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Abstract

Multi-label classification allows a sample to belong to multiple classes simultane-
ously, which is often the case in real-world applications such as text categorization
and image annotation. In multi-label scenarios, taking into account correlations
among multiple labels can boost the classification accuracy. However, this makes
classifier training more challenging because handling multiple labels induces a high-
dimensional optimization problem. In this paper, we propose a scalable multi-label
method based on the least-squares probabilistic classifier. Through experiments, we
show the usefulness of our proposed method.
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1 Introduction

In some recent applications of pattern recognition, a sample can belong to more than one
category at the same time. For example, in text mining, a news article about Trans-
former can be categorized into the “car”, “robot”, and “movie” categories. The classifi-
cation problem where a single sample can belong to multiple classes is called multi-label
classification, and it has attracted a great deal of attention recently [5].

However, multi-label classification is computationally expensive, and overcoming the
computational bottleneck is a common challenge. In this paper, we thus propose a novel
multi-label method. Our approach is to extend the computationally efficient multi-task
method [3] based on the least-squares probabilistic classifier (LSPC) [4, 6] to multi-label
scenarios, and to achieve a method to compute its solution efficiently.
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2 Probabilistic Classification by LSPC

In this section, we review the least-squares probabilistic classifier (LSPC) for single-label
classification [4, 6].

Suppose that we are given a set of training samples

{(xn, yn)}Nn=1

drawn independently from a joint probability distribution with density p(x, y), where
xn ∈ RD is a feature vector, D is the dimensionality of feature vector x, yn ∈ {1, . . . , Y }
is a class label, and Y is the number of classes. The objective of probabilistic classification
is to learn the class-posterior probability p(y|x) from the training samples. Based on the
class-posterior probability, classification of a new sample x can be carried out by

ŷ := argmax
y∈{1,...,Y }

p(y|x),

with confidence p(y = ŷ|x).
For each y ∈ {1, . . . , Y }, we model p(y|x) by

q(y|x;θy) :=
B∑
b=1

θy,bϕb(x) = θ
⊤
y ϕ(x),

where B denotes the number of parameters,

θy = (θy,1, . . . , θy,B)
⊤ ∈ RB

is the parameter vector, and

ϕ(x) = (ϕ1(x), . . . , ϕB(x))
⊤ ∈ RB

is the basis function vector. In practice, we may use a kernel model, i.e., we set B = N
and ϕb(x) = K(x,xb), where K(x,x′) is a kernel function.

We fit the above model to the true class-posterior probability p(y|x) under the follow-
ing squared loss:

Jy(θy) :=
1

2

∫
(q(y|x;θy)− p(y|x))2 p(x)dx

=
1

2

∫
q(y|x;θy)2p(x)dx−

∫
q(y|x;θy)p(x|y)p(y)dx+ C,

where p(x) denotes the marginal density of feature vector x and C is a constant indepen-
dent of θy. Approximating the expectations over x by sample averages and the class-prior
probability p(y) by sample ratios, ignoring constant C and factor 1/N , and including an
ℓ2-regularizer, we have the following training criterion:

Ĵy(θy) :=
1

2

N∑
n=1

q(y|xn;θy)
2 −

∑
n:yn=y

q(y|xn;θy) +
ρ

2
∥θy∥2

=
1

2
θ⊤y Φ

⊤Φθy − θ⊤y Φ⊤πy +
ρ

2
∥θy∥2,
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where ρ > 0 is the regularization parameter,

Φ = (ϕ(x1), . . . ,ϕ(xN))
⊤ ∈ RN×B

is the design matrix, and πy is the N -dimensional class-indicator vector, i.e., πy,n = 1 if
yn = y and πy,n = 0 otherwise:

πy,n =

{
1 (yn = y),

0 (yn ̸= y).

