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Abstract

Mutual information (MI) is a standard measure of statistical dependence of random
variables. However, due to the log function and the ratio of probability densities
included in MI, it is sensitive to outliers. On the other hand, the L2-distance variant
of MI called quadratic MI (QMI) tends to be robust against outliers because QMI is
just the integral of the squared difference between the joint density and the product
of marginals. In this paper, we propose a kernel least-squares QMI estimator called
least-squares QMI (LSQMI) that directly estimates the density difference without
estimating each density. A notable advantage of LSQMI is that its solution can be
analytically and efficiently computed just by solving a system of linear equations.
We then apply LSQMI to dependence-maximization clustering, and demonstrate its
usefulness experimentally.
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1 Introduction

Mutual information (MI) [4] between random variable x and y is defined as

MI :=

∫∫
p(x,y) log

p(x,y)

p(x)p(y)
dxdy, (1)
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where p(x,y) denotes the joint probability density of x and y, and p(x) and p(y) denote
the marginal probability densities of x and y, respectively. MI is non-negative and equal
to zero if and only if p(x,y) = p(x)p(y). Thus, MI can be used as a measure of statistical
dependence of x and y.

A naive approach to approximating MI from i.i.d. paired samples {(xi,yi)}ni=1 is to
separately approximate p(x,y), p(x), and p(y), and then plug the estimated densities
into Eq.(1). However, density estimation is known to be a hard task and taking the ratio
of estimated densities can significantly magnify the estimation error [6]. To cope with this

problem, an MI approximator that directly estimates the density ratio p(x,y)
p(x)p(y)

without

density estimation, called maximum-likelihood MI (MLMI), was proposed [10]. Although
MLMI was proved to achieve the optimal non-parametric convergence rate, it tends to
be sensitive to outliers due to the log function and the ratio of probability densities [7].
Also, MLMI is computationally expensive due to the log function.

To overcome the excessive sensitivity of MI to outliers and high computational costs
of MLMI, squared-loss MI (SMI) [9] has been proposed:

SMI :=

∫∫
p(x)p(y)

(
1− p(x,y)

p(x)p(y)

)2

dxdy.

Whereas the ordinary MI is the Kullback-Leibler divergence [2] from p(x,y) to p(x)p(y),
SMI is the Pearson divergence [3]. Because SMI does not include the log function, it is
more robust against outliers [7] and its density-ratio approximator, called least-squares MI
(LSMI), can be computed efficiently in an analytic form [9]. However, the density ratio

function p(x,y)
p(x)p(y)

can diverge to infinity even for a simple case where two one-dimensional

variables x and y follow a correlated Gaussian distribution. In such a case, LSMI (and
also MLMI) loses its consistency. This implies that LSMI is still sensitive to outliers.

To cope with this problem, we consider an L2-distance variant of MI called quadratic
MI [11]:

QMI :=

∫∫ (
p(x,y)− p(x)p(y)

)2
dxdy. (2)

Because QMI includes neither the log function nor the density ratio, it is expected to be
robust against outliers.

Although QMI can also be approximated from i.i.d. paired samples {(xi,yi)}ni=1 via
density estimation similarly to MI, this is unreliable due to the hardness of density esti-
mation. In this paper, we give a method to directly approximate the density difference
p(x,y)−p(x)p(y) without density estimation. This estimator can be regarded as an appli-
cation of the least-squares density-difference estimator [8] to QMI, and possesses various
excellent properties: Its solution can be computed analytically in a computationally effi-
cient way, all tuning parameters can be systematically optimized via cross-validation, and
it achieves the optimal non-parametric convergence rate.

We apply our QMI approximator, called least-squares QMI (LSQMI), to dependence-
maximization clustering [5], which determines cluster labels so that an information mea-
sure between feature vectors and cluster labels is maximized. Through experiments, we



Direct Approximation of Quadratic Mutual Information 3

demonstrate that LSQMI-based clustering tends to be more robust against outliers than
the state-of-the-art LSMI-based clustering [1].

