, regardless of the different feasible regions of h. That being said, the

current implementation using sequential quadratic programming is imperfect as the final h∗ is a bit

sensitive to the initial h0 (see the experimental results reported in Figure 6 for details).

In contrast to MVC-SL, there is much more room for MVC-HL to be improved. GMMC uses a

tricky substitution to get (23), and that substitution is so specific that it does not work for MVC-HL.

Following the idea of LGMMC, we can obtain an alternative relaxation as

min
µ∈R2n

min
α
−2α⊤1n + γα⊤

(
∑t:−b≤y⊤t 1n≤b

µtQ◦yty
⊤
t

)
α

s.t. µ⊤12n = 1,µ≥ 02n

α⊤α= 1,α≥ 0n.

Similarly, this optimization can also be regarded as a multiple kernel learning problem and solved

by the cutting plane method, as LGMMC. However, the inner optimization subproblem is difficult

due to α⊤α = 1 instead of α⊤1n = 1 in LGMMC, and we decide to investigate how to solve it in

our future study since MVC-HL is not the main focus of the current paper.

Thirdly, in our experiments we always use the best candidate hyperparameters in the hindsight,

since there lacks a systematic way to tune the hyperparameters for clustering. Such choices may be

acceptable from the theoretical standpoint but not enough from the practical standpoint. Notice that

any (cross-) validation technique using the clustering error, which is the in-sample test error on the

same data to be clustered, simply does not work for model selection. In order to do model selection,

a criterion other than the clustering error is necessary. Fortunately, a few information criteria exist

though they are not uniformly effective for all clustering algorithms. In Sugiyama et al. (2011), the

mutual information (MI) (Shannon, 1948) was used for MI based clustering (Gomes et al., 2010)

via maximum likelihood MI (Suzuki et al., 2008) for model selection, and squared-loss MI (Suzuki

et al., 2009) was used for squared-loss MI based clustering (Sugiyama et al., 2011) via least-squares

MI (Suzuki et al., 2009) for model selection.

What is more, it is unclear how to specify the input matrix Q appropriately for a given data set,

including a proper similarity measure and the construction of Q from it. According to von Luxburg

et al. (2012), the former issue is actually open for all existing clustering algorithms and it probably

has no uniformly effective solution. For the latter issue, we suggest MVC-SL with Q = Lsym+ In/n,

where Lsym is the normalized graph Laplacian, and the underlying similarity measure can be any

similarity suitable for spectral clustering. Then, it is still unsolved when we should use MVC-SL,

and when we should use the family of MMC or other clustering algorithms. Unfortunately, there is

no answer from a theoretical point of view since clustering has no supervision at all. Nevertheless,

MVC-SL may work with high probability in practice when spectral clustering works. We argue that

it may be the minimization of negative ℓ1-norm in MVC-SL that has improved spectral clustering as

shown in panel (c) of Figure 6. Its preference of non-sparse optimal solutions may lead to a better

approximation to the normalized cut criterion (Shi and Malik, 2000) than spectral clustering.
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Appendix A. Proofs of Theoretical Results in Section 5.2

In this appendix, we prove the lemmas and theorems appeared in Section 5.2.

A.1 Proof of Lemma 9

If ∃ j ∈ {1, . . . ,n}, e j or−e j is an eigenvector of Q, there should exist an eigenvalue λ > 0 such that

Qe j = λe j. This equation means that Q j, j = λ and ∀i 6= j,Qi, j = 0. In other words, x j is isolated

and Xn is reducible.

A.2 Proof of Theorem 10

If xi is isolated in Xn, let δ1 = · · ·= δn = 1, K = {i} and by definition Xn is SI-symmetric.

If Xn is axisymmetric under a permutation φ, without loss of generality, we assume φ(1) = 2 and

let δ1 =−1,δ2 = · · ·= δn = 1 and K = {1,2}. Then Xn is SI-symmetric by Equation (20),

(
∑k∈K

δkek

)⊤
Q
(
∑k 6∈K

δkek

)
=

n

∑
i=3

(Q2,i−Q1,i) = 0,

since ∀i ∈ {3, . . . ,n}, φ(i) 6∈ {1,2} and Q1,i = Q2,φ(i).