We can obtain the minimizer θ̂y of Ĵy analytically as

θ̂y =
(
Φ⊤Φ+ ρIB

)−1
Φ⊤πy,

where IB denotes the B-dimensional identity matrix.
As the number of training samples, N , increases, the solution q(y|x; θ̂y) was shown

to converge to the true class-posterior probability p(y|x) with the optimal convergence
rate [4]. For a finite sample size, we obtain the final solution by rounding up a negative
output to zero and normalization as follows [6]:

p̂(y|x) = max(0, q(y|x; θ̂y))∑Y
y′=1max(0, q(y′|x; θ̂y′))

.

3 Multi-Task LSPC

When multiple related learning tasks exist, solving them simultaneously by sharing some
common information behind the tasks is expected to be more promising than solving
them separately. This is the idea of multi-task learning. A computationally efficient
multi-task learning method can be developed by combining multiple LSPCs. Here, we
review multi-task LSPC (MT-LSPC) [3] in a slightly generalized way.

Suppose that we are given a set of training samples

{(xn, yn, tn)}Nn=1,

where tn ∈ {1, . . . , T} denotes the task index. We assume that {(xn, yn)}Nn=1 are drawn
independently from a joint probability distribution with density ptn(x, y). The objective
of multi-task probabilistic classification is to learn the class-posterior probabilities pt(y|x)
for t ∈ {1, . . . , T}.

Let us model pt(y|x) for each t ∈ {1, . . . , T} and y ∈ {1, . . . , Y } as

q(y|x;θy,t) :=
B∑
b=1

θy,b,tϕb(x) = θ
⊤
y,tϕ(x),

where
ϕ(x) = (ϕ1(x), . . . , ϕB(x))

⊤ ∈ RB
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and
θy,t := (θy,1,t, . . . , θy,B,t)

⊤ ∈ RB.

The basic idea of MT-LSPC is that solutions of all tasks are imposed to be close to each
other in terms of the ℓ2-norm. More specifically, let us decompose θy,t as

θy,t = βy,0 + βy,t,

where βy,0 is the common part of solutions for all tasks and βy,t is the individual part of
solutions for task t. Then, for

βy :=
(
β⊤

y,0,β
⊤
y,1, . . . ,β

⊤
y,T

)⊤ ∈ RB(T+1),

the training criterion of MT-LSPC is given by

ĴMT
y (βy) :=

1

2

N∑
n=1

q(y|xn;βy,0 + βy,tn)
2 −

∑
n:yn=y

q(y|xn;βy,0 + βy,tn)

+
ω0

2
∥βy,0∥2 +

1

2

T∑
t=1

ωt∥βy,t∥2,

where ω0 > 0 is the regularization parameter for the task-independent part and ωt > 0
(t = 1, . . . , T ) is the regularization parameter for the task-dependent parts.

For 0B denoting the B-dimensional zero vector, let

ξt(x) :=
(
ϕ(x)⊤,0⊤

B(t−1),ϕ(x)
⊤,0⊤

B(T−t)

)⊤ ∈ RB(T+1),

Ξ := (ξt1(x1), . . . , ξtN (xN))
⊤ ∈ RN×B(T+1),

Ω := diag (ω0, ω1, . . . , ωT ) ∈ R(T+1)×(T+1).

Then the MT-LSPC training criterion can be compactly expressed as

ĴMT
y (βy) =

1

2
β⊤

y Ξ
⊤Ξβy − β⊤

y Ξ
⊤πy +

1

2
β⊤

y (Ω⊗ IB)βy,

where ⊗ denotes the Kronecker product. Because the above ĴMT
y (βy) is essentially the

same form as the original single-task LSPC training criterion, we can similarly obtain the
minimizer β̂y analytically as

β̂y =
(
Ξ⊤Ξ+Ω⊗ IB

)−1
Ξ⊤πy.

Suppose that we use a kernel model (i.e., B = N). Then, the size of the matrix to
be inverted in the above equation is N(T + 1) × N(T + 1). Thus, the computational

complexity for naively computing the solution β̂y is O(N3T 3), which can be expensive.

