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Abstract

The goal of sufficient dimension reduction in supervised learning is to find the low-
dimensional subspace of input features that contains the whole information about
the output values that the input features possess. In this paper, we propose a
novel sufficient dimension reduction method using a squared-loss variant of mu-
tual information as a dependency measure. We apply a density-ratio estimator for
approximating squared-loss mutual information that is formulated as a minimum
contrast estimator on parametric or non-parametric models. Since cross-validation
is available for choosing an appropriate model, our method does not require any
pre-specified structure on the underlying distributions. We elucidate the asymp-
totic bias of our estimator on parametric models and the asymptotic convergence
rate on non-parametric models. The convergence analysis utilizes the uniform tail-
bound of a U-process, and the convergence rate is characterized by the bracketing
entropy of the model. We then develop a natural gradient algorithm on the Grass-
mann manifold for sufficient subspace search. The analytic formula of our estimator
allows us to compute the gradient efficiently. Numerical experiments show that the
proposed method compares favorably with existing dimension reduction approaches
on artificial and benchmark datasets.

Keywords: dimension reduction, density ratio, convergence rate, mutual informa-
tion.
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1 Introduction

The purpose of dimension reduction in supervised learning is to find the low-dimensional
subspace of input features which has ‘sufficient’ information for predicting output values.
Sufficient dimension reduction (SDR) initiated by Li (1991) is aimed at finding a low-
rank projection matrix such that, given the relevant subspace of input features, the rest
becomes conditionally independent of output values (Cook, 1998b; Chiaromonte & Cook,
2002). Such a low-dimensional subspace contains all the information of the output that
the covariate contains. Finding such a subspace not only allows us to use the dimension-
reduced features for estimating input-output relations, but also gives insights about which
features are important.

A traditional dependency measure between random variables would be the Pearson
correlation coefficient (PCC). PCC can be used for detecting linear dependency, so it is
useful for Gaussian data. However, the Gaussian assumption may be rarely fulfilled in
practice.

Recently, kernel-based dimension reduction has been studied in order to overcome the
weakness of PCC. The Hilbert-Schmidt independence criterion (HSIC) (Gretton et al.,
2005) utilizes cross-covariance operators on universal reproducing kernel Hilbert spaces
(RKHSSs) (Steinwart, 2001). Cross-covariance operators are an infinite-dimensional gen-
eralization of covariance matrices. HSIC allows one to efficiently detect non-linear de-
pendency by making use of the reproducing property of RKHSs (Aronszajn, 1950). Its
usefulness in feature selection scenarios has been shown in Song et al. (2007). However,
HSIC has several weaknesses both theoretically and practically. Theoretically, HSIC eval-
uates independence between random variables, not conditional independence. Thus HSIC
does not perform SDR in a strict sense. From the practical point of view, HSIC evaluates
the covariance between random variables, not the correlation. This means that the change
of input feature scaling affects the dimension reduction solution, which is not preferable
in practice.

Kernel dimension reduction (KDR) (Fukumizu et al., 2004) can overcome these weak-
nesses. KDR evaluates conditional covariance using the kernel trick, and thus KDR
directly performs SDR. Through experiments, KDR was demonstrated to outperform
other dimension reduction schemes such as canonical correlation analysis (Hotelling, 1936;
Breiman & Friedman, 1985), partial least-squares (Wold, 1966; Goutis & Fearn, 1996; Du-
rand & Sabatier, 1997; Reiss & Ogden, 2007), sliced inverse regression (Li, 1991; Bura &
Cook, 2001; Cook & Ni, 2005; Zhu et al., 2006), and the principal Hessian direction (Li,
1992; Cook, 1998a; Li et al., 2000). Theoretical properties of KDR such as consistency
have been studied thoroughly (Fukumizu et al., 2009). However, KDR still has a weakness
in practice—the performance of KDR (and also HSIC) depends on the choice of kernel
parameters (e.g., the Gaussian width) and the regularization parameter. So far, there
seems no model selection method for KDR and HSIC (as discussed in Fukumizu et al.,
2009)!.

'In principle, it is possible to choose the Gaussian width and the regularization parameter by cross-
validation (CV) over a successive predictor. However, this is not preferable due to the following two
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Table 1: Summary of existing and proposed dependency measures.

Methods Non-linear Mod.el Distribution D.ensit.y Featul.re
dependence selection estimation extraction
PCC Not detectable Not necessary Gaussian Not involved Possible
HSIC Detectable Not available Free Not involved Possible
KDR Detectable Not available Free Not involved Possible
HIST Detectable Available Free Involved Not available
KDE Detectable Available Free Involved Possible
NN Detectable Not available Free Not involved Not available
EDGE Detectable  Not necessary Near Gaussian Not involved Possible
MLMI Detectable Available Free Not involved Not available
LSMI Detectable Available Free Not involved Possible

Another possible criterion for SDR is mutual information (MI) (Cover & Thomas,
2006). MI could be directly employed for SDR since maximizing MI between output and
projected input leads to conditional independence between output and input given the
projected input. So far, a great deal of effort has been made to estimate MI accurately,
e.g., based on an adaptive histogram (HIST) (Darbellay & Vajda, 1999), kernel density
estimation (KDE) (Torkkola, 2003), the nearest-neighbor distance (NN) (Kraskov et al.,
2004), the Edgeworth expansion (EDGE) (Hulle, 2005), and maximum-likelihood MI
estimation (MLMI) (Suzuki et al., 2008). Among them, MLMI has been shown to possess
various practical advantages.

As summarized in Table 1, MLMI affords model selection by cross-variation, while
there is no systematic method to choose tuning parameters for HSIC, KDR, and NN.
MLMI does not require specific structures on the underlying distributions, while EDGE
requires that the distributions are near Gaussian. MLMI does not involve density esti-
mation of the underlying distributions so that it shows a good performance in practice.

Based on the above comparison, we want to employ the MLMI method for dimension
reduction. However, this is not straightforward since the MLMI estimator is not explicit,
i.e., the MLMI estimator is implicitly defined as the solution of an optimization problem
and is computed numerically. In the dimension reduction (or feature extraction) scenarios,
the projection matrix needs to be optimized over an MI approximator. To cope with this
problem, we adopt a squared-loss variant of MI called the squared-loss MI (SMI) as
our independence measure, and use an estimator of SMI called least-squares MI (LSMI)
(Suzuki et al., 2009) for dimension reduction. LSMI inherits good properties from MLMI,
and moreover it provides an analytic SMI estimator that gives an analytic formula for its
derivative (see Table 1 again).