A.3 Proof of Theorem 11

When n = 2, X2 must be axisymmetric if Q1,1 = Q2,2, and we can know that X2 is SI-symmetric by

Theorem 10.

When n > 2, assume that Xn is irreducible due to Theorem 10, and then Rn has two disjoint

bases according to Lemma 9: The standard basis and the set of the principle axes of E(HQ). We

present an indirect proof of the theorem as follows.

Step 1. Let λ1, . . . ,λn be the eigenvalues of Q and v1, . . . ,vn be the associated normalized eigenvec-

tors. Suppose that vi and v j are the directions of two principal axes of E(HQ) with the same length

1/
√

λi = 1/
√

λ j. There should be at least one principal axis vl such that l 6∈ {i, j}, λl 6= λi, and

E(HQ) is rotational about vl along the circle

C(vi,v j) := {cos(θ)vi + sin(θ)v j | θ ∈ [0,2π)}.

Otherwise, all principal axes have the same length and thus E(HQ) is a perfect ball, which contra-

dicts the fact that e1, . . . ,en are not eigenvectors of Q.

Further suppose that λk 6= λl for any k 6= l, that is, the principal axis with the direction vl has a

unique length. As a consequence, vl has a fixed position and cannot rotate within C(vk,vl) for any

k 6∈ {i, j, l}. Otherwise, all vectors in C(vk,vl) are legal principal axes and can be considered as vl

with a fixed position.

We can know that E(HQ) intersects the k-th coordinate axis at ±ek/
√

κ from Qk,k = κ, and the

intersections compose an (n−1)-dimensional hyperplane. Principal axes of E(HQ) are orthogonal
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and have at most (n− 1) distinct lengths, and E(HQ) also has a set of n orthogonal axes with

the same length 1/
√

κ, that is, the set {e1/
√

κ, . . . ,en/
√

κ}. Hence, any principal axis in a fixed

position, especially vl , should lie on the central direction of a certain quadrant with dimensionality

at least two. In other words, vl can be written in the form of

vl =
1√

∑n
k=1 δ2

k

n

∑
k=1

δkek, δk ∈ {−1,0,1},

where δ1, . . . ,δn cannot be all zeros.

Step 2. Let K = {k | δk = 0} and one has 0≤ #K < n where # measures the cardinality. We discuss

the cases #K > 0 and #K = 0 separately.

If #K > 0, we reset δk = 1 for k ∈K . Subsequently,

(
∑k∈K

δkek

)⊤
Q
(
∑k 6∈K

δkek

)
=
(
∑k∈K

ek

)⊤
Q
(√

n−#K vl

)

=
(
∑k∈K

ek

)⊤√
n−#K (Qvl)

=
(
∑k∈K

ek

)⊤√
n−#K (λlvl)

= λl

(
∑k∈K

ek

)⊤(√
n−#K vl

)

= λl

(
∑k∈K

ek

)⊤(
∑k 6∈K

δkek

)

= λl ∑
k∈K ,k′ 6∈K

δk′e
⊤
kek′

= 0,

due to Qvl = λlvl and the orthonormal condition of the basis {e1, . . . ,en}. If #K = 0, without loss

of generality, assume that δ1 = −δ2 = 1 since n > 2 and the sign of vl is arbitrary. The first two

rows of the eigenvalue equation Qvl = λlvl tell us





κ−Q1,2 +
n

∑
k=3

δkQ1,k = λl

Q2,1−κ−
n

∑
k=3

δkQ2,k =−λl

⇒
n

∑
k=3

δk(Q1,k−Q2,k) = 0.

Hence by resetting K = {1,2}, we obtain

(
∑k∈K

δkek

)⊤
Q
(
∑k 6∈K

δkek

)
=

n

∑
k=3

δk(Q1,k−Q2,k) = 0.