2 QMI Approximation Based on Density-Difference

Estimation

In this section, we propose a new method to approximate QMI.
Density-Difference Estimation: Suppose that we are given a set of paired samples
{(xi,yi)}ni=1 on some domain, which are independently drawn from a joint probability
distribution with density p(x,y). Following [8], we directly approximate the following
density-difference function without density estimation of p(x,y), p(x), and p(y):

f(x,y) := p(x,y)− p(x)p(y),

where p(x) and p(y) denote the marginal densities of x and y, respectively.
We approximate the density difference f(x,y) using the following linear-in-parameter

model:

g(x,y) :=
b∑

ℓ=1

θℓϕℓ(x,y) = θ⊤ϕ(x,y),

where θ = (θ1, . . . , θb)
⊤ is a parameter vector, ϕ(x,y) = (ϕ1(x,y), . . . , ϕb(x,y))

⊤ is a
basis function vector, b denotes the number of parameters, and ⊤ denotes the transpose.
We will explain how the basis functions are designed in practice later.

We fit the model g to the true density-difference function f by least-squares:

min
θ

∫∫ (
g(x,y)− f(x,y)

)2
dxdy. (3)

An empirical and regularized version of the above optimization problem is given as

θ̂ := argmin
θ

[
θ⊤Hθ − 2θ⊤ĥ+ λθ⊤θ

]
,

where λ ≥ 0 is the regularization parameter and H and ĥ are defined as

H :=

∫∫
ϕ(x,y)ϕ(x,y)⊤dxdy,

ĥ :=
1

n

n∑
i=1

ϕ(xi,yi)−
1

n2

n∑
i,i′=1

ϕ(xi,yi′).

The solution θ̂ can be obtained analytically as

θ̂ = (H + λI)−1ĥ,
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where I denotes the identity matrix. Finally, our density-difference estimator f̂(x,y) is
given by

f̂(x,y) = θ̂
⊤
ϕ(x,y).

Model Selection by CV: The above density-difference estimator depends on the choice
of the regularization parameter λ and some parameters included in the basis function
ϕ(x,y). These tuning parameters (which we call a model) can be systematically opti-
mized based on cross-validation (CV) with respect to the objective function (3) as follows:
First, the sample set Z = {(xi,yi)}ni=1 is divided into disjoint subsets {Zm}Mm=1 of (ap-

proximately) the same size. Then a QMI estimator f̂m is obtained from Z\Zm (i.e., all
samples without Zm), and its objective value is evaluated using the hold-out samples Zm

as

ĴCV
m :=

∫∫
f̂m(x,y)

2dxdy − 2

|Zm|
∑

(x,y)∈Zm

f̂m(x,y)

+
2

|Zm|2
∑

x,y∈Zm

f̂m(x,y),

where |Zm| denotes the number of elements in the set Zm,
∑

(x,y)∈Zm
indicates the sum-

mation over every paired sample (x,y) in Zm (i.e., summation over |Zm| elements), and∑
x,y∈Zm

indicates the summation over every unpaired sample x and y in Zm (i.e., sum-

mation over |Zm|2 combinations). This procedure is repeated for m = 1, . . . ,M , and the
model that minimizes the average of the above hold-out error over all m is chosen as the
best one.
QMI Approximation: QMI (2) can be expressed using the density difference f(x,y)
as

QMI =

∫∫
f(x,y)2dxdy.

Either replacing f(x,y)2 with f̂(x,y)2 or replacing f(x,y)2 with f̂(x,y)f(x,y) and

using empirical approximation, we can approximate QMI as θ̂
⊤
Hθ̂ or θ̂

⊤
ĥ. However,

as discussed in [8], we use their linear combination as our QMI estimator, which has a
smaller bias than the above naive estimators:

Q̂MI := 2θ̂
⊤
ĥ− θ̂

⊤
Hθ̂.