The goal of this paper is to develop a dimension reduction algorithm based on LSMI.

reasons. The first is significant increase of the computational cost. When CV is used, the tuning
parameters in KDR (or HSIC) and hyper-parameters in the target predictor (such as basis parameters
and the regularization parameter) should be optimized at the same time. This results in a deeply nested
CV procedure, and therefore this could be computationally very expensive. Another reason is that
features extracted based on CV are no longer independent of predictors, which is not preferable from the
viewpoint of interpretability.
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Our first contribution in this paper is to theoretically elucidate the rate of convergence
of the LSMI estimator in parametric and non-parametric settings. Then we develop
a practical dimension reduction algorithm based on LSMI, which we call Least-Squares
Dimension Reduction (LSDR). LSDR optimizes the projection matrix using a natural
gradient algorithm (Amari, 1998) on the Grassmann manifold. Finally, through numerical
experiments, we show the usefulness of the LSDR method.

2 Dimension Reduction via SMI Estimation

In this section, we first formulate the problem of sufficient dimension reduction (SDR)
(Cook, 1998b; Chiaromonte & Cook, 2002), and show how squared-loss mutual infor-
mation (SMI) can be employed in the context of SDR. Then we introduce a method of
approximating SMI without going through density estimation, and we elucidate conver-
gence properties of the SMI estimator. Finally, we develop a dimension reduction method
based on the SMI estimator.

2.1 Sufficient Dimension Reduction

Let Dx (C R?) be the domain of input feature &, and Dy be the domain of output data? y.
We suppose that Dy is equipped with a o-algebra By and there is a base measure denoted
by dy. As for Dx, we consider the standard o-algebra By of the Lebesgue measurable sets
and denote by dx as the Lebesgue measure. We assume there is a joint density pyy, (x, y)
defined on the product space (Dx x Dy, Bx x By) with respect to de x dy.

To search a subspace of input space containing sufficient information about the output,
we utilize the Grassmann manifold Gr (R) that is the set of all m-dimensional subspaces
in RY. The Grassmann manifold CGr? (R) is obtained by identifying those matrices in
d x m orthonormal matrices whose columns span the same subspace:

Gl (R):={WeR™ | WW' =1,}/ ~, (1)
where T denotes the transpose, I, is the m-dimensional identity matrix, and ~ is the
equivalence relation such that W ~ W' if the raws of both W and W' span the same
space.

Let W* be any projection matrix corresponding to a member of the Grassmann man-
ifold Gr? (R). Let z* (€ R™) be the orthogonal projection of input  given by W*:

2zt =Wz,

Suppose that z* satisfies
yllax|z" (2)

2Dy can be multi-dimensional and either continuous (i.e., regression) or categorical (i.e., classification);
structured outputs such as strings, trees, and graphs can also be handled in our framework, as explained
later.
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That is, given the projected feature z*, the (remaining) feature x is conditionally in-
dependent of output y and thus can be discarded without sacrificing the predictability
of y. Note that the conditionally independence is invariant against the choice of the
representative W*.

Suppose that we are given n independent and identically distributed (i.i.d.) paired
samples,

D" = {(z;,y;) | € Dx, yi € Dy, i =1,...,n}, (3)

drawn from a joint distribution with density py,(x,y). The goal of SDR is, from data
D", to find a projection matrix whose range agrees with that of W*. For a projection
matrix W, we write

zZ; = WCCl

We assume that m is known throughout this paper.

2.2 Squared-Loss Mutual Information

A direct approach to SDR would be to determine W so that Eq.(2) is fulfilled. Let us
denote by z = Wa for some projection matrix W. To this end, we adopt SMI as our
criterion to be maximized with respect to W'

,_1 pyz(y,Z) _ ? . >
s 2) = [ (s —1) momeas .

where py,(y, z) denotes the joint density of y and z, and py(y) and p,(z) denote the
marginal densities of y and z, respectively. SMI(Y, Z) allows us to evaluate independence
between y and z since SMI(Y, Z) vanishes if and only if

Py2(Y, 2) = Dy (Y)p.(2).

Note that Eq.(4) corresponds to the f-divergence (Ali & Silvey, 1966; Csiszar, 1967)
from py,(y, 2) to py(y)p.(2z) with the squared loss, while ordinary MI corresponds to the
f-divergence with the log loss, i.e., the Kullback-Leibler (KL) divergence (Kullback &
Leibler, 1951):

MY 2) = [ 1og (%) pyaly, 2)dyd.

Thus SMI could be regarded as a natural alternative to ordinary MI.
The rationale behind the use of SMI in the context of SDR relies on the following
lemma:

Lemma 1. Decompose x into z and the component orthogonal to z as * = (z,z,), i.e.,
z is a member of the image of W and z, is a member of the subspace perpendicular to
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the image of W. Let p, y,(21,Y|2), P, 12(21|2), and py,(y|z) be conditional densities.
Then we have

SMI(X,Y) — SMI(Z,Y)
= (1 Pz ylR) )prz<y,z>2px<m>
Dy

2 szIZ(zL|z)pylz(y|z) pZ(Z)2 y)
> 0.

dzdz,dy

A proof of this lemma is given in Appendix A. Lemma 1 implies
SMI(X,Y) > SMI(Z,Y),
and the equality holds if and only if

pZLylz(sz y|z) = pZLlZ(zJ-|z)py|Z(y|z)a

which is equivalent to Eq.(2). Thus, Eq.(2) can be achieved by maximizing SMI(Z,Y)
with respect to W; then the ‘sufficient’ subspace can be identified.

Now we want to find the projection matrix W that maximizes SMI(Z,Y"). However,
SMI is inaccessible in practice since densities py,(y, 2), py(y), and p,(z) are unknown.
Thus SMI needs to be estimated from data samples. Below, we introduce an SMI estima-
tor.

2.3 SMI Approximation via Density-Ratio Estimation

Here, we consider a fixed projection matrix W, and discuss the problem of approximating
SMI from samples. The convexr duality (Boyd & Vandenberghe, 2004, p.91) gives the
variational representation (Keziou, 2003; Nguyen et al., 2010) of SMI as

SMI(Y, Z) = — inf J(g) — %
g
where inf, is taken over all measurable functions on (Dx x Dy, Bx x By), and
1
J(g) = 5/9(?!72)2 v (Y)p.(2)dydz — /g 2)py.(y, z)dydz. (5)

This can be checked as follows: For f(u) = 1(u* — 1), we have

swiy.z) = | 1 (M> Py (0)pal2) gz

py(Y)p2(2)
— / Py 2)9(y, 2) — I (99, 2)) py (9)pa(2)dydz
—sup [ (9 2)0(9.2) ~ 300 2 (=) gz —

1
= —inf ‘](g) o
g 2
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where f* is the convex conjugate of f that satisfies f(u) = sup,cp{uv — f*(v)} (Boyd
& Vandenberghe, 2004). Thus computing SMI is reduced to finding the minimizer g* of
J(g). We can show that g* is given by

pyz(yaz) (6)

W) = )

Thus, estimating SMI(Y, Z) is reduced to estimating the above density ratio®. We do not
choose a strategy to plug in density estimators of py,, py, and p, into the formula (6).
This is because, in a region with small p,(y)p,(z), small estimation error of py,(y, 2z) is
strongly amplified. To avoid the unstable behavior around the tail, we directly model
the density ratio ¢g* itself and impose regularization to control instability of density-ratio
estimators when needed.