Both cases lead to a contradiction since Xn is SI-asymmetric.

Therefore, all principal axes of E(HQ) have distinct lengths, which is exactly what we were to

prove.
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A.4 Proof of Theorem 12

Let us denote h∗ = (h1, . . . ,hn)
⊤ and consider h⋆ = (hφ(1), . . . ,hφ(n))

⊤.

Obviously, ‖h⋆‖1 = ‖h∗‖1 and ‖h⋆‖2 = ‖h∗‖2. Moreover,

n

∑
i, j=1

Qi, jhφ(i)hφ( j) =
n

∑
i, j=1

Qφ(i),φ( j)hφ(i)hφ( j) =
n

∑
k,l=1

Qk,lhkhl ,

because of the third property of Definition 7. Hence, h⋆⊤Qh⋆ = h∗⊤Qh∗ and then G(h⋆) = G(h∗).
Similarly, ∀i ∈ {1, . . . ,n},

n

∑
j=1

Qi, jhφ( j) =
n

∑
j=1

Qφ(i),φ( j)hφ( j) =
n

∑
k=1

Qφ(i),khk,

where we use the third property of Definition 7 again. As a result,

[g(h⋆)]i = γ
n

∑
j=1

Qi, jhφ( j)−ηhφ(i)− sign(hφ(i))

= γ
n

∑
k=1

Qφ(i),khk−ηhφ(i)− sign(hφ(i))

= [g(h∗)]φ(i).

Hence, g(h⋆) = 0n according to the Karush-Kuhn-Tucker condition g(h∗) = 0n, which means that

h⋆ is also a minimum of optimization (4), since the Hessian matrix ∇2G(h) = 2(γQ−ηIn) must be

symmetric and positive-definite.

Notice that dH (h∗,h⋆)≥ 1 since ∃i,hφ(i)hi < 0, with the only exception dH (h∗,h⋆) = 0 when

sign(h⋆) =−sign(h∗), that is, ∀i,hφ(i)hi < 0. This completes the proof.

A.5 Proof of Theorem 13

We prove the theorem in three steps.

Step 1. Let 0 < λ1 < · · · < λn and v1, . . . ,vn be the eigenvalues and eigenvectors of Q. Given a

minimum h, the Karush-Kuhn-Tucker condition g(h) = 0 implies that

h= Q̂y, (30)

where y = sign(h), Q̂ = (γQ−ηIn)
−1, and the unknown η satisfies η < γλ1. Plug Equation (30)

into the constraint ‖h‖2 = 1, note that Q̂ is a symmetric matrix, and then we will have

y⊤Q̂2y = (Q̂y)⊤(Q̂y) = h⊤h= 1. (31)

All eigenvalues of Q are different and positive since Xn is anisotropic, so are all eigenvalues of

Q̂. Consequently, Q̂2 has a unique spectral decomposition. It is easy to see that

y⊤Q̂2y = y⊤
(

n

∑
i=1

µiviv
⊤
i

)
y =

n

∑
i=1

µi(v
⊤
i y)

2, (32)
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where µi = 1/(γλi−η)2 is the i-th largest eigenvalue of Q̂2.

Step 2. Define a linear mapping

ψ : Rn
β 7→ Rn

β 7→ β1v1 + · · ·+βnvn,

where β = (β1, . . . ,βn)
⊤, Rn

β = Rn and we just use the symbol Rn
β to distinguish the domain and the

range of ψ. It is obvious that ψ is a vector space automorphism, and the set of vectors {e1, . . . ,en}
and the set of images {ψ(e1), . . . ,ψ(en)}= {v1, . . . ,vn} are completely different bases due to The-

orem 10 and Lemma 9.