However, because the rank of Ξ⊤Ξ is at most N , the solution can be computed more
efficiently. More specifically, q(y|x; θ̂y,t) can be expressed as follows:

q(y|x; θ̂y,t) = θ̂
⊤
y,tϕ(x) = β̂

⊤
y ξt(x) = π

⊤
yA

−1bt,
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where A is the N ×N matrix and bt is the N -dimensional vector defined as

An,n′ := [Ξ(Ω−1 ⊗ IB)Ξ⊤ + IN ]n,n′

=

(
1

ω0

+
δtn,tn′

ωtn

)
ϕ(xn)

⊤ϕ(xn′) + δn,n′ ,

bt,n := [Ξ(Ω−1 ⊗ IB)ξt(x)]n =

(
1

ω0

+
δt,tn
ωt

)
ϕ(xn)

⊤ϕ(x).

Here δt,t′ denotes the Kronecker delta. The computational complexity for computing the
solution in this way is reduced to O(N3), which is independent of T .

4 Reformulation of MT-LSPC

In this paper, we develop a multi-label method based on MT-LSPC. However, the original
MT-LSPC imposes all solutions to be close to each other via the common part, which
is not necessarily appropriate in the multi-label scenario. Here, we derive an extention
of MT-LSPC that imposes a multi-task penalty via pairwise similarities between tasks.
This pairwise version will be used for developing a multi-label method later.

For θy := (θ⊤y,1, . . . ,θ
⊤
y,T )

⊤ ∈ RBT , let us consider the following training criterion:

ĴMT′

y (θy) :=
1

2

N∑
n=1

q(y|xn;θy,tn)
2 −

∑
n:yn=y

q(y|xn;θy,tn)

+
1

2

T∑
t=1

λt∥θy,t∥2 +
1

4

T∑
t,t′=1

γt,t′∥θy,t − θy,t′∥2,

where λt > 0 is the regularization parameter for task t and γt,t′ > 0 is the similarity
between tasks t and t′ (large γt,t′ corresponds to similar tasks). Let

ψt(x) :=
(
0⊤
B(t−1),ϕ(x)

⊤,0⊤
B(T−t)

)⊤ ∈ RBT ,

Ψ := (ψt1(x1), . . . ,ψtN
(xN))

⊤ ∈ RN×BT .

Then ĴMT′
y can be compactly expressed as

ĴMT′

y (θy) =
1

2
θ⊤y Ψ

⊤Ψθy − θ⊤y Ψ⊤πy +
1

2
θ⊤y (C ⊗ IB)θy,

where C is the T × T matrix defined as

Ct,t′ := δt,t′

(
λt +

T∑
t′′=1

γt,t′′

)
− γt,t′ .
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Taking the derivative of J̃MT
y with respect to θy and setting it to zero, we have the

minimizer θ̂y analytically as

θ̂y =
(
Ψ⊤Ψ+C ⊗ IB

)−1
Ψ⊤πy.

Using the same trick as MT-LSPC, q(y|x; θ̂y,t) can be efficiently computed based on the
following expression:

q(y|x; θ̂y,t) = θ̂
⊤
y,tϕ(x) = θ̂

⊤
y ψt(x) = π

⊤
yA

′−1b′t,

where A′ is the N ×N matrix and b′t is the N -dimensional vector defined as

A′
n,n′ := [Ψ(C−1 ⊗ IB)Ψ⊤ + IN ]n,n′

= [C−1]tn,tn′ϕ(xn)
⊤ϕ(xn′) + δn,n′ ,

b′t,n := [Ψ(C−1 ⊗ IB)ψt(x)]n = [C−1]t,tnϕ(xn)
⊤ϕ(x).

The computational complexity for computing the solution in this way is reduced toO(N3+
T 3). Note that the factor T 3 comes from the computation of C−1; if the task similarity
matrix Γ (with Γt,t′ = γt,t′) enjoys nice structure such as being low-rank or sparse, it may
be computed more efficiently.

5 Multi-Label LSPC

In this section, we propose a computationally efficient multi-task classifier based on the
pairwise MT-LSPC called multi-label LSPC (ML-LSPC).