Below, we consider parametric and non-parametric methods for estimating SMI.

2.3.1 Parametric Convergence Analysis

Let us consider the case where the function class G from which the function g is searched
is a parametric model:

G={go(y,z) | 8 €O CR"}.

Suppose that the true density-ratio g* is contained in the model G, i.e., there exists 8*
(€ ©) such that ¢* = gg«. Approximating the probability densities py,(y, 2z), py(y), and
p.(2z) in Eq.(5) by their empirical distributions, we obtain the following optimization
problem.

0 .= argnéin om 59 Z ge ywz] - _Zgﬂ yzazz . (7>
e "] 1

Then an SMI approximator S/\MI(Y, Z) can be constructed as
1 < , 1
SMI(Y, Z) de Vi z) = 55 > 95U %) — 5 (8)
ij=1

Suppose the standard regularity conditions for the consistency ||6—6*| % 0 is satisfied
(see, for example, Section 3.2.1 of van der Vaart & Wellner, 1996). Let A and B be b x b
matrices defined as

Ave = Epp, 10096+ (Y, 2)0v go+ (Y, 7))
Biyr =By, | (0g0- (4, 2) = By [0090- (4, )] = By, [0190- (4, 2)] + By [D1g0- (4, 2)])

X <84/g9* (y, Z) — Epz,‘y [3@99* (’y7 Z,)] — Epy’|z [(%gg* (’y/, Z)] + Epy,z, [8[/99* (y,, Z/)}>i| i

3This result can be generalized to a general f-divergence with small modification (Keziou, 2003;
Nguyen et al., 2010).
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where ¢y’ and 2z’ are copies of y and z, and the partial derivative 0, is taken with respect
to the /-th element 6, of the parameter 8. Then we have the following theorem.

Theorem 1. Suppose that the matriz A is positive definite, then the SMI estimator (8)
satisfies -
SMI(Y, Z) — SMI(Y, Z) = O,(n~"/?), 9)

where O, denotes the asymptotic order in probability. Furthermore, we have
—_— 1
Ep«[SMI(Y, Z) — SMI(Y, Z)] = 2—tr(A—13) +o(n71), (10)
n

where Epn denotes the expectation over data samples D™ (see Eq.(3)).

A proof of Theorem 1 can be found in Appendix B. This theorem means that the
above SMI estimator retains the optimality in terms of the order of convergence in n,
since Op(n_l/ %) is the optimal convergence rate in the parametric setup (van der Vaart,
2000).

2.3.2 Non-Parametric Convergence Analysis

Next, we consider non-parametric cases. Let the function class G be a general set of
functions on Dy X Dz, where Dy = WDx. Let us consider a non-parametric version of
the empirical problem (cf. Eq.(7)):

~ . An
g 1= argmin o2 Zg yuzj Zg Yi, 2i) + 9 R( ) (11)

9€9 i,j=1 =1

where R(g) is a non-negative regularization functional such that

suplg(y, 2)] < R(g). (12)

y?z

Then a non-parametric version of SMI approximator S/\MI(Y, Z) is given as

1 -
SMI(Y, Z) Zg (i 20) = 5.5 > 9w 2)" =

ij=1

A useful example is to use a reproducing kernel Hilbert space (RKHS) (Aronszajn,
1950) as G and the RKHS norm as R(g). Suppose G is an RKHS associated with bounded
kernel k(-, -):

sup[k((y, 2), (y, 2))] < C. (13)

y7z

Let || - || denote the norm in the RKHS G. Then R(g) = V/C||gl|g satisfies Eq.(12):

9(y,2) = (k((y. 2), ), 90)) < VK, 2), (. 2))llglls < VCligll.
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where we used the reproducing property of the kernel and Schwartz’s inequality. Note
that the Gaussian kernel satisfies this with C' = 1. It is known that Gaussian kernel
RKHS spans a dense subset in the set of continuous functions. Another example of
RKHSs is Sobolev space. The canonical norm for this space is the integral of the squared
derivatives of functions. Thus the regularization term R(g) = ||g||g imposes the solution
to be smooth. The RKHS technique in Sobolev space has been well exploited in the
context of spline models (Wahba, 1990). We intend that the regularization term R(g)
is a generalization of the RKHS norm. Roughly speaking, R(g) is like a “norm” of the
function space G.

We assume that the true density-ratio function ¢*(y, z) is contained in the model G
and is bounded from above:

g (y,z) < My for all (y,z) € Dy x Dy.
Let Gy be a ball of G with radius M > 0:
Gu={9€ G| R(g) <M}

To derive the convergence rate of our estimator, we utilize the bracketing entropy that is
a complexity measure of a function class (van der Vaart & Wellner, 1996, p. 83).

Definition 1. Given two functions | and u, the bracket [l,u] is the set of all functions
f with l(y,z) < f(y,z) < u(y,z) for all y and z. An e-bracket is a bracket [l,u] with
|l = wl|Lypyp,) < € The bracketing entropy Hy(F, €, La(pyp,)) is the logarithm of the
minimum number of e-brackets needed to cover a function set F.

We assume that there exists v (0 < v < 2) such that, for all M > 0,

Hy (G, € La(pyps)) = O ((M)V) : (14)

€

This quantity represents a complexity of function class G—the larger v is, the more
complex the function class G is because, for larger v, more brackets are needed to cover the
function class. Gaussian RKHS satisfies this condition for arbitrarily small v (Steinwart
& Scovel, 2007). Note that when R(g) is the RKHS norm, the condition (14) holds for
all M > 0 if that holds for M = 1.

Then we have the following theorem.

Theorem 2. Under the above setting, if A, — 0 and A;' = o(n***)) then we have
SMI(Y, Z) — SMI(Y, Z) = O, (max(X,,n"/?)). (15)

A proof of Theorem 2 can be found in Appendix C. The conditions \,, — 0 and A\, =
0(n?/@+7) roughly mean that the regularization parameter ), should be sufficiently small
but not too small. This theorem shows that the convergence rate of the non-parametric
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version is also O,(n~1/2) if we take \, as n=2/ @+ < )\ < n~l/2 for sufficiently small
€. However, the non-parametric method requires a milder model assumption.

According to Nguyen et al. (2010) where a log-loss version of the above theorem
has been proven in the context of KL-divergence estimation, the above convergence rate
achieves the optimal minimax rate under some setup. Thus the convergence property of
the above non-parametric method would also be optimal in the same sense.

As stated above, Gaussian RKHS satisfies the bracketing number condition (14) for
arbitrary 7 > 0. Thus SMI with the Gaussian kernel achieves the convergence rate
(15) with arbitrary v > 0. However Gaussian RKHS is not sufficiently rich to estimate a
function in Sobolev spaces with the optimal rate. To estimate a function in a Sobolev space
with the optimal rate, we need to adjust the Gaussian width appropriately depending on
the sample size and the regularity of the Sobolev space. To analyze the convergence rate
for varying Gaussian widths, another technique than that used in this paper is required.
What we have shown in the theorem works only for a fixed Gaussian width. To cope with
a situation of varying Gaussian width, the techniques recently developed by Eberts and
Steinwart (2011) are useful.