Let β = ψ−1(y). Then,

‖y‖2 =
√

n ⇒ β2
1 + · · ·+β2

n = n (33)

(31)+ (32) ⇒ µ1β2
1 + · · ·+µnβ2

n = 1. (34)

Equation (33) represents a hyper-ball in Rn
β, and Equation (34) represents an irrotational ellipsoid in

Rn
β since µ1, . . . ,µn are distinct eigenvalues. As a result, given any other β′= (β′1, . . . ,β

′
n)
⊤ satisfying

(33) and (34), there exist three disjoint index sets J+,J−,J0 such that J+∪ J−∪ J0 = {1, . . . ,n} and

∀ j ∈ J+,β j 6= 0,β j +β′j = 0

∀ j ∈ J−,β j 6= 0,β j−β′j = 0

∀ j ∈ J0,β j = β′j = 0.

Step 3. For another arbitrarily chosen minimum h′ of (4), let y′ = sign(h′) and β′ = ψ−1(y′), then

β′ is also a solution to the system of Equations (33) and (34), and it is guaranteed the existence of

aforementioned J+,J−,J0.

Notice that ∀ j ∈ J+,

v⊤j(y+y′) = β j +β′j = 0 ⇒ v⊤jy
′ =−v⊤jy.

Similarly, ∀ j ∈ J−,v⊤jy
′ = v⊤jy and ∀ j ∈ J0,v

⊤
jy
′ = v⊤jy = 0. In a word, we have (v⊤jy

′)2 = (v⊤jy)
2

for all j = 1, . . . ,n. Hence,

y⊤Qy =
n

∑
j=1

λ j(v
⊤
jy)

2 =
n

∑
j=1

λ j(v
⊤
jy
′)2 = y′⊤Qy′,

which indicates that (y+y′)⊤Q(y−y′) = 0.

Let δ1 = [y]1, · · · ,δn = [y]n and K = {k | [y]k = [y′]k,1 ≤ k ≤ n}. Subsequently, by checking

the condition Equation (20) we would find that

(
∑k∈K

δkek

)⊤
Q
(
∑k 6∈K

δkek

)
=

1

4
(y+y′)⊤Q(y−y′) = 0.

However, Xn is SI-asymmetric and thus there must be #K = 0 or #K = n, that is, y′=−y or y′= y.

Therefore, dH (h,h′) = 0 and h′ is equivalent to h.
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Appendix B. Proof of Lemma 18

For any h ∈ H ′
Q, there exists α ∈ Rn such that h=Uα, where U consists of n orthonormal eigen-

vectors of Q, and ‖α‖2 = 1 since ‖h‖2 = 1 and U⊤U = I. The expression h=Uα is an unlabeled-

labeled representation (ULR) since U only has the information about unlabeled samples extracted

from Q. Each column of U has a unit length, and thus ‖U‖2
F = n where ‖·‖F is the Frobenius norm.

The first part of the upper bound, namely,

Rn(H
′

Q)≤
√

2n/n′(n−n′),

comes from Equations (20)–(22) of El-Yaniv and Pechyony (2009).

Let Q̂ = (γQ−η∗In)
−1. Another ULR is shown in Equation (30), in the proof of Theorem 13:

h= Q̂sign(h).

It is clear that 1/(γλ1−η∗), . . . ,1/(γλn−η∗) are the eigenvalues of Q̂ given that λ1, . . . ,λn are the

eigenvalues of Q. Subsequently, the second part of the upper bound, that is,

Rn(H
′

Q)≤
√

2

n′(n−n′)

(
n

∑
i=1

n

(γλi−η∗)2

)1/2

,

can be derived from Equations (20)–(22) of El-Yaniv and Pechyony (2009) with µ1 =
√

n. Further-

more, Equation (30) is also a kernel ULR, since Q̂ is symmetric positive definite and can be viewed

as a kernel matrix. Thereby we can obtain the third part of the upper bound

Rn(H
′

Q)≤
√

2

n′(n−n′)

(
n

∑
i=1

µ

γλi−η∗

)1/2

based on Equations (23)–(25) of El-Yaniv and Pechyony (2009) with µ2 =
√

µ.
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