Suppose that we are given a set of training samples

{(xn,yn)}Nn=1,

where yn = (yn,1, . . . , yn,T )
⊤ ∈ {1, . . . , Y }T is the class-label vector for the n-th sample

and T is the number of labels. Input vector x is assumed to be drawn independently
from p(x), and the t-th element yt of y = (y1, . . . , yt)

⊤ is assumed to be drawn from
pt(y|x). The objective of multi-label probabilistic classification is to learn the class-
posterior probabilities pt(y|x) for t ∈ {1, . . . , T}.

Requiring that similar labels should have similar classification solutions, we can employ
a multi-task learning method to solve the multi-label learning problem. Indeed, from the
MT-LSPC training criterion, we immediately have the training criterion for ML-LSPC:

ĴML
y (θy) :=

T∑
t=1

(
1

2

N∑
n=1

q(y|xn;θy,t)
2 −

∑
n:yn,t=y

q(y|xn;θy,t) +
1

2
λt∥θy,t∥2

)

+
1

4

T∑
t,t′=1

γt,t′∥θy,t − θy,t′∥2.
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However, a notable difference between multi-task and multi-label formulations is that
the number of training samples is N in the multi-task formulation, whereas that in the
multi-label formulation is essentially NT . Thus, if we naively apply MT-LSPC to the
multi-label problem, the computational complexity is O(N3T 3) for a kernel model (i.e.,
B = N), which is prohibitively expensive. Below, we explain how to mitigate this problem.

Let
Θy := (θy,1, . . . ,θy,T ) ∈ RB×T ,

and let πy,t be the N -dimensional class-indicator vector for the t-th label, i.e., πy,t,n = 1
if yn,t = y, and πy,t,n = 0 otherwise:

πy,t,n =

{
1 (yn,t = y),

0 (yn,t ̸= y).

Let
Πy := (πy,1, . . . ,πy,T ) ∈ RN×T .

Then ĴML
y can be compactly expressed as

ĴML
y (θy) =

1

2
tr(Θ⊤

y Φ
⊤ΦΘy)− tr(Θ⊤

y Φ
⊤Πy) +

1

2
tr(ΘyCΘ⊤

y ).

Taking the derivative of the above equation with respect to Θy and setting it to zero, we
obtain

Φ⊤ΦΘy +ΘyC = Φ⊤Πy. (1)

This is called the continuous Sylvester equation with respect to Θy, which often arises in
control theory [2].

Various algorithms for solving the Sylvester equation have been developed. One of the
simplest methods is based on the eigenvalue decompositions of Φ⊤Φ and C as follows:
Let f 1, . . . ,fB be eigenvectors of Φ⊤Φ associated with eigenvalues f1, . . . , fB, and let
g1, . . . , gT be eigenvectors of C associated with eigenvalues g1, . . . , gT . Then the solution

Θ̂y to Eq.(1) is given analytically as

Θ̂y = (f 1, . . . ,fB)Q(g1, . . . , gT )
⊤,

where Q is the B × T matrix defined as

Qb,t :=
f⊤

b Φ
⊤Πygt

fb + gt
.

If a kernel model is used (i.e., B = N), the computational complexity for solving Eq.(1)
in this way is O(N3 + N2T + NT 2 + T 3). Note that the terms N3 and T 3 come from
the eigenvalue decompositions of Φ⊤Φ and C, which can be performed more efficiently if
they enjoy nice structure such as being low-rank or sparse.
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For large-scale data, Eq.(1) may be solved more efficiently by numerical optimization.
Let

θy := (θ⊤y,1, . . . ,θ
⊤
y,T )

⊤ ∈ RBT .

Then Eq.(1) can be expressed as
Hθy = hy,

where

H := IT ⊗ (Φ⊤Φ) +C ⊗ IB ∈ RBT×BT ,

hy := ((Φ⊤πy,1)
⊤, . . . , (Φ⊤πy,T )

⊤)⊤ ∈ RBT .