2.3.3 Practical Implementation

Here we describe a practical version of the above SMI approximation method, called
least-squares mutual information (LSMI) (Suzuki et al., 2009).
Let us restrict the search space of function g to some linear subspace G:

G={a"py, 2z)|a=(a,...,0)" €R}, (16)

where « is a parameter to be learned from samples. ¢(y, z) is a basis function such that

e(y,2) = (p1(y,2),...,00(y,2))T >0, forall y, z,

where 0, is the b-dimensional vector with all zeros, and the inequality for vectors is applied
in the element-wise manner. ¢(y, z) may be dependent on the samples {(y;, z;) }I-,, i.e.,
kernel models are also allowed. Later in Section 2.3.5, we explain how the basis functions
p(y, z) are designed.

Let us approximate the probability densities py,(y, 2), py(y), and p,(2) in Eq.(5) by
their empirical distributions. Then we have

- . 1 1= ~ A
Q ;= argmin [—aTHa —hla+ —aTRa} : (17)
aGRb 2 2
where we included Aa' Ra (A > 0) for regularization purposes, and
- 1 n . N 1 n
H:=— > oynz)e.z) . hi=-% oy.z) (18)
ij=1 i=1

Note that when G is an RKHS corresponding to a kernel k, g¢(y,z) =
Yy ek ((ye, z0), (Y, 2)) is a member of the RKHS and the RKHS norm of g satisfies



Sufficient Dimension Reduction via Squared-loss Mutual Information Estimation 11

19]l3 = a" Rox where R is the Gram matrix, i.e., Roo = k((ys, 2¢), (Yo, ze)). Thus the
regularization term R(g) = vC|lgll¢ = VOVaT Ra satisfies the condition (12) if the
kernel function is bounded as Eq.(13).

Differentiating the objective function (17) with respect to a and equating it to zero,
we obtain

(H + \R)a = h. (19)

Thus, the solution can be obtained just by solving the above system of linear equations.
The solution & is given analytically as

a=(H+AR) 'h.
Then we can analytically approximate SMI as follows:

(20)

2.3.4 Model Selection by Cross-Validation

As shown in Sections 2.3.1 and 2.3.2, our SMI estimator was shown to possess preferable
convergence properties. Nevertheless, its practical performance depends on the choice of
basis functions and the regularization parameter. In order to determine basis functions
p(y,z) and the regularization parameter A\, cross-validation (CV) is available for the
LSMI estimator: First, the samples S = {(y;, z;)}, are divided into K disjoint subsets
{8 HE | of (approximately) the same size. Then an estimator ais, is obtained using S\Sk
(i.e., without &) and the approximation error for the hold—/g)ut samples S, is computed.

This procedure is repeated for £ = 1,..., K, and its mean Jgy is outputted:
1 o (1
Jov = 10> (§6L ot~ Ras, ) o)
k=1

where f—I\Sk and ;\lgk denote H and h computed on the hold-out samples Sy in (18). For
model selection, we compute Jev for all model candidates (the basis function ¢(y, z) and
the regularization parameter \), and choose the best model that minimizes Jov. We can
show that jcv is an almost unbiased estimator of the objective function J, where the
‘almost’-ness comes from the fact that the sample size is reduced in the CV procedure
due to data splitting (Scholkopf & Smola, 2002).

For the parametric setup, we may derive an asymptotic unbiased estimator of J
(a.k.a. an information criterion, Akaike, 1974) based on Theorem 1, which could be
employed for model selection. However, we do not pursue this direction in this paper.

2.3.5 Design of Basis Functions

The above CV procedure would be useful when good candidates of basis functions are
prepared. Here we propose to use the product kernel of the following form as basis
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functions:
Spf(ya Z) = ¢Z(y)¢z(z)v

since the number of kernel evaluation when computing H ¢ is reduced from n? to 2n:

f[w = % (Z %(yz)ﬁ/(yz)) <Z ¢?(zj)¢§/(zj)) :

In the regression scenarios where y is continuous, we use the Gaussian kernel as the
‘base’ kernels:

oty = (< 30) ot i e (<2500,

202 202

where {(ws,v,)})_, are Gaussian centers randomly chosen from {(y;, z;)}7;—more pre-
cisely, we set u; := Yo and vy = 2y, where {c(¢)}}_, are randomly chosen from
{1,...,n} without replacement.

The rationale behind this basis function choice is as follows: The density ratio (6) tends
to take large values if py(y)p,(2) is small and py,(y, z) is large. When a non-negative
function is approximated by a Gaussian kernel model, many kernels may be needed in
the region where the output of the target function is large. On the other hand, only a
small number of kernels would be enough in the region where the output of the target
function is close to zero. Following this heuristic, we decided to allocate many kernels in
the regions where py,(y, 2) is large; this can be achieved by setting the Gaussian centers
at® {(yi, zi) ey

In the classification scenarios where y is categorical, we use the delta kernel for y:

oy (y) = 6(y = wy),

where 0(y = uy) is 1 if y = uy and 0 otherwise. Note that, in this case, the matrix H
becomes block-diagonal, given that the samples are sorted according to the class labels.
Then the linear equation (19) can be solved efficiently.

More generally, when y is structured (e.g., strings, trees, and graphs), we may employ
kernels for structured data as ¢)(y) (Lodhi et al., 2002; Collins & Duffy, 2002; Kashima
& Koyanagi, 2002; Kondor & Lafferty, 2002; Kashima et al., 2003; Gartner et al., 2003;
Gértner, 2003).

2.4 Least-Squares Dimension Reduction

Finally, we show how the SMI approximator is employed for dimension reduction. To
find a sufficient subspace, the dimension reduction problem is casted as an optimization
problem over the Grassmann manifold Gr? (R) (see Eq.(1)).

4Alternatively, we may locate n? Gaussian kernels at {(yi,2j)}1 j=1- However, in our preliminary
experiments, this did not further improve the performance, but significantly increased the computational
cost.
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Here we employ a gradient ascent algorithm to find the maximizer of the LSMI ap-
proximator with respect to W. After a few lines of calculations, we can show that the
gradient is given by

OSMI  ohT . OH 3. ~ OR ~
— 2"\ o -~ -~ )\AT o=
Wee  Wew f)-a Wy p (Ga-p)+ra OWyp (6-a)

where B := (f—I\—i— )\R)_lf-I\& and we used the formula 8)5: = —X 12X X! for a positive

symmetric matrix X each element of which is a function of ¢.
In the Euclidean space, the ordinary gradient % gives the steepest direction. How-

ever, on a manifold, the natural gradient (Amari, 1998) gives the steepest direcﬁi\on. The
natural gradient VS/l\TI(W) at W is the projection of the ordinary gradient % to the
tangent space of Grj'(R) at W. If the tangent space is equipped with the canonical metric
(G, Gs) = 1tr(G Gs), the natural gradient is given as follows (Edelman et al., 1998):

OSMI  OSMI OSMI
=W W W'wW = i W/ w,, (22)

VSMI(W)

where W is any (d —m) x d matrix such that [WT W] is orthogonal. Then the geodesic
from W to the direction of the natural gradient VSMI(W) over Gr}'(R) can be expressed

using ¢ (€ R) as
)]

where ‘exp’ for a matrix denotes the matriz exponential, and Oy is the b X b zero matrix
(note that the derivative 9,W;|;—o coincides with the natural gradient (22), see Edelman
et al. (1998) for detailed derivation of the geodesic). Thus line search along the geodesic
in the natural gradient direction is equivalent to finding the maximizer from {W; | ¢t > 0}.