We call this the least-squares QMI (LSQMI) estimator.

3 Dependence-Maximization Clustering with

LSQMI

In this section, we apply LSQMI to dependence-maximization clustering and give its
computationally efficient implementation.
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Algorithm 1 LSQMIC

Input: Feature vectors {xi}ni=1 and the number of clusters, c.
Output: Cluster assignments {yi | yi ∈ {1, . . . , c}}ni=1.

1: Randomly permute {xi}ni=1;
2: Randomly initialize cluster assignments {yi}ni=1;
3: repeat
4: for i′ = 1, . . . , n do
5: for y = 1, . . . , c do

6: Compute Q̂MIy from {(xi, yi)}ni=1 with yi′ = y;
7: end for
8: yi′ ← argmax y=1,...,c Q̂MIy;
9: end for
10: until {yi}ni=1 do not change.

Formulation and Algorithm: Given feature vectors {xi|xi ∈ Rd}ni=1, the goal
of dependence-maximization clustering is to find associated cluster labels {yi|yi ∈
{1, . . . , c}}ni=1 that maximizes a certain information measure [5, 1], where the number
of clusters, c, is assumed known below. Here we use LSQMI as our information measure.
A greedy algorithm of LSQMI-based clustering is described in Algorithm 1, which we
refer to as LSQMI-based clustering (LSQMIC).
Computationally Efficient Implementation: In LSQMIC, we use

g(x, y) :=
n∑

ℓ=1

θℓK(x,xℓ)L(y, yℓ) (4)

as our density-difference model. Here, K(x,x′) and L(y, y′) denote the Gaussian kernel
and the delta kernel, respectively:

K(x,x′) := exp

(
−∥x− x′∥2

2σ2

)
,

L(y, y′) :=

{
1 (y = y′),

0 (y ̸= y′),

where σ2 denotes the Gaussian width which can be optimized by CV. When n is large, we
may use only a subset of samples as kernel centers to reduce the number of kernel bases.

Thanks to the sparseness brought by the delta kernel for y, H becomes block-diagonal
for model (4), if samples are sorted according to the cluster labels. This nice structure
actually allows us to compute the density-difference estimator in a cluster-wise manner,
which significantly contributes to reducing the computation time.

More specifically, let {x(y)
i }n

(y)

i=1 be samples in cluster y, where n(y) denotes the number
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of samples in cluster y:
∑c

y=1 n
(y) = n. Let

g(y)(x) :=
n(y)∑
ℓ=1

θℓK(x,x
(y)
ℓ )

be the density-difference model for cluster y. Then the density-difference solution θ̂
(y)

for
cluster y is given by

θ̂
(y)

:= argmin
θ∈Rn(y)

[
θ⊤H(y)θ − 2θ⊤ĥ

(y)
+ λθ⊤θ

]
= (H(y) + λI)−1ĥ

(y)
,

where

H
(y)
ℓ,ℓ′ :=

∫
K(x,x

(y)
ℓ )K(x,x

(y)
ℓ′ )dx

= (πσ2)d/2 exp

(
−∥x

(y)
ℓ − x

(y)
ℓ′ ∥2

4σ2

)
,

ĥ
(y)
ℓ :=

1

n

n(y)∑
i=1

K(x
(y)
i ,x

(y)
ℓ )− n(y)

n2

n∑
i=1

K(xi,x
(y)
ℓ ).

Finally, the density-difference estimator f̂(x, y) is given by

f̂(x, y) =
n(y)∑
ℓ=1

θ̂
(y)
ℓ K(x,x

(y)
ℓ ),

and the LSQMI estimator is given by

Q̂MI =
c∑

y=1

(
2θ̂

(y)⊤ĥ
(y)
− θ̂

(y)⊤H(y)θ̂
(y)
)
.