If a kernel model is used (i.e., B = N), naively solving Hθy = hy takes O(N3T 3)
time. Here, we take into account the Kronecker structure of H , and solve the equation
numerically by the conjugate gradient method. More specifically, we can compute the
matrix-vector product Hθy as

[Hθy]t = Φ⊤Φθy,t +
T∑

t′=1

Ct,t′θy,t′ .

Although the computational complexity for naively computing Hθy is O(N3 + N2T 2)
including the computation of Φ⊤Φ, that for computing Hθy based on the above expres-
sion is reduced to O(N2T +NT 2). Note that the term N2T comes from the computation
Φ⊤Φθy,t and the term NT 2 comes from the computation

∑T
t′=1Ct,t′θy,t′ . If Φ⊤Φ is ap-

proximated by a low-rank matrix and the task similarity matrix Γ enjoys nice structure
such as being approximately low-rank or sparse, Hθy may be approximately computed
even more efficiently.

6 Experiments

In this section, we experimentally evaluate the performance of the proposed ML-LSPC.

6.1 Toy Dataset

Let the feature dimension be D = 300, and we consider T binary classification tasks.
Training samples of the t-th task is created as follows: xn = (x1,n, . . . , xD,n)

⊤ is inde-
pendently drawn from the standard normal distribution and yt,n is determined by linear
decision boundary cos(2πt/T )x1,n + sin(2πt/T )x2,n (i.e., the decision boundaries are ro-
tated in the subspace spanned by the first two dimensions). We set the number of training
samples to N = 2000. The label similarity Wt,t′ is set to max(0, ρt,t′), where ρt,t′ is the
Pearson correlation coefficient between {yt,n}Nn=1 and {yt′,n}Nn=1. We use the Gaussian
kernel model in LSPCs.
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Figure 1: Toy dataset.

As functions of the number of tasks, we compare the classification performance of
the plain LSPC (i.e., each task is solved separately), the proposed ML-LSPC, the k-
nearest neighbor classifier for multi-label learning (ML-kNN) [7] which treats a multi-
label problem as a set of single-label problems, and the instance differentiation method
(InsDif) [8] which utilizes a multi-instance formulation in multi-label problems.

All tuning parameters were optimized based on 5-fold cross-validation in terms of
the misclassification rate. Fig. 1(a) plots the average misclassification rate over 50 runs,
showing that ML-LSPC and InsDif perform well. Plain LSPC and ML-kNN performed
poorly because they did not explicitly take label correlations into account. Fig. 1(b) plots
the computation time of ML-LSPC with naive implementation (we used the left-division
function ‘mldivide’ in MATLAB R⃝), the proposed optimization method (we used the
conjugate gradient function ‘pcg’ in MATLAB R⃝), InsDif, and ML-kNN. This shows that
the proposed optimization method is computationally much more efficient than the naive
implementation of ML-LSPC. InsDif is slow because it includes clustering of a bag of
samples.

6.2 Enron Email Dataset

Finally, we test the performance of the proposed method on the Enron Email Dataset,
which consists of 1702 real-world email messages [1]. Each email message is represented
as a 1001-dimensional feature vector, accompanied with 53 labels. We randomly chose
N = 1000 samples for training, and used the remaining 702 samples for performance
evaluation. Because the presence and absence of labels were highly imbalanced in this
dataset, we decided to evaluate the test performance in terms of the F-measure. The
average F-scores (and computation time) for plain LSPC, ML-LSPC, ML-kNN, and InsDif
over 150 runs were 0.556 (3.3 sec.), 0.561 (5.5), 0.372 (9.6), and 0.526 (470.7), where ML-
LSPC was significantly better than others according to the t-test at the significance level
5%.
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7 Conclusions

Multi-label classification is useful in various real-world problems such as audio tagging,
image annotation, video search, and text mining. However, because the essential number
of training samples for T -dimensional label vectors of size N is NT , naive implementation
of multi-label classification is computationally expensive when N and T are large. To
overcome this computational bottleneck, we developed a multi-label method based on
LSPC [4, 6]. Our key idea was to utilize the block structure of the system of linear
equations to improve the computational efficiency. Through experiments, we showed that
the proposed method, ML-LSPC, is promising.
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