For choosing the step size of each gradient update, we may use some approximate line
search method such as Armijo’s rule (Patriksson, 1999, p.50) or backtracking line search
(Boyd & Vandenberghe, 2004, p.464). In our setting, Armijo’s rule finds the step size as
the maximum ¢, that satisfies

OSMI yx/ T
0,, “w Wi

W,:=|I; Og_,|exp|t — T
t [ ] _WL% Od—m

T —
oW,  aSMI(W)

SMI(W;,) — SMI(W) > typutr

ot oW
i t=0
[ HSMI(W)T OSMI(W)

== tk,u tr WIWJ_

ow ow ’

where tgo =1, tp, = atpy_1 (k=1,2,...), a € (0,1), and pu € (0,1) are given parameters.
We call the proposed dimension reduction algorithm Least-Squares Dimension Reduc-

tion (LSDR). The entire algorithm is summarized in Figure 1. In practice, we performed

CV once in several steps because executing CV at every step is computationally expensive.
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Initialize projection matrix W'.

Optimize Gaussian width ¢ and regularization parameter A by CV.

Update W by W <« W_ | where step-size € may be chosen using Armijo’s rule.
Repeat 2. and 3. until W' converges.

Ll e

Figure 1: The LSDR algorithm.

3 Numerical Experiments

In this section, we experimentally investigate the performance of the proposed and existing
dimension reduction methods using artificial and real datasets. In the proposed method,
we use the Gaussian kernel as basis functions and employ the regularized kernel Gram
matrix as the regularization matrix R: R = K + eI, where K is the kernel Gram
matrix for the chosen centers: Kyp = ¢} (up)dj(ve). €}, is added to K for avoiding
non-degeneracy; we set € = 0.01. We fix the number of basis functions to b = min(100, n),
and choose the Gaussian width o and the regularization parameter A based on 5-fold CV
with grid search. We restart the natural gradient search 10 times with random initial
points, and choose the one having the minimum CV score (21).

3.1 Dimension Reduction for Artificial Datasets

We use 6 artificial datasets—3 datasets designed by us and 3 datasets borrowed from
Fukumizu et al. (2009) (see Figure 2):

(a) Linear dependence: d =5, m = 1. y has a linear dependence on x as
y=aW e

where 2®) denotes the k-th element of &, & ~ N(x;0,1I;) and € ~ N (y;0,0.25).
Here N (x; p, X) denotes the normal density with mean g and variance-covariance
matrix 3. The optimal projection is given by

W*=[10000]. (23)
(b) Non-linear dependence 1: d =5, m = 1. y has a quadratic dependence on x as
y= (@) +e

where © ~ N (x;0,I5) and € ~ N (y;0,1). The optimal projection is given by
Eq.(23).
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(c) Non-linear dependence 2: d = 5, m = 1. y has a lattice-structured dependence
on x as

x ~ U(z;[-0.5,0.5)°),
| N (y;0,0.25) if z) < |3,
y|r ~
TN (y;1,0.25) + N (y; —1,0.25) otherwise,
where U(x; S) denotes the uniform density on a set S. The optimal projection is
given by Eq.(23).
(d) Fukumizu et al. (2009): d =4, m = 2. y has a non-linear dependence on x as
2D

T 05+ (2@ + 1.5)

y 5+ (1+ )2 4 0.4e,

where * ~ N(x;0,1;) and ¢ ~ AN(1;0,1). The optimal projection is W* =
1 000
010 0)
(e) Fukumizu et al. (2009): d =4, m = 1. y has a non-linear dependence on x as
y = sin?(mz™M + 1) + 0.4e,

where & ~ U(z; [0, 1]*\{x € R* | z) <0.7(i=1,...,4)}) and € ~ N(1;0,1). The
optimal projection is W* =[1 0 0 0].

(f) Fukumizu et al. (2009): d =10, m = 1. y has a non-linear dependence on x as

1
Y= §<I(1) - 1)267

where & ~ N(x;0,Ip) and € ~ N(1;0,1). The optimal projection is W* =
1o - 0.

Let us compare the proposed LSDR with the following methods.
e Kernel dimension reduction (KDR) (Fukumizu et al., 2009),
e The Hilbert-Schmidt independence criterion (HSIC) (Gretton et al., 2005),

e Sliced inverse regression (SIR) (Li, 1991),

Sliced average variance estimation (SAVE) (Cook, 2000),

Principal Hessian direction (pHd) (Li, 1992).

Minimum Average (conditional) Variance Estimation (AMAVE) (Xia, 2007).
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2 S 10 * N .
* * 1 * #*
1 * ***M# :* * 8| 0 ;Q;** % *
& " % ’&* ’ ** * ave* *
0 e g& * * ¥ § * * ﬁ‘% ***
P * 0 %* *
> e JERE R > 4yl * ¥ * > x K% ¥
- s e . ot * - 4
*
* x 0 * ?%’%}**** . * * .y
-3 * Kook T K * *
* _2 * * *
-2
-2 -1 0 1 2 -2 0 2 -0.5 0 0.5
* X X
(a) Linear (b) Non-linear dependence 1 (¢) Non-linear dependence 2
* % a
1 :w*# -
*x * -
**** * *:1** :: 2 " * *
* * e * *;
0.5 ek *ﬁu" * x % *
> » TE o LR >0 X g . PR,
I *’; ;* ¥ f* }&e %
0 a?*g‘ * £ *ox
ooy -2 *
*
*
05 * 4 *
0 02 04 06 08 1 -2 -1 0 1 2
X 1
(d) Fukumizu et al. (2009) (e) Fukumizu et al. (2009) (f) Fukumizu et al. (2009)

Figure 2: Artificial datasets.

In KDR and HSIC, the Gaussian width is set to the median sample distance, following
the suggestions in the original papers (Gretton et al., 2005; Fukumizu et al., 2009). We
used the dimension reduction package dr included in R for SIR, SAVE, and pHd. The
parameters for these methods such as the number of slices were set to be the default
values. To execute AMAVE, we used the publicly available code®. The principal directions
estimated by SIR, SAVE, pHd, and dMAVE do not necessarily form an orthogonal system,
i.e., if we let F' be the matrix each row of which corresponds to each principal direction,
then F' is not necessarily a projection matrix. To recover a projection matrix W, we
performed singular decomposition of F' as F = V.SU, and set W =U.
We evaluate the performance of each method by

, (24)

Frobenius

HVT/TVT/ W W

where || - || Frobenius denotes the Frobenius norm, W is an estimated projection matrix, and
W* is an optimal projection matrix.