4 Experiments

In this section, we experimentally compare the proposed LSQMIC with its LSMI coun-
terpart called LSMI-based clustering (LSMIC) [1], which is a state-of-the-art dependence
maximization clustering method. Because both methods are greedy algorithms, we run
them 9 times with random initialization and choose the best solutions that maximize each
information measure. Before feeding the data into clustering algorithms, we normalize
the data so that element-wise variance is one.

Our focus in the following experiments is robustness against outliers.
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(a) Outlier rate η = 0.15 (b) Outlier mean µ = 14

Figure 1: Averages and standard errors of clustering accuracy on toy data over 100 runs.

Toy Datasets: Let the number of clusters be c = 2, the sample dimensionality be d = 2,
and the sample size be n = 500. Inlier samples in each cluster are drawn from the Gaussian
distributions with covariance matrix identity and mean (−5, 0)⊤ and (5, 0)⊤, respectively.
With probability η, outlier samples are drawn from the Gaussian distribution with mean
(µ, 0)⊤ and covariance matrix 0.5I. We run the experiments 100 times with different
random seeds and compare the average clustering accuracy for inlier samples.

Figure 1(a) depicts the results for outlier rate η = 0.15 and outlier mean µ = 12, 14,
16, and 18, and Figure 1(b) depicts the results for outlier mean µ = 14 and outlier rate
η = 0.05, 0.1, 0.15, 0.2, and 0.25. These results show high robustness of the proposed
LSQMIC: The accuracy of LSMIC tends to be decreased in both cases, while that of
LSQMIC is almost unchanged.
Benchmark Datasets: Next, we employ 8 real-world datasets taken from the UCI
Repository1. The experimental results are summarized in Table 1(a), showing that
LSQMIC and LSMIC are comparable. Table 1(b) shows the results when 10% outliers
are added to the same datasets (outliers are drawn from the Gaussian distribution with
mean 21 and covariance matrix 0.1I, where 1 denotes the vector with all ones). This
shows that LSQMIC tends to outperform LSMIC.

5 Conclusion

In this paper, we applied the general method of least-squares density-difference [8] to
the difference between the joint density and the product of marginals, and derived an
estimator of quadratic mutual information (QMI). We then applied the QMI estimator
named LSQMI to dependence-maximization clustering and demonstrated its high robust-
ness against outliers.

1http://www.ics.uci.edu/~mlearn/MLRepository.html.
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Table 1: Averages (and standard errors in the brackets) of clustering accuracy on UCI
datasets over 100 runs. The best and comparable methods by the t-test at the significance
level 1% are described in boldface.

(a) Without outliers
Dataset c d n LSQMIC LSMIC
Seismic 3 50 100 55.4 (0.36) 56.1 (0.48)
Sonar 3 60 100 55.4 (0.34) 57.1 (0.47)
Pima 2 8 100 65.9 (0.45) 63.8 (0.54)

Balance 2 4 100 52.4 (0.81) 52.5 (0.63)
Seeds 3 7 100 90.2 (0.29) 88.7 (0.46)

Liver-disorders 2 6 100 54.5 (0.35) 54.5 (0.35)
Shuttle 7 9 100 56.3 (0.74) 53.3 (0.75)
Vehicle 4 18 100 40.4 (0.39) 42.0 (0.40)

(b) With 10% outliers
Dataset c d n LSQMIC LSMIC
Seismic 3 50 110 55.5 (0.37) 50.8 (0.74)
Sonar 3 60 110 55.4 (0.30) 56.1 (0.41)
Pima 2 8 110 67.5 (0.42) 65.8 (0.63)

Balance 2 4 110 53.2 (0.93) 54.6 (0.90)
Seeds 3 7 110 89.4 (0.32) 86.7 (0.67)

Liver-disorders 2 6 110 54.0 (0.30) 54.6 (0.33)
Shuttle 7 9 110 58.6 (0.67) 58.3 (0.86)
Vehicle 4 18 110 40.2 (0.39) 40.9 (0.37)
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