The performance of each method is summarized in Table 2, which depicts the mean
and standard deviation of the Frobenius-norm error (24) over 50 trials when the number of
samples is n = 100. LSDR overall shows good performance; in particular, it performs the
best for datasets (b) and (c). KDR also tends to work reasonably well, but it sometimes
performs poorly; this seems to be caused by an inappropriate choice of the Gaussian kernel

Shttp://www.stat.nus.edu.sg/ staxyc/dMAVE.m
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Table 2: Mean (and standard deviation in the bracket) of the Frobenius-norm error (24)
for toy datasets. The best method in terms of the mean error and comparable ones based
on the one-sided t-test at the significance level 1% are indicated by boldface.

Data d m LSDR KDR HSIC SIR SAVE pHd dMAVE

(a) 5 1 .13(.04) .13(.05) .17(.07) .11(.05) .37(27) 89(.12) .13(.04)
(b) 5 1 .15(.06) .25(.21) .44(.36) .83(.19) .31(.11) .24(.07) .20(.09)
() 5 1 .10(.05) .44(.32) .68(.32) .89(.14) .48(.20) .86(.12) .25(.28)
(d) 4 2 20(14) .16(.06) .18(.08) .30(.15) .44(.18) .50(.18) .10(.05)
(e) 4 1 .09(.06) .13(.06) .16(.07) .21(.10) .34(.19) .36(.14) .08(.04)
(f) 10 1 .35(.12) .40(.12) .49(.17) .68(.22) .91(.13) .83(.12) .26(.06)

width, implying that the heuristic of using the median sample distance as the kernel width
is not always appropriate. On the other hand, LSDR with CV performs stably well for
various types of datasets. dMAVE also works well, and is competitive to LSDR for these
artificial datasets.

3.2 Classification for Benchmark Datasets

Finally, we evaluate the classification performance after dimension reduction for several
benchmark datasets. We use ‘image’, ‘waveform’, ‘pima-indians-diabetes’, and ‘letter
recognition’ in the UCI repository®. We randomly choose 200 samples from the dataset,
and apply LSDR, KDR, HSIC, and dMAVE to obtain projections onto low-dimension
subspaces with m = [d/4], [d/2], [3d/4], where [c] denotes the smallest integer not
smaller than ¢. Then we train the support vector machine (Scholkopf & Smola, 2002) on
the 200 projected training samples.

The misclassification rate is computed for samples not used for training. Table 3
summarizes the mean and standard deviation of the classification error over 20 iterations.
This shows that the proposed method overall compares favorably with the other methods.

4 Conclusions

In this paper, we proposed a new dimension reduction method utilizing a squared-loss vari-
ant of mutual information (SMI). Our contributions were parametric and non-parametric
analyses of the rate of convergence of the SMI approximator, and the proposal of a di-
mension reduction algorithm based on the SMI approximator. The proposed method is
advantageous in several respects, e.g., density estimation is not involved, it is distribution-
free, and model selection by cross-validation is available. The effectiveness of the proposed
method over existing methods was shown through experiments.

Chttp://www.ics.uci.edu/~mlearn/MLRepository.html.
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Table 3: Mean (and standard deviation in the bracket) of misclassification rates for bench-
mark datasets. The best method in terms of the mean error and comparable ones based

on the one-sided t-test at the significance level 1% are indicated by boldface.

Data set d m LSDR KDR HSIC dMAVE

18 5 |.083(.019) .125(.038) .158(.044) .501(.134)

image 18 9 |.088(.022) .106(.026) .115(.035)  .468(.130)

18 14 | .093(.018) .091(.019) .095(.023) .468(.130)

21 6 |.130(.014) .127(.008) .160(.016) .183(.016)

waveform 21 11 |.119(.013) .135(.010)  .163(.016)  .184(.015)

21 16 | .116(.007) .131(.008)  .159(.014)  .182(.021)

8 2 [.249(.022) .247(.024) .252(.020) .257(.017)

pima 8 4 |.260(.016) .250(.021) .252(.017) .265(.027)

8 6 |.244(.020) .243(.019) .251(.021) .252(.019)

16 4 | .031(.009) .028(.012) .035(.014) .018(.008)

letter (a,b, & ¢) 16 8 | .026(.008) .017(.007) .020(.006) .016(.006)
16 12| .016(.006) .014(.006) .017(.008) .013(.008)
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A  Proof of Lemma 1
Let & = (z,z,). By the relations de = dzdz, and py(x)

pXY(ma y)pyz (y7 Z) T

/ @ wn w2

— / sz|zy(ZL|Z, y)])yz(y, Z)pyz(y, z)
p}’(y)pz(z)

Thus we obtain

= D, 12(21|2)p.(2), we have

y(y)dwdy

dzdz, dy

SMI(X Y) SMI ,Y
=y ( Py (@) ) dfdy -3/ (%)prz)py(y)dzdy
-5/ ( f?y(;f(ly) ey p@n @y
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Noticing that

Py y) _ Po(@ Y)Y, 2) Py (T, Y)Py2(Y, 2)

pe(@)py(y)  Dx(®)py(Y)Dy2 (Y, 2) Doy o(2L12)0:(2) Dy (Y) Dy (Y] 2)p2(2)
_ Puyi(20,912)  pu(y.2)
Pos12(2012) 0y (y]2) py(Y)pa(2)’

we have

1 Poryle(Z1,Y|2) )2pz(y,Z)2px(w)
SMI(X,Y) — SMI(Z,Y :—/(1— LY y dzdz, dy,
(X,Y) (Z.Y) 2 Do 2(Z1|2)Py (Y] 2) P2(2)*py(y) LY

which concludes the proof of Lemma 1. [ |

B Proof of Theorem 1

For notational simplicity, we define linear operators @, @Q.,, @n, P, P, as

Qf =Fppf, Quf = szﬂ;(y“zj), Qn = Zlﬁﬁi"f%’i’zﬁ,
Pfi=B,f. Pf= e W)

Let Vgg denote Vggglo—er = (0rga|e=e)e for 8’ € O. Since 0 is the optimizer of the
problem (7), we have

1 1

Therefore, as in the standard asymptotic expansion for maximum likelihood estimators
(van der Vaart, 2000), we have

1 ~ 1
0= -QuV(gg) = PaVge: + (6 - 6" (ﬁanWgZ*) - annge*)
+0, (116 - 6).

This implies

-~

1 1
00" =— (éanvT(gzd - annge*> (aQnV(géﬁ - Pane*)
+0, (18- 07]1). (26)
Since Q (go-Vge+) — PVge- = 0, we have

1
ian(gg*) - Pane* = Op(n_1/2)7
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and
1
5 VYV (g5-) = PV V ' go:
1
= 5QVV (g5.) = PYV go- + Op(n1/%)

=Q (V9o V'go-) +Q (90 VV ' go-) — P (VV go:) + Op(n'/?)
=Q (VgeV'ge)+ P (VV'ige)—P(VV ge)+Opn'7?
=Q (Vge-V'ge-) + O,(n~'?).

Thus Eq.(26) implies
0 —0"=0,(n"'?) + 0,6 - 67,

in particular, 6 — 6* = O,(n"Y/%). Moreover Eq.(26) becomes
- L1 -
66 =~ (a0 Vaw) " (307(0) ~ RV ) + O,
Egs.(5) and (8) give

— 1 1
SMI(Y, Z) — SMI(Y, Z) = —§Qng§ + Pogg — (—EQgg* + ng*)

= —%Qngg + Pogg + %Qngﬁ* — Page-
— <—%Qg§* + Pge- + %Qngg* - Pnge*) :
The first four terms of the RHS can be expanded as
— %Qngf; + Prgg + %Qngé* — Fugo
—(0°-6)'V <%Qng§\ - Pngg)

* 0 1 * 9 -
#5007V (3003 - Pagg) (67~ 0) + O,

N | —

1 ~ 1 .
= 5(9* —-6)'vv’ (ﬁQngg* — Pogo- ) (8° —0) + 0O, (n*?)

= 10" 0)Q (Va0 VT gp) (0"~ B) + O, (. Eq.(27)
= Op<n71)-

On the other hand, by the central limit theorem,

1 1 )
—§Q93* + Pge- + §Qn93* — Pogo- = O,(n7/2).

20

(27)

(28)

)
= 50 =0TV (30} - Pagg ) 6 )+ O, (- Eq.(25)
)

(30)

(31)
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Substituting Eqgs.(30) and (31) into Eq.(29), we have the first assertion (9).
Next we prove the second assertion (10). Based on Eqgs.(29) and (30), we can evaluate

the expectation of S/\MI(Y, Z)—SMI(Y, Z) as
Ep-[SMI(Y, Z) — SMI(Y, Z)]
1 1
= Epn |:_§Qngz‘ + Png§ + 5@7193* - Pnge*:|
o 1 n * A_ *\ T —1
_§u{Amw“9—exe 67|} +o(nt),

where we used the fact that
Q (Vgg*VTge*) = A

Below, we will show that
P ~ 1
Epn [(9 —0°)(0 - 9*)T] = ~A7'BA™ +o(n"). (32)

Obviously this gives Eq.(10).
Eq.(28) implies

Ep |(6-07)(8 0]
= A 'Epn ( QnV(gs.) — P, Vgg*> GanT(gg*) —anng*)} At +o(nh)
Q

= A 'Epn [(Qn(9e-Ve-) — PuVge) (Qn(9e-V 'go+) — P,V 'ge-)] A~  +o(n™")
= A™'Epn (@n(go*Vge*) - Pane*) <©n(99*vT90*) - PnVTge*ﬂ A~ 4 o(n™h).

(33)
Let
1
)= 5 (90 (9. 2) Va0 (4. 2) + 90 (¥, 2) V0 (4. ) — Vg0:(4.2) ~ Voo (4, =)
for w = (y,2) an = (¢, 2'). Then h is symmetric (i.e., h(w,w’) = h(w’,w)), has

mean 0 (i.e., Epwpw [h('w,w’)] = 0), and satisfies

@n(ge*Vge*) — P,Vge- = Z h(w;, w;) =: U,.

1<z;éj<n

Therefore, @n(gg*Vgg*) — P, Ve is a U-statistic with the symmetric kernel h(w;, w;).
It is known (Theorem 7.1 in Hoeffding, 1948) that the variance of U-statistic is given by

Epn [U,U]] = %E[h(wl,wz)h(wl,wm +o(n ), (34)
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where wy = (y1, 21), w2 = (Yo, 22), and wj = (yh, z5) are i.i.d. variables with probability
density py,. For notational simplicity, we write

fi(y, 2) .= go-(y,2)Vge-(y, 2),  foly, 2) := Ve (y, 2).
Then
AB[h(w, wa)h(uwn, w)) ] = E|
fl(yla’ZQ)fl(ylsz) +f1(y1,Z2)f1(y2,21) = Ly z2) folyr, z1) - f1(y1,z2)f2(y2aZ2)T

"'

(A) (B) () (D)
+f1(y2,z1)f1(y1,z2) +f1(y2,zl)f1(y2,zl) Hye, 20 fa(y1,20) '~ filys, 21) fa(ys, 23) |
(B) (F) (@) (H)
_f2(y17zl)f1(yl7z2) f2(y17z1)f1(y27z1) +f2(y1, 1)f2(y17Zl)T+f2(y17zl)f2(y§aZ§)Tj
() ) (K) (L)
—fQ(y2,Z2)f1(y17Z2) fz(yz,zz)fl(yz>zl) +f2(y2,z2)f2(y1,21) —|—f2(y2,z2)f2(y2,z2)T
(1) (V) (0) (P)

Going through simple calculations, each term in the RHS of the above equation can be
evaluated as
pavpayry [V 905 (U, 2)V " go- (y, 2')],
Dyt |y Py!|2Pyz Ve (y, Z/)VTQG* (v, )],
pva [V 90+ (4, 2)|Ep,. [V g6+ (y, 2)],
psporpse V905 (' 2)V T go- (y, )],
Py|2Py! |, Pz Vge-(y, z)Vng* (?/, )],
o[V 90- (4, 2)V " go- (y, 2)].
Therefore,
AE[h(wy, wy)h(w, wh) ]
= B0, [V90- (4, 2)V " 90+ (4, 2)] = By, 0,0, [V 90+ (4, 2)V g6+ (1, )]
+ B,y v (Vo (y:2)V " go- (v 2)] + By oy 0y [Vae-(y', 2)V " go- (y, 2")]
- Epy‘zpy/,zpz [Vgo+(y,2)V  go+(y/, 2)] — BEp,, [V o+ (y, 2)]Ey,, [V ' g6+ (y, 2)]
Ep,. [(Vge* (y,z) — Epz,ly[Vgg* (y,2")] — Epy,‘Z[Vge*(yQ z) +Ep,., Vo (v, z’)])

x (nge* (4,2) = By, [V g0 (u, 2)] = By, [V g0- (4, 2)] + By, [V 0 (0, 2)] ) |
= B.

This with Eqs.(33) and (34) yields Eq.(32), and thus we have the second assertion (10).
]
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C Proof of Theorem 2

Before proving Theorem 2, we show the following auxiliary lemma.

Lemma 2. Under the setting of Theorem 2, if A, — 0 and \;' = o(n?/ ), then we

have
where || - ||2 means the Ly(pxpy)-norm and O, denotes the asymptotic order in probability.

Proof of Lemma 2. Hoeffding (1963) derived Bernstein’s inequality for double sum, i.e.,

P1@-@s1> 7o) <2ew (_4<HfHoox/(§2ﬁ) am)

for x > 0. By applying the above inequality to the proof of Theorem 2 in Birgé and
Massart (1993) or Theorem 5.11 in van de Geer (2000) instead of Bernstein’s inequality
for i.i.d. sum, we obtain a “double sum” version of those theorems. That is, exponential
decay of the tail probability of \/nsup;cr |[(Qn — Q)f], where F is a class of uniformly
bounded measurable functions and satisfies a polynomial bracketing condition (14) as Gy,
(see Theorem 3 in the supplementary material). Later, this is used to obtain Eqs.(37)
and (38).
From the definition, we obtain

300G = P + MB(GF < 5Qug™ — Patw + MRl
= S@u@ -9~ Qule (e~ 8) ~ Pa@— ¢") + ARG RV <0,
On the other hand, Q(¢*(g* — §)) = P(g* — §) indicates
2@ - QUG- ~ Q- Qg (s ~9) ~ (P~ P)G~ ¢") ~ (RGP ~ Rlg™))
> %Q(E— 9"

Therefore, to bound ||g — g*||2, it suffices to bound the LHS of the above inequality.
Define F; and F3; as

Fu={9—9"lgeGu}, Fu={"|feFu}

For g, € Gy such that ||g — ¢'|l2 < 0, the Lo(pxpy)-norm of the difference between
(9 —g¢*)* and (¢ — g*)* is bounded by

1g—9) = =g)Vl2= g —9) g+ 9 —29")|l2 < 26(M + My).

Thus, the bracketing entropy of F2, has the following order:

H(Fir, 0, La(pspy)) = O (((M%;MO)QY) as 6 — 0.
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Let f := ¢ — ¢g*. Then, as in Lemma 5.14 and Theorem 10.6 in van de Geer (2000), we
obtain

ol
2

(1+ RGP + M2)F v 75 (11 RG + Mé)) ,
(36)

Q= Q) =0, (%nﬂné

where a V b = max(a,b). Here, we have used the double sum version of Theorem 5.11 in
van de Geer (2000), which is needed to obtain the same formula as Lemma 5.14 in van de
Geer (2000). Since

172012 < If1lay/201 + R@)? + M),
the RHS of Eq.(36) is further bounded by

1 1-2 ~ 1,7 _2 ~
(@u = QU = 0, (I3 0+ REP + 33 v a5+ R0 )
(37)
Similarly, we can show that

X
2

(Qn—Q)g* (9" —9)| = O, (%Hﬂli (14 R(@G) + Mo)? V™= (1 + R(9) +MO>) .

(38)
Note that, for g,¢' € G,

/(g — ¢ )dpsy = /(g — ¢')?wdpydpy, < Mollg — 4|13,

Hy(Far, 6, La(pyy)) = O ((w)s :

which implies

Thus,

X
2

. o~ 1 1- R ¥ __2 .
(= Pa =9 = Oy (=I5 3004 B@) + M) v ™35 (14 R@) + ) - (39
Combining Eqgs.(37), (38), and (39), we can bound the Ly(pypy)-norm of f as

1 .
S+ 2R @)

< MR(g*)? + 0O, ( 1+ R(G)>+ M2)2ti v n‘ﬁ(l + R(9)* + M§)> .

1 1-2
%Hf l2 *(
The rest can be proved by following a similar line to Theorem 10.6 in van de Geer (2000).

We redefine My < max{R(g*), My}, and define J = 1 + R(g)* + M. There are two
possible situations, namely, (a) R(g) > My + 1 or (b) R(g) < My + 1. We show the
stochastic order of || f||2 and R(g) for the two situations separately.
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(a) (i) I | fll2 > n~ Y+, then

1 2 ~\2 2
- <
2||f||2 + /\nR(g) = )‘nMO + Op (\/—Hf”

1- 7/2J1/2+7/4> ‘

In this case
1 R 1 R
I+ MR@P <2005 or SIFIE+ MR@? < O, (=l

For the first event, we have
IFI2 < M2 = O\, R() < VM, = Oy(1).

On the other hand, for the second event, we have

1 o Loz e —-12pn v/
S8+ ARG < 0, (A1) < 0, (A RE),

which indicates

31018 < 0, (HIAE P R@TR) = <0, (7 R@)
and

MA@ <0, (I3R! ")

a - - - - R(/g\) AN —
= 7@ < 2000, (eI — o, (R@) €A = o),

Thus, the probability of this event goes to 0.
(ii) If || flla < n~ Y] then

1
SN+ ARG < MM + O, (0™ R(g)?) .

In this case,

MR(9)? < 20,Mg or A\R(9)* < O, (n? T R(g)%).

Then, similarly to the above case, we can show that the probability of the second event
goes to 0. On the other hand, for the first event, || f|lo < n™Y/®J < n= V@) (142M2) =

O,(A?) and R(§) < v2M, = O,(1).

(b) In this situation, R(g) < M+ 1 = O,(1).
(i) If | flla > n~"/@*)J, then

1 2 ~2 2 1—v/2
- <
Sz + A R(9)” < Ay + Oy (\/—Ilfll
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In this case,

1 1 _
118 < 0, (3nv I = 1fll < 0, (W2 v ) = 0,04

(i) If || f]l2 < n~ V@] it is obvious that || ]|z = Op(Ar?).
Consequently, the proof of Lemma 2 was completed. n

Based on Lemma 2, we prove Theorem 2 below.
As in the proof of Lemma 2, let f :=¢g — ¢g*. Since Q(fg*) = Pf, we have

1 ~ ~ 1 * *
§Qng2 - g — (5Q9 ?— Pg")

— Q7 P40 - (3007 P

= S0P 4 5Qu- QP + Q= Qe )~ (P~ P)f
+5(Quo™ = Q9™) ~ (Pag” — o). (40)

Below, we show that each term of the RHS of the above equation is O,(),). By the
central limit theorem, we have

1
5(@Qng™ = Qug™) = (Pug” = Pg") = O,(n™1%).
Since Lemma 2 gives || f||3 = O,(\,) and R(g) = O,(1), Eqgs.(37), (38), and (39) in the
proof of Lemma 2 imply
1 1-2 —2
(@ = @1 = 0, (=l Vs ) < 0,0

[(@Qn = Q) (g™ = Op(tn),
[(Pn = P)g"| = Op(An).

In the above derivation, ;! = o(n??*7)) was used. Lemma 2 also implies

Qf* = Il = Op(An)-

Combining these inequalities with Eq.(40) implies

_— 1 . R 1
SMI(Y, Z) — SMI(Y, Z) = —éQngQ +P,g— (—EQg*2 + Pg*)

= Op(/\n + n_1/2) = (’)p(max()\mn_lﬂ)),

which concludes the proof of Theorem 2. [ |
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